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Abstract

Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds
of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology,
but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of
neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation
of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs
are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this
study we developed and validated a novel computational method for differentiating between benign and MR-associated
CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in
the final version of a Naı̈ve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most
to the classifier’s accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known
MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded
test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification
method will be of value for objectively prioritizing CNVs in clinical research and diagnostics.
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Introduction

Improvements in microarray resolution and hybridization

robustness have resulted in the widespread implementation of

genomic microarray technologies in medical research and

diagnostics. This technology is most effective in detecting genomic

deletions and duplications larger than 1kb, known as copy number

variants (CNVs). Genomic microarrays are commonly used to

identify rare, but highly penetrant, and commonly single CNVs in

patients suffering from neurological disorders such as autism [1–3],

schizophrenia [4–6] and mental retardation (MR; also known as

learning disability) [7–9]. However CNVs have also been recently

recognized as a common form of genomic structural variation:

high resolution microarrays and sequencing approaches are able

to identify 600–900 CNVs in a single individual [10–14]. Current

clinical interpretation therefore needs to contrast the frequencies

of a CNV in affected versus unaffected individuals, as well as

determining the inheritance of CNVs via parental analysis [15,16].

The identification of a CNV that is (1) relatively large, (2) overlaps

genes, (3) is rare, and (4) de novo in a patient provides a strong

indicator of clinical significance, because this combination is

extremely rare in the normal population owing to a low structural

mutation rate outside of hypervariable ‘hot spot’ regions

[10,17,18]. Increases in microarray resolution are revealing both

a much higher rate of rare CNVs than previously thought [19] and

an increasing number of genomic loci being reported that show

variable inheritance and penetrance. Such examples have been

reported for CNVs at 1q21.1 [20,21], 15q13.3 [22,23], and

16p13.11 [24,25]. These loci demonstrate that there are

limitations in considering CNVs as either benign when common

and inherited, or causal when rare and de novo.

At present up to 5% of the human genome has been shown to

vary in large scale copy number in numerous healthy controls

[13,26] and novel CNVs continue to be identified [27]. In Nguyen

et al. (2008) [28] we reported a number of genomic features whose

frequencies are significantly different in apparently benign CNV

regions compared with the genome as a whole. In particular, CNV

regions are enriched in repetitive sequences of near identical DNA

known as segmental duplications [29] and are less prone to

recombination. Furthermore, these CNV regions are character-

ized by tendencies to coincide with between-species break-points

in synteny and to be prone to elevated nucleotide substitution

rates, whilst their encoded proteins tend to exhibit elevated

evolutionary rates. In a separate study we compared a large set of

rare de novo CNVs associated with MR with CNVs identified in

healthy control individuals. This study demonstrated that MR-

associated CNVs are significantly enriched in genes whose mouse

orthologues, when disrupted, result in abnormal axon or

dopaminergic neuron morphologies, and in genes from neurode-

generative disease pathways [30]. Importantly, we showed that
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benign CNVs do not display such properties. Such observations

can thus now be used to prioritize dosage-sensitive candidate genes

for MR. Of relevance to this study is that these distinctions of MR-

associated CNVs may be exploited to aid the development of an

objective method for distinguishing disease-associated CNVs from

benign CNVs that does not rely solely on allele inheritance and

frequency in the normal population.

Although a large number of methods are available for the

computational prioritization and classification of genomic data

[31–34], none thus far has been developed specifically for CNV

data. For this study we implement a Naı̈ve-Bayesian Tree classifier

(NBTree). This hybrid approach combines a decision tree with

Naı̈ve-Bayesian classifiers, and exploits the segmentation of

decision trees and the accumulation of Naı̈ve-Bayes evidence.

There are four major advantages of decision-tree classifiers for

assigning pathogenicity to CNVs. These classifiers are (i) fast and

(ii) their results are easily comprehensible. They are (iii) very robust

to irrelevant features and (iv) classification takes into account

evidence from many attributes in arriving at a final prediction

[35]. In this study our aim was to validate the use of an NBTree,

based upon genomic features, to accurately separate disease-

associated CNVs from benign CNVs.

Results

We started by selecting genomic features (Table 1), based on

our previous observations [28,30], as the basis attribute set for

development of the classification procedure. In addition, we

collected a large cohort of CNVs identified in healthy controls

(termed ‘‘benign CNVs’’) and a large set of CNVs associated with

MR (termed ‘‘MR-associated CNVs’’) [30]. These CNVs were

used for training and testing the Naı̈ve-Bayesian Tree classifier

(NBTree). After optimization, the accuracy of the classifier was

initially assessed by applying the classifier to a small independent

set of CNVs known to be pathogenic (‘‘Decipher known

syndromes’’). We subsequently applied the classifier to a third,

much larger set of CNVs identified during routine MR microarray

diagnostics, termed ‘‘MR diagnostics CNVs’’ (see Figure S1 for

study design). Finally, we studied two further sets of CNVs whose

clinical significance is currently unknown. The first contained rare

CNVs for which inheritance could not be determined (‘‘candidate

CNVs’’). The second set contained rare, privately inherited CNVs.

Table 1. Genomic attributes investigated as potential classification features.

Genomic Feature Structural Functional Categorical Continuous

1 Type (Gain/Loss) * *

2 Length * *

3 # LINEs * *

4 LINE density * *

5 # SINEs2 * *

6 SINE density * *

7 # Segmental Duplications * *

8 Segmental Duplication Density * *

9 # Genes1 * *

10 Gene Density1 * *

11 dS
3 * *

12 dn
2,4 * *

13 dn/dS
2 * *

14 KEGG Pathway (hsa01510) * *

15 MGI Phenotype (MP:0003631) * *

16 Gene expression * *

Each feature is either categorical or a continuous numerical feature. Furthermore, each feature relates to either a structural genomic attribute or a functional genomic
attribute.
1For these features we counted the number of genes overlapping the CNV.
2These features did not contribute to the accuracy of the classifier and were removed from the final version.
3dS = Synonymous substitution rate.
4dn = Non- synonymous substitution rate.
doi:10.1371/journal.pcbi.1000752.t001

Author Summary

Rare copy number variants (CNVs) are a frequent cause of
neurological disorders such as mental retardation (MR).
However CNVs are also commonly identified in healthy
individuals. It is therefore crucial for both diagnostic and
research applications to be able to distinguish between
disease-causing CNVs and ‘‘benign’’ CNVs occurring as
normal genomic variation. Separating these two types can
take advantage of significant differences in their genomic
contents. For example, benign CNVs are enriched in
repetitive sequences. By contrast, CNVs associated with
MR tend to have high densities of functional elements,
including genes whose mouse orthologues, when
knocked-out, lead to specific nervous system abnormali-
ties. We have developed a novel objective approach that is
effective in distinguishing MR-associated CNVs from
benign CNVs based on the presence of 13 genomic
attributes. This method is able to achieve high accuracies
in a cohort of CNVs known to cause MR and in a cohort of
individuals with unexplained MR. The development of this
technique promises to substantially improve the method-
ology for determining the pathogenicity of CNVs.

Classifying Copy Number Variation
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Development of the Classifier
We identified a total of 16 genomic features as suitable

attributes for the classifier which could be divided into either: (1)

structural features such as segmental duplication density, and (2)

functional features, such as gene density (Table 1). These

genomic attributes were also considered to be either continuous or

categorical features. To compensate for the dependencies of CNV

length on the frequencies of features (e.g. LINE, SINE, segmental

duplication and gene numbers) we also calculated the densities of

LINEs, SINEs, segmental duplications and ENSEMBL gene

models. A categorical feature was created to be set as ‘true’ when a

CNV contains at least one gene whose mouse orthologue, when

disrupted exhibits a mouse nervous system phenotype (and

otherwise ‘false’). Previously we have shown that MR CNV genes

are enriched in the KEGG neurodegenerative pathway (namely,

hsa01510). This feature was also represented in the classifier,

specifically as a categorical feature when at least one CNV gene is

a member of this KEGG pathway. Finally, we incorporated in the

classifier information regarding the gene expression variance from

microarray expression experiments performed in 176 HapMap

EBV cell lines, reasoning that dosage-sensitive genes tend to show

less variable expression levels [36,37].

Optimal balance among CNVs in the training set. The

relative frequencies of the two different classes of CNV in the

training set are very different (they are ‘imbalanced’). MR-

associated CNVs are identified in ,10% of MR patients screened

and, for these, in the large majority of cases MR is attributable to

only a single CNV (see Introduction for specific details regarding

current clinical practise for identifying clinically-relevant CNVs).

By contrast, 5 to 10 benign CNVs can be identified per non-

patient individual, depending on the microarray platform being

used [10–13]. We started by investigating the impact of this

imbalance between the two CNV classes on the accuracy of the

classifier during training. We performed 1,000 training and test

runs of the classifier each with 30 different levels of imbalance

between MR-associated and benign CNVs in the training set.

Initially, a random selection was made consisting of half of all

available benign CNVs (n = 1,413) and half of all MR-associated

CNVs (n = 82). The remaining CNVs were used subsequently as

test instances. The imbalance was then gradually decreased until

equal numbers (n = 82) of MR-associated and benign CNVs were

present in the training set (see Materials and Methods). The

most imbalanced training set, consisting of 5.5% MR-associated

and 94.5% benign CNVs (82:1,413), produced a classifier with the

lowest mean accuracy (80.4%62.9%) (Figure 1). The highest

mean accuracy (87.3%62.6%) was achieved using a balanced

training set containing 82 MR-associated and 82 benign CNVs:

this scenario takes advantage of only 5% of all available benign

CNVs for the training set.

Optimal selection of the training set. A consequence of

using a balanced training set with equal numbers of MR-

associated and benign CNVs is that not all available benign

CNVs are used during training. In order to select the optimal

training set we randomly re-sampled the training set over 10,000

iterations selecting 82 MR-associated CNVs and 82 benign CNVs,

with the remaining benign CNVs being placed in the test set. A

mean accuracy of 86% (62.8%) was obtained from these

iterations, which demonstrates that the classifier achieves a

reasonable level of accuracy irrespective of which benign CNVs

are selected for the training set. In addition, this analysis identified

an optimal subset of CNVs for training which achieved a

maximum accuracy of 95.7% and an area under the ROC

curve of 0.98 when classifying the test set of CNVs. The resulting

classifier using this optimal training set contains 5 tree nodes with

univariate splits based on the CNV length, and on the segmental

duplication, LINE, SINE and gene densities. The 6 leaves of the

tree each contain a different Bayesian classifier based on all

features used during training.

Feature Contribution to classification accuracy. The

optimal training set was obtained by training the classifier on all

16 available features. To quantify the contribution of each feature

to the accuracy of the classifier we used a leave-one-out policy for

each feature, retrained the classifier and then measured the

percentage decline in classification accuracy (Figure 2). However,

in order to exclude the effect of length on the classifier, the features

SINE, LINE, segmental duplication and gene count features were

simultaneously removed with the length feature. For example,

removing the LINE density or the length from the classifier

resulted in a 6% decrease in accuracy, whilst removing the mouse

MGI knock-out phenotypes resulted in more than a 5% decrease

in accuracy. A 4.2% decrease in accuracy was measured when any

one of the segmental duplication density, gene count, KEGG

pathway or mean ds value was removed. Removing the CNV type

(either gain or loss) resulted in a 3.7% decrease in accuracy. A

similar decrease in accuracy was observed when removing the

number of segmental duplications. Smaller effects were seen when

any one of the LINE count, SINE density, gene density and gene

expression features was removed from the classifier. By contrast,

leaving out the number of SINE elements, mean dN value, or mean

dN/dS ratio had little or no effect on the performance of the

classifier. Consequently, these three features were excluded from

the final classifier.

Validation of the Classifier
Application to MR Syndromes. The Decipher database of

known syndromes associated with genomic structural variants

(https://decipher.sanger.ac.uk) provides a large set of pathogenic

CNVs that is suitable for the independent validation of the

classifier. In this database the genomic locations (based on

microarray studies) of 58 syndromes are reported, 32 of which

are associated with MR. We applied the classifier to these 32

Figure 1. Effect of the imbalance between MR-associated and
benign CNVs in the training set on the accuracy of the
classifier. This figure shows the relationship between the fraction of
available benign CNVs used in the training set and the accuracy of the
classifier (calculated over 1,000 independent test and training runs).
Maximum accuracy is achieved with a similar number of MR-associated
and benign CNVs in the training set (,5% of the benign CNV instances
available).
doi:10.1371/journal.pcbi.1000752.g001
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genomic regions and found that 31 regions were classified as

pathogenic. The 80kb critical region of Rubinstein-Taybi

Syndrome was not correctly classified (Table S1). This region is

a composite of overlapping microdeletions, ranging in size from

1.5–3.5Mb, identified in 3 individuals with this syndrome. When

we tested these three regions individually each was classified as

pathogenic. From this we concluded that the classifier was able to

correctly identify known pathogenic CNVs.

Application to MR diagnostics. We performed a second

more extensive study to validate the accuracy of the classifier using

an independent set of 584 MR patients in which 1,203 CNVs (the

set ‘‘MR diagnostics’’) had been identified during routine

diagnostics using Affymetrix 250k SNP microarrays. These CNVs

were identified as being associated with MR (n = 49) based on de novo

occurrence and the absence of similar CNVs in the normal

population, or as being benign CNVs (n = 1,154) known to be

present in the normal population. Of the 1,203 CNVs in the

validation set, 94% of the CNVs were classified correctly, with a

sensitivity of 88% and a specificity of 94% (Figure 3a). More

specifically, 43 of 49 MR-associated CNVs were correctly classified,

37 of which had a distance of less than 0.1 from the MR class,

showing that these classifications have a high confidence. Each node

of the NBTree contains a Bayesian classifier resulting in the most

likely class (benign or MR-associated) for each CNV being

predicted. In addition, the probability (a distance function) is

calculated that a CNV belongs to the MR-associated CNV class or

to the benign CNV class. The overall false positive rate was 0.05 and

the false negative rate 0.12. The positive predictive value was 0.38

(indicating the number of CNVs correctly classified as MR, divided

by the total number of CNVs classified as being MR). The negative

predictive value was 0.99 (indicating the number of CNVs correctly

classified as benign, divided by the total number of CNVs classified

as benign) (Table 2). 1,085 of 1,154 benign CNVs (94%) were

correctly classified whilst 69 (6%) were incorrectly classified as an

MR-associated CNV (Table 2). To exclude the possibility that the

initial training set did not contain sufficient biological coverage to

represent the variance of each classification feature, and to train the

optimal classifier, we combined the test and training sets and

retrained the classifier. The accuracy of the resulting classifier was

then tested on the validation set. The training set was jack-knifed to

contain equal numbers of MR-associated and benign CNVs

(n = 164) and 10,000 iterations were performed. The mean

accuracy across all iterations was 76% and the maximum

achieved accuracy was 94%, equal to that gained with the smaller

training set. Thus we conclude that the training set with 82 MR-

associated and 82 benign CNVs contained sufficient biological

coverage to model the data accurately.

To further investigate the contribution of particular features to

misclassification rates we calculated the mean values for each

feature in the correctly and incorrectly classified CNV groups

(Table S2). This highlighted some general differences between

correctly and incorrectly classified CNVs. For example, 78% of

the incorrectly classified benign CNVs were copy number gains

and contained, on average, fewer segmental duplications than

correctly classified benign CNVs. In addition, 86% of the correctly

classified MR-associated CNVs contain at least one gene whose

mouse orthologue knockout results in a nervous system phenotype,

whereas only 33% of the incorrectly classified MR-associated

CNVs contain such genes. We also noted that correctly classified

MR-associated CNVs have an average genomic size of 7.7Mb,

whereas CNVs incorrectly classified as benign have, on average, a

much smaller size of 1.1Mb. Likewise, incorrectly classified benign

CNVs also had a smaller average size (319kb) than benign CNVs

correctly classified (492kb). We therefore investigated the accuracy

of the classifier on 971 CNVs smaller than 1.1Mb in more detail.

For these smaller CNVs, 9 of the 13 MR-associated CNVs as well

as 890 of the 958 benign CNVs were classified correctly. The

performance of the classifier on these small CNVs was comparable

to the overall performance on the complete validation set with an

accuracy of 93% and specificity of 93%, with the exception of

sensitivity which dropped by 18% to 70%. Analysis of the genomic

features in smaller CNVs showed that despite differences in CNV

lengths, small MR-associated CNVs show many similarities to

larger MR-associated CNVs such as similar SINE and gene

densities (Table S2).

Application of the Classifier to CNVs of unknown clinical

significance. Finally we sought to use our classifier on two

further CNV datasets with unknown clinical significance, termed

candidate CNVs and rare inherited CNVs. We first selected a set

of 53 rare CNVs identified in the clinic, not known to vary in copy

number among the general population, for which inheritance

could not be established due to the unavailability of one or both

parents. Due to their unknown inheritance and rare status, we are

unable to determine using current diagnostic procedures whether

these CNVs are indeed causal. In total, 46 of these 53 CNVs were

classified as MR-associated CNVs (Table 2). We also applied the

classifier to a set of rare, privately inherited CNVs that are not

known to vary in the general population (Figure 3b). Twenty-

seven of the 41 rare inherited CNVs were classified as an MR-

associated CNV, and 14 were classified as a benign CNV

(Table 2) displaying a significant enrichment in the number of

CNVs classified as MR-associated when compared to size matched

CNVs selected randomly from the genome (p = 7.061023).

Figure 2. Analysis of the relative contribution of each genomic
feature to the CNV classifier. Both structural and functional
genomic features are evaluated for their impact on classification
accuracy. This analysis is performed by measuring the decrease in
accuracy of the classifier as each classification feature is removed
individually. KEGG Pathway refers to the CNV region containing at least
one gene implicated in a KEGG neurodegenerative pathway, and MGI
Pheno refers to the CNV region containing at least one gene displaying
a nervous system phenotype in a knockout mouse. Gene Expression
refers to the stability of gene expression of genes present in the CNV.
Removal of the LINE density from the classifier results in the largest
decrease in accuracy (6%) whilst removing MGI knockout phenotypes
results in a drop of 5% in accuracy. The number of SINE elements, the
non-synonymous substitution rate (dN), and the ratio of the synony-
mous versus non-synonymous substitution rate (dN/dS) individually
have no effect on the accuracy of the classifier.
doi:10.1371/journal.pcbi.1000752.g002
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Discussion

In this study we present a novel computational method to

objectively identify clinically relevant CNVs using an NBTree

classifier and 13 diverse genomic features. This is the first

description of such a method applied to CNVs that can

significantly improve interpretation of this important class of

genomic variation. Our classification method has been validated

on a set of 1,203 CNVs detected in 584 patients with MR,

achieving a high accuracy (94%), with a sensitivity of 88% and a

specificity of 94% (Figure 3a).

Several other computational methods have been developed

previously to predict if disruption or disturbance of genomic

elements have pathogenic consequences. Often these methods are

focused on identifying disease genes or on predicting if mutation or

splicing events are pathogenic [31–34]. Such methods make use of

protein structure and stability measures, and phylogenetic or

sequence conservation data [38,39], and often cross-validate their

predictions using OMIM (Online Mendelian Inheritance in Man)

data [40]. These approaches may be less applicable for larger

structural variants such as CNVs because they predict the effect of

a single change on a single disease gene, rather than a large change

involving many genes. Our approach differs in that we directly

predict the causal CNV from genome-wide copy number scans on

the basis of the distinguishing features of benign and disease-

causing CNVs. In addition, OMIM does not provide a suitable

source for validating the performance of a classification method for

CNVs as dosage-sensitive genes are largely underrepresented in

this database (,5% of the entries describe haploinsufficient genes

[41]), and because a precise mapping of CNVs in OMIM is

lacking. In contrast to OMIM, the Decipher database list of

known syndromes (https://decipher.sanger.ac.uk) provides a

suitable list of CNVs for external validation of the classifier with

high-resolution mapping of their genomic locations. Our classifi-

cation method correctly identified all the CNVs listed in this

database as causing MR-associated syndromes.

The classifier incorporated specific knowledge about CNVs via

13 diverse structural and functional genomic features (including a

number of different transposable element types). The proximity of

these elements to CNVs has been reported previously and it has

Figure 3. Benign CNVs are separable from MR-associated CNVs using a distance function that reflects the probability that a CNV
belongs to the MR-associated CNV class. The CNVs are ranked and their probability of belonging to the MR-associated CNV class is plotted, A)
1,203 CNVs with known inheritance collected from routine diagnostics are classified with a sensitivity of 88% and a specificity of 94%. 1,085 of the
1,154 of the common inherited CNVs were correctly classified (blue), and 43 of 49 CNVs previously associated with MR were correctly classified as MR-
associated (green). 6 CNVs which had been interpreted as not being associated with MR, were classified as MR-associated (red), as well as 69 CNVs
classified as MR-associated which had previously been interpreted as benign (purple). B) Similarly, 41 rare inherited CNVs with unknown clinical
significance are classified, 27 of which were classified as MR-associated with a MR distance .0.5 (green), and 14 were classified as benign (MR
distance ,0.5, blue).
doi:10.1371/journal.pcbi.1000752.g003

Table 2. Application of the classifier to CNVs obtained in routine diagnostics of patients with mental retardation.

Classifier Output Validation Set (Rare de novo vs. commonly inherited CNVs) Application Set (CNVs of unknown clinical significance)

MR CNVs (rare de novo)
Benign CNVs (commonly
inherited) Sub Total Rare Inherited

Rare CNVs of unknown
inheritance

MR 43 69 112 27 46

Benign 6 1,085 1,091 14 7

Total 49 1,154 1,203 41 53

The accuracy of the classifier developed was tested on an independent cohort of CNVs. Phase 1 contained the validation set of 1,203 CNVs known to be either rare de
novo or commonly inherited. 43 of the 49 rare de novo CNVs known to be associated with MR were correctly classified, and 1,085 of the 1,154 common inherited CNVs
known to be benign were correctly classified, thus giving an overall classification accuracy of 94%. The false positive rate was 0.05 and the false negative rate was 0.12.
The positive predictive value was 0.38 and the negative predictive value was 0.99. Phase 2 consisted of the application set containing 94 CNVs of unknown clinical
significance. Of the 41 rare inherited CNVs the classifier identified 27 CNVs as MR-associated and 14 as being benign. 53 candidate CNVs for which the inheritance could
not be determined were also classified, from which 46 were classified as being MR and 7 CNVs were classified as being benign.
doi:10.1371/journal.pcbi.1000752.t002
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been hypothesized that they mediate the formation of recurrent

CNVs [18,26,42]. We confirm previous results that benign CNVs

are enriched in both LINE and segmental duplication elements

[13,28] and show that both the LINE density and the segmental

duplication density substantially contribute to the classifier’s

accuracy (Table S2). Previous studies have also reported that

CNV gains are enriched in many of the same features as CNV

losses [30]. Our feature contribution results support this finding:

when the CNV type was removed from the classifier only a 3.7%

decrease in accuracy was observed, and 7 additional features had a

greater contribution to the classifier’s accuracy. In addition to

these transposable elements, we included functional genomic

elements which have recently been shown to assist in distinguish-

ing benign from MR-associated CNVs [30,43]. The significant

enrichment of MGI mouse nervous system phenotypes in MR loss

CNVs has previously been reported [30]. We show that the MGI

mouse knock-out phenotype feature is effective in distinguishing

benign from MR-associated CNVs: 80% of all MR-associated

CNVs contain one or more genes whose unique orthologue’s

disruption in mouse reveals a nervous system phenotype, whereas

benign CNVs only rarely contain such genes (Table S2).

Despite the MGI mouse phenotype dataset being incomplete,

this feature contributes greatly to the classifier’s accuracy (5%). To

date, gene knockout experiments with recorded ontology based

phenotype information have been performed for approximately

5,000 of the possible 15,287 genes with mouse 1:1 orthologues

[44,45]. Furthermore the MGI phenotype data are included in the

classifier as a binary feature (which is labelled as ‘true’; when a

CNV contains 1 or more genes exhibiting a nervous system

phenotype; MP:0003631). However, as the MGI phenotype

dataset is incomplete, our approach is conservative with respect

to missing values. This is because CNVs overlapping genes whose

disruption does not result in a nervous system phenotype are

weighted equally to those CNVs overlapping genes whose

disruption phenotypes are currently unknown. Thus, we expect

that increased coverage by the MGI mouse knock-out dataset will

significantly improve the accuracy of the classifier. In addition,

further genomic features such as CpG islands or conserved non-

coding regions [46] can now be tested for their potential to

improve the accuracy of this approach. Nevertheless, as the

densities of many genomic features are strongly correlated [28], it

is likely that the addition of further features to the classifier will not

result in a substantial improvement in predictive power.

Most of the CNVs we used to train the classifier were identified

on low-resolution (BAC–based) microarray platforms. In contrast,

the replication set contained CNVs collected solely from

Affymetrix 250k SNP microarrays. Despite the different micro-

array technologies used, only a negligible decrease in classification

accuracy (21.7%) was observed between the training and the

replication set. This indicates that the classifier is platform-

independent and will not require retraining when used on data

generated from comparable microarray platforms.

MR-associated CNVs discovered thus far are, in general, larger

than benign CNVs [30]. Previously developed CNV risk

assessments for identifying disease-associated CNVs use a length

greater than 3Mb as a distinguishing criterion [16]. Closer

inspection of the MR-associated CNVs from our validation study

indeed revealed a larger mean length (6.8Mb) compared to the

benign CNVs (474kb). Despite this large size, 25% of the MR-

associated CNVs in the validation set were smaller than 1.1Mb.

We separately tested the accuracy of the classifier on CNVs

smaller than 1.1Mb which revealed it to exhibit a decrease in

sensitivity (218%) but still a high accuracy (93%). As might be

expected, small MR-associated CNVs showed a decrease in the

number of MGI knock-out genes displaying a nervous system

phenotype, but their SINE and gene densities are comparable to

those of larger MR-associated CNVs (Table S2). Importantly,

the classifier was still able to correctly classify 9 of the 13 small

MR-associated CNVs, demonstrating the advantage of the

classifier in comparison to conventional interpretation methods

which often are unable to clearly identify clinically relevant CNVs

unless specific information about their genomic content is known

[47].

Although current clinical interpretation of CNVs focuses on

large, rare and de novo CNVs, an increasing number of genomic

loci being reported show variable inheritance and penetrance [20–

24]. Our replication study contained a number of such CNVs,

including CNVs at 1q21.1 and 15q13.3 which, in addition, show

variation in genomic size and content [20–23]. Three rare

inherited CNVs encompassing the 1q21.1 critical region were all

classified as associated with MR, even though their genomic

breakpoints differed. Two rare de novo CNVs in the 15q13.3 region

were classified differently, one as benign and one as pathogenic. In

addition, three inherited CNVs at this locus were all classified as

benign. Interestingly, the distal breakpoint for all five CNVs was

identical whereas the proximal breakpoint of the four CNVs

classified as benign was extended by an additional 150kb. This

difference in classification is explained by the fact that the 150kb

region showed a higher repeat element count and density due to

repetitive elements surrounding the 15q13.3 critical region (Table
S2) [23]. This particular example highlights the current challenge

in clinical interpretation of CNVs which relies on the availability

of large control datasets. We do not claim that our classification

method replaces the need for such datasets. Our method does

show that 27 out of 41 (66%) rare inherited CNVs identified in

patients contain genomic features similar to previously recognized

MR-associated CNVs, a significant proportion when compared to

the remainder of the genome (Figure 3b). This provides

independent support for the clinical relevance of this group of

CNVs and shows that the interpretation of CNVs should not be

limited to rare de novo CNVs with a fully penetrant dominant effect

[48]. Furthermore, in the set of 53 rare CNVs with unknown

inheritance, 46 CNVs were classified as being MR-associated, the

vast majority with high confidence. These rare CNVs with

unknown inheritance demonstrate strong similarities to rare de novo

CNVs in that they have a low segmental duplication density, a

high SINE density, often contain genes whose mouse knockouts

result in nervous system phenotypes, have similar gene expression

values and similar synonymous substitution rates. This suggests

that these rare CNVs with unknown inheritance are indeed similar

in pathoetiology to rare de novo CNVs and thus can be considered

strong candidates for being causal CNVs. The ability of the

classifier to identify such CNVs of unknown inheritance should be

of great benefit to the diagnostic communities.

This CNV classifier may also be informative of disorders other

than mental retardation. This is of particular relevance because

CNVs have recently been associated with other neurodevelop-

mental disorders such as autism and schizophrenia [1,4,5] but

screening for causal CNVs in these diseases has yet to be

implemented in most clinics. Interestingly, many of the CNVs

associated with autism and schizophrenia, as well as mental

retardation, contain genes whose proteins are involved in

neurotransmission or in synapse formation and maintenance.

This supports the existence of shared biological pathways that are

disrupted in each of these neurodevelopmental disorders [49]. Our

CNV classifier trained on MR CNVs may therefore already have

predictive power for CNVs in other neurological disorders. It is

likely, however, that this predictive power can be further
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optimized by retraining the classifier using disease-specific CNVs.

In addition, the KEGG and MGI features selected for the MR

patient cohort are also easily configurable for pathways and

phenotypes which are more relevant to these other disease cohorts.

For this reason we have made the Java source code of the CNV

classifier, called GECCO, freely available (see Materials and
Methods).

In conclusion, we have developed a novel objective method to

identify disease-associated CNVs which has overcome several

limitations with current CNV interpretation methodology. Our

NBTree classifier is able to distinguish between MR-associated

CNVs and benign CNVs with high accuracy without the use of

data from large control cohorts or parental samples. Results

indicate that computational classification methods can be used for

objectively prioritizing CNVs in clinical research and diagnostics.

The tool for classifying CNVs, called GECCO (Genomic

Classification of CNVs Objectively), as well as the Java source

code, are readily available online. The benefits of such methods

will increase with advancements in microarray technology, which

already identifies many thousands of such structural variants per

individual [50–53], and in whole genome resequencing technol-

ogy,. Establishing objective criteria and methods for interpretation

of these genomic variants will be crucial for implementation of

these technologies in a clinical setting.

Materials and Methods

Classifier Development
In this study we investigate if rare de novo CNVs and commonly

inherited CNVs could be successfully classified without the use of

inheritance information. In order to achieve this we collected from

the literature a large number of rare CNVs known to be de novo

(n = 164) and a number of common CNVs known to be benign

(n = 1,413). These CNVs were used for training and testing the

classifier. A total of 20 genomic features were initially investigated.

Initially 16 features were selected as attributes during the

development of the classifier, which was then further optimized

to a set of 13 features (Table 1). To test the accuracy of the

classifier we first tested the classifier on a set of CNVs previously

identified as being associated with MR (Decipher known

syndromes), and then created an independent validation set

containing rare de novo and common inherited CNVs, collected

from routine diagnostics, to be used in a validation study (MR

diagnostic CNVs). Finally two application sets were created

containing CNVs without a clinical interpretation that were either

a) candidate CNVs, due to unavailability of parental samples, or b)

rare privately inherited CNVs.

Data Sets
The CNVs used during the training and test phase (164 rare de

novo CNVs termed ‘‘MR-associated CNVs’’ and 1,413 common

inherited CNVs termed ‘‘benign CNVs’’) were identified on a

number of different microarray platforms in previously published

studies [15,19,28,30]. All aberrations were mapped using HG17

coordinates and converted when necessary using UCSC liftOver

[54]. The Decipher known syndromes’ (https://decipher.sanger.

ac.uk/) dataset contained 32 pathogenic CNVs based on

microarray studies and associated with MR. The remaining 26

syndromes were excluded as they do not have either mental

retardation as a prominent phenotype or a fully penetrant

phenotype.

MR Diagnostics and application datasets were collected

through in-house routine diagnostics using Affymetrix 250k SNP

microarrays (Affymetrix, Santa Clara, USA), and consisted of 584

samples containing 1,297 CNVs. Regions were excluded that

contained fewer than 5 microarray targets, that were smaller than

10kb in size or that were the result of a mosaic or complex

chromosomal aberration. In total, the validation/application set

contained 49 rare de novo CNVs, 41 rare inherited CNVs, 53

candidate CNVs and 1,154 common inherited CNVs.

Classifier Training
Initially a training set was created by randomly selecting 82 of

the 164 rare de novo CNVs with an equal number of commonly

inherited CNVs. The remaining CNVs were placed in the test set.

The NBTree classification algorithm as implemented in Weka

3.6.0 [55] was selected and incorporated into our Java based tool

called GECCO (Genomic Classification of CNVs Objectively). An

executable version and all source code for GECCO are readily

available via http://genomegecco.sourceforge.net. NBTree is a

hybrid method combining a decision tree with Naı̈ve-Bayesian

classifiers. The Naı̈ve-Bayesian classifiers calculate the posterior

probability (a distance function) that the CNV belongs to either

class (MR-associated CNV or benign CNV).The definition of the

training set was then investigated. Given the imbalance that exists

in the data (see Results) we sought to incorporate this prior into the

training set. We tested increasingly imbalanced versions of the

training set, starting with the most unbalanced training set, by

placing half of all available CNVs in the training set (164 de novo

and 2826 common inherited), and gradually decreasing the

imbalance until the training set contained only 5% (n = 143) of

all available common inherited CNVs. The training set imbalance

was then further tested in 1% decrements until the minimum was

reached of 82 rare de novo CNVs and 28 common inherited CNVs.

Once an optimal balance of CNV classes in the training set was

identified the optimal subset of the CNVs in the training set was

determined. This was achieved by randomly selecting CNVs as

training and test instances over 10,000 iterations and then

identifying the set that produced the maximum accuracy. In

addition, enrichment analysis of the rare inherited CNVs was

performed by generating 1,000 sets of random genomic regions

matched for size against the rare inherited CNVs and the

proportion of sets with greater than or equal to 27 CNVs classified

as being MR was calculated.

Genomic Features used for Classification
In total 20 different genomic features were investigated as

potential classifier attributes. The variance inflation factor (VIF)

was used to measure the co-linearity within the model across the

repeat, gene and evolution measures (simple repeats, repeat

masker, LINE, SINE, long terminal repeats, RNA gene elements,

segmental duplications, ENSEMBL genes, mean non-synonymous

substitution rate (dN), synonymous substitution rate (dS) and the dN/

dS ratio of genes). Based on the VIF, features were removed until

the model contained only independent features resulting in 16

different structural and functional genomic features that were used

subsequently for training the classifier (Table 1). The included

structural features were CNV type (loss:gain), CNV length, the

numbers of LINE, SINE and segmental duplication elements lying

within the CNV, as well as the densities of the LINE, SINE and

segmental duplication elements. The density values were deter-

mined as the number of elements per base pair. Segmental

duplications were downloaded from the UCSC table genomic-

SuperDups. The numbers of LINE and SINE elements were

extracted from the UCSC table from rmsk and the RNA gene

elements from sno/miRNA.

The functional genomic features consisted of the gene count,

gene density and the variance in gene expression levels, the mean
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non-synonymous substitution rate (dN), synonymous substitution

rate (dS) and the dN/dS ratio. In addition KEGG pathway and MGI

knockout phenotypes were added as features. Genes involved in

the KEGG (Kyoto Encyclopedia of Genes and Genomes)

neurodegenerative pathway (hsa01510) [56] were added as a

categorical feature. This pathway includes KEGG genes belonging

to KEGG Pathways section 5.2, namely Alzheimer’s disease

(KEGG pathway 05010), Parkinson’s disease (KEGG pathway

05020), Amyotrophic Lateral Sclerosis (KEGG pathway 05030),

Huntington’s disease (KEGG pathway 05040), Dentatorubropal-

lidoluysian atrophy (KEGG pathway 05050) and Prion Diseases

(KEGG pathway 05060). KEGG genes were mapped to NCBI

Entrez genes using associations provided by KEGG. Genes which

were annotated as having the MGI mouse knockout phenotype,

MP:0003631: nervous system phenotype were also added as a

categorical feature. These genes were identified via human NCBI

genes whose mouse orthologue’s disruption had been assayed and

were obtained from the Mouse Genome Informatics (MGI)

resource (http://www.informatics.jax.org, version 3.54) [45].

Substitution rates were obtained from EPGD [57]. The stable

expression was calculated via the standard deviation of log2

intensities across 176 Hapmap cell lines (CEU and YRI)

hybridized onto an Affymetrix GeneChip Human Exon 1.0 ST

array (GSE7761).

Supporting Information

Figure S1 Workflow used to develop the classifier. The classifier

is able to distinguish between MR CNVs and benign CNVs based

upon solely genomic features without the use of inheritance

information. Several classification methods are tested. A training

set consisting of both MR and benign CNVs is selected and the

genomic features extracted. These data are used to train the

classifier which is then evaluated with a separate test set of CNVs.

The process of training set selection is repeated until an optimal

performance is obtained. Subsequently, the classifier is validated

on an independent set of MR and benign CNVs.

Found at: doi:10.1371/journal.pcbi.1000752.s001 (0.05 MB

DOC)

Table S1 Classification Results of 32 MR syndromes from the

DECIPHER database. The chromosome location, syndrome

name, as well as the CNV length and type are given. The

classification results are shown with the MR distance measure,

showing the confidence of each classification decision.

Found at: doi:10.1371/journal.pcbi.1000752.s002 (0.06 MB

DOC)

Table S2 Mean (and standard deviation) of each genomic

feature used by the classifier during the validation and application

studies. For each class of CNV the feature mean and (standard

deviation) for the correctly and incorrectly classified CNVs are

indicated.

Found at: doi:10.1371/journal.pcbi.1000752.s003 (0.06 MB

DOC)
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