
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/112507/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Smallman, Luke, Artemiou, Andreas and Morgan, Jennifer 2018. Sparse generalised principal

component analysis. Pattern Recognition 83 , pp. 443-455. 10.1016/j.patcog.2018.06.014 file

Publishers page: https://doi.org/10.1016/j.patcog.2018.06.014

<https://doi.org/10.1016/j.patcog.2018.06.014>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.

Sparse Generalised Principal Component Analysis

Luke Smallmana,∗, Andreas Artemioua, Jennifer Morgana

aCardiff University, School of Mathematics, Senghennydd Road, Cardiff, CF24 4AG

Abstract

In this paper, we develop a sparse method for unsupervised dimension reduction for data
from an exponential-family distribution. Our idea extends previous work on Generalised
Principal Component Analysis by adding L1 and SCAD penalties to introduce sparsity.
We demonstrate the significance and advantages of our method with synthetic and real
data examples. We focus on the application to text data which is high-dimensional and
non-Gaussian by nature and discuss the potential advantages of our methodology in
achieving dimension reduction.

Keywords: dimension reduction, PCA, text mining, exponential family
2010 MSC: 62H25, 62-09, 62J07, 68T50

1. Introduction

Dimension reduction tools are now a common-place solution to two of the major dif-
ficulties incurred by high-dimensional big data: computational expense and a breakdown
of classical statistical methodology. The former stems from both the difficulty of storage
and access of huge datasets, especially when they are not sparse, and from the time costs
of running many popular algorithms on such data. The latter arises as most classical
methodology for inference was introduced for low-dimensional data, and often cannot
generalise beyond a few dimensions. As such, dimension reduction techniques are used
to extract a lower-dimensional manifold which describes the structure of the original
data as well as possible. Dimension reduction methodology can be broadly split into two
categories: methods for feature selection and methods for feature extraction. The for-
mer chooses a subset of the original features, whilst the latter finds a (low-dimensional)
vector-valued function of the original features. Many examples of feature extraction are
referred to as “linear”, as the extracted features are simply a linear combination of the
original features. In this paper, we will combine two well-known feature selection tech-
niques with a generalised principal component analysis algorithm (a well-known feature
extraction method) to achieve sparse dimension reduction for non-Gaussian data. We
will focus on the application of this method to Poisson-distributed data, which has re-
ceived increased attention lately due to the application of Poisson-based techniques in
the analysis of text data. PCA (and the variants thereof which we will discuss in this

∗Corresponding author
Email address: smallmanl@cardiff.ac.uk (Luke Smallman)

Preprint submitted to Elsevier May 24, 2018

article) are methods for unsupervised dimension reduction. That is, they do not require
or use any response associated with the data which may be available, in contrast to
supervised methods which do require response information and make use of it to inform
the dimension reduction.

Principal Component Analysis (PCA) has been extensively used in the literature
since its introduction by Pearson (1901) and more importantly by Hotelling (1933). It
has mainly been used for dimension reduction through feature extraction. The main
objective of PCA is to sequentially extract orthogonal features which maximize the vari-
ability of our data. One of PCA’s most useful features is that it produces a linear
transformation of the data, calculated with a simple matrix multiplication. This is very
advantageous for dimension reduction scenarios, when calculating a complicated function
of the entire dataset would be infeasibly expensive in computation time. Instead, the
loadings matrix (the matrix which performs the dimension reduction) can be calculated
using a smaller, representative dataset, and then the transformation quickly calculated
for the rest of the data. PCA was introduced for Gaussian distributed data and has
been extended significantly over the years to address different research problems (see for
example Tipping and Bishop (1999), Collins et al. (2002), Ding and He (2004), de Leeuw
(2006) and Diederichs et al. (2013) among others). The need to develop a generalised
version of PCA to address application to the exponential family of distributions (which
encompasses a wide variety of models for real-world data) was recognised in Landgraf
and Lee (2015) who developed Generalised Principal Component Analysis (GPCA).

In this work, we focus on the application of PCA algorithms to text data which is
naturally high-dimensional and non-Gaussian. Text data is usually transformed into
numerical data so that classical statistical tools can be applied to it. One of the more
common ways to do so is to construct a “document-term matrix” where each row is an
observation and each unique word/term within the collection is a column. Then the
ijth entry is an integer denoting the number of times the ith document contains the jth

term. This is an inherently high-dimensional representation, and the number of terms
p typically grows with the number of documents n. However, we expect that many of
these terms will be uninformative for many purposes. In general, given a wide variety
of documents we often expect that there will be a significant number of terms which are
introduced solely because of the form of the writing and which will be common across a
number of the documents, even if they are very different in content. For instance, in a
collection of letters we would expect to find salutations, well-wishings, addresses, from-
lines and the like; such inclusions would likely be common across most letters but would
be unlikely to convey any meaning of interest to the text miner. Further, grammar
and structure of language dictates many words, such as pronouns, “and”, “the”, etc.,
which are important to a human reader but not to a computer. These all expand the
dimension of the dataset. Hence, we would like to apply some method of dimension
reduction which can provide a much smaller representation of the data. We also desire
that our transformed representation does not use terms which do not provide any useful
meaning (such as “and”, “Yours sincerely”). In order to achieve this, we will require
our transformation to have sparse loadings; including a term must improve the model
more than some penalty. This also has the advantage of increasing the interpretability
of our loadings. Without sparsity, most loading components are typically non-zero;
with sparsity, we can often reduce the number of non-zero components to a manageable
number to inspect. In the context of text data, this means we can find a list of which

2

terms are considered important for understanding a document. To apply GPCA and our
extension, we require an exponential family model for the data. Given the form of the
document-term matrix as a count of term occurrences, we prescribe a simple model for
the data where the number of occurrences of term j across each document is given by a
Poisson distribution with some mean λj .

In Section 2 we will discuss previous work, focusing on extensions to PCA and meth-
ods for dimension reduction of text data. In Section 3 we will define GPCA. We will then
extend this to Sparse Generalised Principal Component Analysis (SGPCA) in Section
4.1, and present an efficient way to estimate it. We will compare their performances on
both synthetic datasets and two healthcare datasets in Section 5 and Section 6 respec-
tively, before discussing the implications of this work and plans for future work in Section
7. To improve readability, detailed derivations will be relegated to the appendices.

2. Previous Work

In this section, we will discuss some related previous work, focusing both on extensions
to the usual Gaussian PCA and on dimension reduction methods for text data.

2.1. PCA Extensions

We begin in this section by discussing PCA extensions, first defining Gaussian PCA,
then Sparse PCA, Joint Sparse PCA and Robust PCA.

2.1.1. PCA Summary

Let X ∈ R
n×p be a data matrix formed of n observations of a p-dimensional random

variable X , that is X = [x1|x2| · · · |xn]
T with xi = (xi1, . . . , xip)

T for i = 1, . . . , n.
Then the usual definition of (Gaussian) PCA is the (k-dimensional) orthogonal linear
projection such that the first component of the projected data is in the direction with the
most variance, the second component is in the direction with the second most variance,
and so on. It is also well-established in the literature that the PCA approximation
to X minimises the squared reconstruction error (the difference between the lower-rank
approximation to X and the true X).

2.1.2. Sparse PCA

Sparse PCA (SPCA) from Zou et al. (2006) is based around their “SPCA criterion”
which finds an approximation to X of the form XBAT (A,B ∈ R

p×k) which minimises

‖X−XBAT‖22 + λ

k∑

i=1

‖βi‖
2
2 +

k∑

j=1

λ1,j‖βj‖1,

subject to ATA = Ik and where B = [β1, . . . ,βk]. In this case, the matrix B gives the
loadings, and has both L1 and L2 penalties imposed on its entries, inducing sparsity.
The combination of these penalties is often known as the elastic net (due to Zou and
Hastie (2005)).

3

2.1.3. Sparse PCA via Rotation and Truncation

This method, developed in Hu et al. (2016), provides an alternative method for sparse
PCA to that of Zou et al. (2006). The essential idea is that any rotation of the PCA
loadings provides an orthogonal basis spanning the same subspace. Thus, the authors
propose a method to find a rotation matrix and a sparse basis which approximates the
PCA loadings after rotation. They offer four methods of truncation, which is used to
find the approximating sparse basis, each of which offers slightly different performance
and control.

2.1.4. Robust PCA

In Kwak (2008), Kwak formulated Robust PCA (RPCA) in terms of the projection
variance maximisation formulation of PCA. That is, viewing PCA as finding the projec-
tion matrix U ∈ R

p×k which maximises Tr
(
UTCU

)
subject to UTU = Ik, where C is the

covariance matrix of X. This problem can be reformulated as maximising
∑n

i=1 ‖U
T
xi‖

2
2

subject to the same orthogonality constraint. They propose modifying the norm used in
this formulation to yield the problem of maximising

∑n
i=1 ‖U

T
xi‖1 subject to UTU = Ik.

This increases the robustness of the problem to outliers.

2.1.5. Sparse Probabilistic Principal Component Analysis

Sparse Probabilistic Principal Component Analysis (SPPCA), formulated in Guan
and Dy (2009) is an extension of Probabilistic PCA (Tipping and Bishop (1999)) and
SPCA (Zou et al. (2006)), essentially working to combine the two. They specify a
probabilistic model for PCA which incorporates a sparsity inducing prior on the loadings.
In the paper they investigate three different priors: a Laplacian prior, an inverse-Gaussian
prior and a Jeffrey’s prior. In this work we consider the Laplacian prior case which
corresponds to an L1 penalty on the components.

2.1.6. Sparse Exponential Family Principal Component Analysis

Lu et al. (2016) proposed Sparse Exponential Family Principal Component Analysis
(SEPCA) roughly as an extension to SPCA (Zou et al. (2006)) to the exponential family.
Given data X, their problem is specified by

min
Z:ZTZ=I,W,b

∑

n

A
(
WT

zn + b
)
− Tr

((

ZW+ 1b
T
)

XT
)

+ P (W,b)

where A is a function specified by the exponential distribution and P (·, ·) is a sparsifying
penalty. In particular,

P (W,b) = λ0

∥
∥
∥ZW+ 1b

T
∥
∥
∥

2

2
+

k∑

i=1

λi |Wi|

which the authors claim enables reconstruction of the principal components in degenerate
cases and induces sparsity in the loading vectors.

2.2. Text Data Dimension Reduction Methods

In this section we will briefly discuss three methods for text dimension reduction:
Multinomial Inverse Regression, Nonnegative Matrix Factorisation and Latent Dirichlet
Allocation.

4

2.2.1. Multinomial Inverse Regression

Multinomial Inverse Regression (MNIR), introduced in Taddy (2013) and further in
Taddy (2015), is a dimension reduction method for text data based around a multinomial
model for text data. The method is supervised, intended to provide a reduced dimension
projection of the data suitable for use in a classification algorithm or similar. As such, it
requires a response variable for each observation, which it uses to determine informative
terms. As such, our comparison with it will only be performed for the classed synthetic
dataset in Section 5.2. We will not include it in our comparison on the healthcare dataset
in Section 6, as it is only capable of producing a projection of the same dimension as the
response variable; as our response in this case is univariate, but all the other methods
will be used to provide a 3-dimensional representation.

2.2.2. Nonnegative Matrix Factorisation

Nonnegative Matrix Factorisations (for an overview, see Gillis (2014)) aims to fac-
torise a nonnegative matrix X in the form X = WH, where W and H are both also
nonnegative. In the framework of text mining, the basis vectors formed by W can be
interpreted as topics in term-space and H can be interpreted as giving the importance of
each topic for each document.

2.2.3. Latent Dirichlet Allocation

Latent Dirichlet Allocation, from Blei et al. (2003), is a (generative) probabilistic
model for text. Roughly, it assumes each document draws a vector of topic probabilities,
then repeatedly draws a topic according to those probabilities, drawing a word each
time it draws a topic. For full details of how these quantities are distributed (and
how the underlying probabilities are estimated), consult Blei et al. (2003), but for our
purposes the most important aspect of the model is that it is used to estimate a matrix
B = [β1| . . . |βk]

T, where each vector βi gives (multinomial) probabilities of drawing each
of the words in the vocabulary given that the word is drawn according to topic i. It is
important to note that the choice of the word “topics” is to assist interpretation; this
method is not supervised, the topics are driven only by the observed word counts and
the number of topics is a user-chosen parameter.

3. Generalised PCA

In this section, we introduce the Generalised PCA of Landgraf and Lee (2015) for
exponential family distributions; for completeness and clarity, we begin by discussing
exponential families and some of their properties.

3.1. Exponential Family Distributions

Let X ∈ R
p be a random vector from a distribution in the exponential family of

distributions with parameter θ. The probability density function for x has the form
f(x|θ) = h(x) exp

(
x
Tθ− b(θ)

)
, where h(x) and b(θ) are both scalar-valued functions,

with the former serving to normalise the distribution. A straightforward calculation
shows that E (X) = b′(θ). The canonical link function g is defined as the left inverse of
b′, i.e. g(b′(θ)) = θ. The model where the expected value is set to the observed data is
known as the saturated model, its parameters will be denoted by θ̃, and it will be equal
to g(x).

5

3.2. GPCA Definition

In Section 2.1.1 we gave the usual formulation of PCA. An equivalent formulation
of PCA, suitable for the definition of GPCA, is to find the optimum U ∈ R

p×k and
µ = (µ1, . . . , µp)

T ∈ R
p which minimise

n∑

i=1

∥
∥xi − µ−UUT (xi − µ)

∥
∥
2

2
,

where U is the projection matrix. With a Gaussian distribution (with known variance),
the canonical link function is the identity function, so the saturated model parameters
are the data themselves, the natural parameter is the mean and the deviance is propor-
tional to squared error loss. We can see then that, under the assumption of a Gaussian
distribution, the above formulation of PCA is equivalent to finding the deviance-optimal

approximation to the natural parameters of the form µ + UUT
(

θ̃i − µ

)

. This can be

readily extended to any exponential family distribution; we find that the deviance has
the following form (details of the derivation can be found in Appendix A1):

D (U,µ) =
n∑

i=1

p
∑

j=1

{

bj

(

µj +
[

UUT
(

θ̃i − µ

)]

j

)

− xij

{

µj +
[

UUT
(

θ̃i − µ

)]

j

}}

=
∑

i,j

Dij (1)

where the bj functions are subscripted to allow for the possibility of each component of
our random vector coming from a different exponential family distribution (although we
will proceed to examine only cases where all variables are from the same distribution,
albeit with different natural parameters). We denote the coordinate-observation-wise
deviance Dij and low-rank natural parameter estimate θij , defined by

Dij = bj (θij)− xijθij , θij = µj +
[

UUT
{

θ̃i − µ

}]

j

Thus we can now define the GPCA of Landgraf and Lee (2015) as the projection
given by the U that minimises the deviance. Formally, let

U∗,µ∗ = arg min
U∈Rp×k,µ∈Rp

D (U,µ) ,

then
(
g (X)− 1(µ∗)T

)
U∗ is the GPCA projection.

4. Sparse GPCA

In this section we will present the definition of SGPCA and an algorithm for approx-
imating it.

6

4.1. Definition

There is a wide literature using penalties on regression coefficients to induce sparsity in
statistical procedures, primarily focusing on the L1 (LASSO-type penalty, see Tibshirani
(1996)) and L2 (ridge-type penalty, see Hoerl and Kennard (1970)) penalties as well as
combination of the two (elastic net, see Zou and Hastie (2005)). Another popular penalty
with desirable features is the Smoothly Clipped Absolute Deviation (SCAD) penalty of
Fan and Li (2001). The SCAD penalty is usually defined by its derivative

P ′
S(θ;λ, a) = λI (θ ≤ λ) +

(aλ− θ)+
a− 1

I (θ > λ) (2)

where x+ = max (x, 0). The penalty has two parameters, λ and a. The former is usually
chosen on a problem-by-problem basis, often with some form of cross-validation, while
the latter is often taken as 3.7 due to an argument in Fan and Li (2001). Integrating, as
in Appendix A4, shows that the penalty has the form

PS(θ;λ, a) =

λθ 0 < θ ≤ λ

− θ2−2aλθ+λ2

2(a−1) λ < θ ≤ aλ
(a+1)λ2

2 aλ < θ

(3)

That is, “near” 0 the penalty is linear and decreases towards the origin, “far” from 0 the
penalty is a positive constant, and between the two areas the penalty is quadratic, again
decreasing towards the origin. This can also be seen in Figure 4.1a, where the linear
section is dashed, the constant section is dotted, and the quadratic section is solid. Note
that the figure shows the symmetrised SCAD penalty (that is, it shows the penalty on
|θ|). In Figure 4.1b we also show the penalty for three different values of λ (while holding
a fixed at 3.7) to demonstrate the behaviour of the penalty as λ changes.

In contrast, the L1 penalty is much simpler, being only the absolute value of the
component. Clearly, the L1 penalty differs only by a multiplicative factor from the
SCAD penalty near 0, but unlike the SCAD penalty it does not change in form across its
domain. From a computational point of view, this means that the L1 penalty is slightly
less computationally expensive, not requiring the evaluation of any conditional operators.
Although the evaluation of these operators is not particularly expensive, the estimation
algorithm we will discuss later requires very frequent evaluation of the penalty function.

The motivation behind the L1 penalty is to ensure that non-zero coefficients will only
be added to the model if they reduce the unpenalised objective function by an amount
proportional to their magnitude. “Large” coefficients therefore can be interpreted as
coefficients which make the model significantly better. In our method, λL is the coefficient
of proportionality which determines how much a unit increase in a coefficients distance
from 0 must decrease the objective function for it to be a permissible change. The
SCAD penalty performs a similar function to the L1 penalty; the primary difference is
that once a coefficient is sufficiently large in absolute value, the penalty does not increase
(i.e. the linear region in Figure 4.1a). Ideally, this should ensure that once a coefficient is
determined to be significant, its magnitude is decided by the objective function without
the penalty function artificially reducing it.

For this particular problem, we would like to penalise only U by imposing upon it
either an L1 penalty, the SCAD penalty, or a combination of both. Specifically, we define

7

(a) The (symmetrised) SCAD penalty, with λ = 0.1 and a = 3.7

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
00

0
0.

01
0

0.
02

0

θ

(b) The (symmetrised) SCAD penalty for λ = 0.1 (solid), λ = 0.15 (dashed), and λ = 0.2

(dotted)

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
04

0.
08

θ

Figure 4.1: SCAD Penalty

8

the penalty function

P (U, λL, λ, a, λS) =
∑

i,j

{λL |Uij |+ λSPS (|Uij | ;λ, a)} (4)

The coefficient λS ≥ 0 of the SCAD penalty, like λL, is used to control the weighting of
SCAD against the L1 penalty and the deviance. We introduce this, as whilst changing
λ changes the magnitude of the SCAD penalty, it also changes the characteristics signif-
icantly by changing the knots of the quadratic splines. Notice that we place the SCAD
penalty on the absolute value of each component, not on the value itself, as the SCAD
penalty is only defined for positive values. We do not penalise µ as we desire it to capture
(in some sense) the mean of each of the component natural parameters. Non-zero entries
in µ are to be expected, and allow us to centre the natural parameters. We can now
define our SGPCA objective function

S(U,µ;λL, λ, a, λS) ..= D(U,µ) + P (U;λL, λ, a, λS) (5)

For the remainder of this paper, we will not explicitly notate the dependence on λL, λS ,
or a in order to simplify notation.

Remark 1. Here we emphasize that in this problem it does not make sense to apply an
L2 penalty to U, since the usual definition of the L2 penalty for matrices (also known as
the Frobenius norm) is equivalent to Tr

(
UTU

)
which, by the semi-orthogonality of U, is

Tr (Ip) = p. Consequently, for the purposes of this article we use only the L1 and SCAD
penalties imposed on U. Other penalties will be explored in the future.

Remark 2. In the rest of this article we will consider three SGPCA formulations: the
L1 penalty, the SCAD penalty and a linear combination. We have no a priori reason to
believe that the combined penalty ought to be superior to either, but our specification of
the problem lends itself well to considering it; as such it would be remiss not to investigate
its performance.

4.2. Estimation Algorithm

In general, (5) is non-convex in U and µ. This, combined with the non-differentiability
of the penalty function at 0 and the semi-orthogonality constraint upon U, make finding
the optimum values of U and µ difficult. One way to deal with the semi-orthogonality
condition would be to use a Lagrangian method; in Appendix A2 we use a Lagrange mul-
tiplier augmented objective function to derive first order optimality conditions. However,
the Lagrangian still has the difficulties of non-differentiability. Instead, in Section 4.2.1
we will derive a perturbed majoriser of the objective function to be used in a Majorise-
Minimise (MM) algorithm using the results of Hunter and Li (2005). Crucially, this per-
turbed majoriser will be differentiable, allowing us to use gradient-based optimisation.
In Section 4.2.2, we will demonstrate the method of Wen and Yin (2013) to perform such
optimisation whilst preserving the semi-orthogonality constraints.

4.2.1. Majorisation

The crux of our majorisation procedure is the method of Hunter and Li (2005), who
developed theory for majorising penalty functions of the form P (θ) =

∑p
i=1 λipi (|θi|),

9

where the functions pi (·) are non-negative. Both the L1 and SCAD penalties can be
written in this form, allowing us to use their majorisation procedure.

To illustrate, let us consider the ijth component of U. For notational simplicity, let
us denote this component by u. Then the contribution of u to the penalty function P (U)
is λL |u|+ λSPS(|u| ;λ, a)

The MM algorithm we will construct is iterative, so at time-step t we have a previous
value for each component, which we will denote u(t−1). We will first construct the
majoriser and perturbed majoriser for the L1 penalty. We can approximate |u| by

|u| ≈
∣
∣
∣u(t−1)

∣
∣
∣+

u2 −
(
u(t−1)

)2

2
∣
∣u(t−1)

∣
∣

(6)

In Hunter and Li (2005), the authors showed that this function majorises the exact
component L1 penalty function, justifying its use in a majorisation of the entire objective
function. We can then construct the perturbed approximate L1 penalty function by
modifying the denominator

|u| ≈
∣
∣
∣u(t−1)

∣
∣
∣+

u2 −
(
u(t−1)

)2

2
(
ε+

∣
∣u(t−1)

∣
∣
) (7)

where ε > 0. This function is now well-defined for all values of u and u(t−1), and
furthermore is differentiable in both too. It is clear that as ε ↓ 0 (where ↓ indicates
approaching from above), this perturbed penalty tends to (6).

We now consider the case of the SCAD penalty (ignoring for now the multiplicative
factor λS), which can be majorised using the formulation of Hunter and Li (2005) by

PS

(∣
∣
∣u(t−1)

∣
∣
∣ ;λ, a

)

+

(

u2 −
(
u(t−1)

)2
)

P ′
S

(∣
∣u(t−1)

∣
∣+;λ, a

)

2
∣
∣u(t−1)

∣
∣

(8)

where the + denotes the right-hand limit. The only pertinent case is when u(t−1) = 0,
in which case P ′

S(0+) = λ. As before, we construct the perturbed approximation by
replacing the denominator

PS

(∣
∣
∣u(t−1)

∣
∣
∣ ;λ, a

)

+

(

u2 −
(
u(t−1)

)2
)

P ′
S

(∣
∣u(t−1)

∣
∣+;λ, a

)

2
(
ε+

∣
∣u(t−1)

∣
∣
) (9)

Like before, (9) tends to (8) as ε ↓ 0. Consequently, we might expect that the optimum
using (7) and (9) would be close to the optimum using (6) and (8) for sufficiently small
ε, while allowing us to use gradient-based optimisation methods.

Remark 3. It is worth noting that neither (7) or (9) majorise the L1 penalty or the
SCAD penalty respectively. Instead, Hunter and Li (2005) show that they majorise
a perturbed version of the respective penalties. The interested reader is referred to
their paper for the details. From now, we will refer to them as majorisers, with the
understanding that this only holds exactly in the limit as ε ↓ 0.

10

In the original formulation of GPCA, the authors use a quadratic approximation
to the deviance which they then majorise in order to construct an MM algorithm for
their problem. The particular majorisation they use allows them to find a closed form
minimiser over µ and reduces to an orthogonal Procrustes problem in U for each iteration
(for more details on the orthogonal Procrustes problem, see Schönemann (1966)). The
introduction of the penalty term we use does not allow the use of the same technique
here. Instead, we majorise only the penalty term, leaving the deviance unchanged. This
gives us our majorised objective function:

M
(

U,µ
∣
∣
∣U(t−1)

)
..= D(U,µ) +Mε

P

(

U
∣
∣
∣U(t−1)

)

(10)

where Mε
P is the perturbed majoriser of the combined L1 and SCAD penalties, given by:

Mε
P

(

U
∣
∣
∣U(t−1)

)

=

n∑

i=1

p
∑

j=1

{

λL

∣
∣
∣U

(t−1)
ij

∣
∣
∣+ λSPS

(∣
∣
∣U

(t−1)
ij

∣
∣
∣ ;λ, a

)

+

(

U2
ij −

(

U
(t−1)
ij

)2
)(

λL + λSP
′
S

(∣
∣
∣U

(t−1)
ij

∣
∣
∣+;λ, a

))

2
(

ε+
∣
∣
∣U

(t−1)
ij

∣
∣
∣

)

}

(11)

4.2.2. Gradient-Based Optimisation

In Wen and Yin (2013), the authors derive a method for gradient-based optimisation
which preserves orthogonality. Their scheme works in generality, for all differentiable
optimisation problems with orthogonality constraints, but we will illustrate it only in
application to solving our perturbed majoriser problem.

Given a current estimate of U (denoted U(t−1)) and the gradient of the objective
function at that point (denoted G), we construct the skew-symmetric matrix A ..=

G
(
U(t−1)

)T
−U(t−1)GT. Wen and Yin showed that the function

Y(τ) ..=
(

I +
τ

2
A
)−1 (

I−
τ

2
A
)

U(t−1)

defines a descent direction for τ ≥ 0. Additionally, Y(τ) is smooth in τ and Y(τ)TY(τ) =
(
U(t−1)

)T
U(t−1) = I, so each value of τ produces a feasible point preserving the semi-

orthogonality condition on U. Minimisation then proceeds by line search along {Y(τ)}τ≥0.
We use a standard line search algorithm given in Nocedal and Wright (2006) and

recommended in Wen and Yin (2013). The details of this method are omitted, as any
one-dimensional optimisation method would suffice, but the interested reader is referred
to both sources. We also perform a gradient-based algorithm to find optimal values of
µ; as there are no constraints on µ to deal with, any standard optimisation procedure
can be used.

The required gradients are given as follows, their derivation can be found in Appendix

11

A3:

∂M

∂Urs

=

n∑

i=1

p
∑

j=1

{(

b′j

(

µj +
[

UUT
(

θ̃i − µ

)]

j

)

− xij

)

×
(

δrjU
T
[s]

(

θ̃i − µ

)

+ Ujs

(

θ̃ir − µr

))
}

+

(

λL + λSP
′
S

(∣
∣
∣U

(t−1)
rs

∣
∣
∣+;λ, a

))

Urs

ε+
∣
∣
∣U

(t−1)
rs

∣
∣
∣

(12)

∂M

∂µr

=
n∑

i=1

p
∑

j=1

(

b′j

(

µj +
[

UUT
(

θ̃i − µ

)]

j

)

− xij

)(

δjr −
[
UUT

]

jr

)

(13)

4.2.3. Implementation

Code to calculate the optimal values of µ and U was written in R (R Foundation for
Statistical Computing, Vienna (2011)). We alternated between optimising over µ using
the R built-in optim function and optimising over U using our own implementation of
the gradient-based method of Wen and Yin (2013), stopping when the objective function
changed between iterations by less than a given tolerance, which we selected on a case-
by-case basis. Our majorisation-based method requires that we have an initial estimate
for µ and U. As the gradient-based optimisation method for U preserves the value of
UTU, we also require that our initial estimate for U is left semi-orthogonal. To that
end, we follow the same procedure as for GPCA in setting µ(0) = ColMeans (g (X)) and

U(0) = EigVecl

(

g (X)− 1
(
µ(0)

)T
)

(i.e. the first l eigenvectors, ordered in decreasing

eigenvalue magnitude).

4.2.4. Estimation procedure

To summarise, estimation proceeds as follows:

• Step 1:

1. Calculate Θ̃ ..= g(X)

2. Set µ(0) to the column means of Θ̃

3. Set U(0) to the first l eigenvectors of Θ̃− 1
(
µ(0)

)T

• Step 2: to be repeated for t = 1, 2, . . .

1. Let µ(t) be the minimiser of (10) with respect to µ, letting U in (10) be U(t−1)

calculated using optim) with gradient given by (13)

2. (a) Calculate the gradient G of (10) with respect to U evaluated at U(t−1),µ(t)

using (12)

(b) Set A ..= G
(
U(t−1)

)T
−U(t−1)GT

(c) Define Y(τ) ..=
(
I + τ

2A
)−1 (

I− τ
2A

)
U(t−1)

(d) Find τ∗ ≥ 0 which minimises (10) evaluated at U = Y(τ),µ(t)

(e) Set U(t) ..= Y(τ∗)
12

3. Repeat until (5) at U(t),µ(t) has changed less than the specified tolerance from
(5) at U(t−1),µ(t−1)

Remark 4. Some exponential family distributions (including the Poisson distribution)
have canonical link functions which require taking the logarithm of 0. Numerically, we
approximate this by −ι, where ι has a large positive value, as Landgraf and Lee (2015)
did. The appropriate value can be determined by cross validation, but the authors have
found that values of 4 and larger generally suffice, differing only in numerical stability.

5. Synthetic Data Examples

Our main motivation in exploring GPCA and SGPCA is their application to text
data. Cardiff and Vale University Health Board have a very large collection of letters
sent from consultants at the local hospital to general practitioners regarding outpatient
care. In order to scale to working with their more than 2 million records, we are interested
in dimension reduction techniques which are compatible with the discrete, non-Gaussian
distribution of word counts in the vector-space model of text. The word counts in this
framework can be modelled using Poisson random variables. As a result, in this section
we consider models based around the Poisson distribution. At this point, it is worth
noting that for the Poisson distribution, b′ (θ) = exp(θ) and g (θ) = log θ.

Remark 5. In the following subsections we do not include SEPCA in our comparisons.
Unfortunately, we could not find combinations of the two penalties for which the algo-
rithm would converge. Our investigations suggest that this is related to the magnitude
of the Poisson distribution means. Indeed, in Section 6 (where each variable has a much
smaller mean) the algorithm did successfully converge and will be included in the com-
parisons.

5.1. Synthetic Data

In order to compare the performance of SGPCA and existing methodology (both that
which is based on PCA for feature extraction and that which has been used extensively
for the analysis of text data), we use a synthetic data example which is based on hidden
factors as follows

V1 ∼ Po (25) , V2 ∼ Po (30) , V3 = V1 + 3V2

For each observation, we drew V1, V2 and calculated V3. Then the first four components
of the observation were set equal to V1 with independent errors, that is Xi = V1 + ǫi,
i = 1, . . . , 4, the second four components were set equal to V2 with independent errors,
that is Xi = V2 + ǫi, i = 5, . . . , 8, and the last two components were set equal to V3 with
independent errors, Xi = V3 + ǫi, i = 9, 10. In each case, the errors were generated by
drawing from a Po (2) distribution and multiplying by 1 or −1 with equal probability.
We drew 100 observations, and performed L1 SGPCA with λL = 107, SCAD SGPCA
with λ = 0.1 and λS = 106, and the combined penalty SGPCA with λL = 106, λS = 106

and λ = 0.05. We also performed PCA, SPCA, RPCA, NMF and LDA. The first
loadings/directions from all algorithms are shown in Table 5.1, and the second in Table
5.2.

13

Remark 6. Note that we do not include the loadings from Sparse PCA by Rotation
and Truncation (Hu et al. (2016)) here or in the following sections for reasons of space.
In all the examples, the performance is very similar to SPCA, though generally sparser.

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA SPPCA

0.085 0.074 0.107 -0.283 0.045 0.000 -0.022 0.074 0.203 -0.195
0.094 0.095 0.094 -0.306 0.051 0.002 -0.024 0.074 0.178 -0.198
0.055 0.058 0.049 -0.290 0.040 0.000 -0.013 0.069 0.118 -0.191
0.045 0.052 0.032 -0.284 0.034 0.026 -0.019 0.068 0.243 -0.189
0.418 0.426 0.396 -0.336 0.193 0.132 -0.205 0.186 0.085 -0.275
0.440 0.434 0.461 -0.334 0.207 0.133 -0.212 0.194 0.180 -0.282
0.420 0.418 0.433 -0.334 0.201 0.123 -0.198 0.190 0.229 -0.279
0.445 0.447 0.441 -0.358 0.209 0.160 -0.219 0.189 0.141 -0.283
0.342 0.341 0.330 -0.311 0.641 0.668 -0.639 0.647 0.805 -0.517
0.345 0.345 0.340 -0.316 0.646 0.691 -0.645 0.645 0.307 -0.520

Table 5.1: First loading/direction for synthetic data, using L
1 penalised SGPCA, SCAD penalised

SGPCA, the combined penalty SGPCA (both), GPCA, PCA, SPCA, RPCA, NMF, LDA and SPPCA

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA SPPCA

0.470 0.452 0.493 -0.373 -0.458 -0.485 -0.443 0.217 0.059 0.408
0.481 0.475 0.490 -0.380 -0.466 -0.483 -0.457 0.218 0.082 0.413
0.511 0.517 0.505 -0.428 -0.496 -0.526 -0.519 0.227 0.137 0.428
0.505 0.522 0.484 -0.429 -0.493 -0.479 -0.486 0.228 0.028 0.427
-0.082 -0.084 -0.068 0.270 0.133 0.065 0.148 0.126 0.209 0.236
-0.106 -0.108 -0.094 0.299 0.175 0.111 0.164 0.123 0.133 0.259
-0.082 -0.070 -0.098 0.265 0.130 0.047 0.096 0.135 0.095 0.235
-0.077 -0.079 -0.062 0.277 0.131 0.076 0.152 0.126 0.163 0.235
0.018 0.015 -0.006 0.143 -0.017 0.000 -0.070 0.608 0.412 0.175
0.022 0.019 0.008 0.141 -0.036 0.000 -0.056 0.606 0.839 0.185

Table 5.2: Second loading/direction for synthetic data, using L
1 penalised SGPCA, SCAD penalised

SGPCA, the combined penalty SGPCA (both), GPCA, PCA, SPCA, RPCA, NMF, LDA and SPPCA

Analysis of Table 5.1 shows that for each of the three SGPCA variants, the first
loading picks a direction corresponding primarily with the second hidden factor, and sec-
ondarily with the third hidden factor. Picking out both of these hidden factors together
is to be expected, as these two factors are very highly correlated. On the other hand,
GPCA’s first loading does not strongly identify a direction associated with any hidden
factor. PCA, SPCA and RPCA and SPPCA all have quite similar performance, all find-
ing a direction most associated with the third hidden factor, with some contribution from
the second. NMF finds a direction primarily associated with the third hidden factor, with
a smaller contribution from the second hidden factor. LDA primarily identifies the third
hidden factor with a smaller contribution from the first and second; it is worth noting

14

that the contributions across the same hidden factor appear to vary more than they do
in most of the other methods.

Looking at the second loadings/directions in Table 5.2, we see that all three SGPCA
variants strongly identify the first hidden factor. GPCA returns a similar loading, but
with smaller coefficients for the components of the first hidden factor, and fairly large
coefficients (of opposite sign) for the second. It also includes contributions from the
third hidden factor. PCA returns fairly similar loadings to GPCA, with slightly larger
contributions from the first hidden factor and slightly smaller from the second and third.
SPCA and RPCA perform very simiarly to PCA. NMF, on the other hand, produces a
loading similar in characteristics to its first loading, strongly identifying the third hidden
factor with some contributions from the first and second. LDA also does not identify
anything more than its first direction, finding primarily the third hidden factor. SPPCA
finds a direction primarily associated with the first component, then with the second,
and with a contribution from the third as well.

Of all the algorithms considered, the performance of SGPCA is the closest to the
authors’ idealised loadings where we might consider the hidden factors to be related
to topics or classifications. Its first loading identifies the second hidden factor and the
strongly correlated third hidden factor, and the second identifies the first hidden factor.
The second hidden factor, having higher variance than the first, is a sensible choice for the
first loading. Given that the third hidden factor has the highest variance we might expect
it to dominate the first loading, but we believe that it receives lower coefficients due to
its correlation with both of the other hidden factors. Although GPCA, PCA, SPCA
and RPCA provide similar identification in the second loading, they all include larger
contributions from the second hidden factor, which somewhat reduces interpretability.

5.2. Synthetic Classes

Although SGPCA is an unsupervised dimension reduction method, we believe that
its construction should be sufficient to find features sufficient to differentiate between
observations drawn from different classes. To investigate this, we performed a similar
exercise to that in Section 5.1, but drawing from two different distributions. The first
has hidden factors

V1 ∼ Po (25) , V2 ∼ Po (25) , V3 = V1 + 3V2

and the second

V1 ∼ Po (25) , V2 ∼ Po (35) , V3 = 2V1 + V2

As in Section 5.1, the first four entries of each vector observation are V1 with error, the
second four V2 with error and the last two are V3 with error. We construct all of the
observations by the same method as before. We then perform the same algorithms as
before, with the addition this time of MNIR, using as a response the class identifier 0
for the first 100 observations and 1 for the second 100. The loadings/directions for all
algorithms are given in Table 5.3.

The primary differentiating factors between the two classes of data are the second
and third hidden factors. As such, the strong identification of the third hidden factor by
all three SGPCA variants is excellent. The first GPCA loading assigns roughly similar

15

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA MNIR SPPCA

-0.227 -0.196 -0.184 -0.193 -0.123 -0.116 -0.126 0.162 0.198 0.000 0.240
0.042 0.023 0.023 -0.225 -0.110 -0.109 -0.113 0.165 0.263 0.000 0.233
-0.119 -0.101 -0.089 -0.226 -0.127 -0.125 -0.131 0.164 0.098 0.000 0.243
-0.025 -0.030 -0.025 -0.239 -0.120 -0.119 -0.129 0.163 0.183 0.000 0.237
-0.078 -0.069 -0.062 -0.431 -0.130 -0.128 -0.134 0.196 0.245 0.447 0.243
-0.036 -0.058 -0.068 -0.437 -0.130 -0.131 -0.125 0.197 0.208 0.469 0.243
-0.066 -0.042 -0.027 -0.441 -0.129 -0.129 -0.127 0.197 0.174 0.448 0.243
-0.062 -0.053 -0.045 -0.428 -0.126 -0.123 -0.127 0.197 0.097 0.446 0.240
-0.674 -0.682 -0.684 -0.156 -0.656 -0.657 -0.650 0.605 0.307 -0.301 0.515
-0.679 -0.687 -0.691 -0.159 -0.668 -0.670 -0.670 0.610 0.782 -0.300 0.524

Table 5.3: Loadings/directions for classed synthetic data, using L
1 penalised SGPCA, SCAD penalised

SGPCA, the combined penalty SGPCA (both), GPCA, PCA, SPCA, RPCA, NMF, LDA, MNIR and
SPPCA.

coefficients to the first and third hidden factors, and slightly higher coefficients to the
second. Once again, PCA, SPCA and RPCA give similar loadings, concentrating mostly
on the third hidden factor with a smaller contribution for the first and second. NMF also
gives highest weighting to the third hidden factor, with smaller contributions from the
first and second. SPPCA performs similarly again, though assigns slightly less weighting
to the third hidden factor and slightly more to the first two. LDA assigns its highest
coefficient to one of the components corresponding to the third hidden factor, but its
other coefficients are far more sporadic and inconsistent across the same hidden factor.
MNIR’s loading finds a (weighted) difference between the second and third hidden factors.

5.3. Robustness Against Noise

In order to investigate how robust the loadings given by SGPCA are to noise, we
will perform a similar synthetic data analysis to that in Section 5.1, but varying the
parameter of noise. That is,

V1 ∼ Po (25) , V2 ∼ Po (30) , V3 = V1 + 3V2

We then construct each observation in the usual way, except that the i.i.d. noise for
each observation component is instead drawn from a Poisson distribution with mean η

and multiplied by 1 or −1 with equal probability. This is the same setup as previously,
except that we can control the variance of the noise. We then find SGPCA loadings
for each η ∈ {1, 2, 3, 4}. We again drew 100 observations and performed L1 SGPCA
with λL = 107, SCAD SGPCA with λ = 0.1 and λS = 106, and the combined penalty
SGPCA with λL = 106, λS = 106 and λ = 0.05. The loadings for the L1 penalised
SGPCA are displayed in Table 5.4a, for the SCAD penalised SGPCA in Table 5.4b, and
for the combined penalty SGPCA in Table 5.4c.

An examination of Table 5.4a suggests that, for all four magnitudes of noise, the
loadings of L1 penalised SGPCA are very similar (up to sign changes), with the first
loading consistently identifying a direction which primarily captures the second and third
hidden factors, while the second loading captures the first hidden factor. Table 5.4c

16

η = 1 η = 2 η = 3 η = 4 η = 1 η = 2 η = 3 η = 4

L
o
a
d
in

g
1

0.1267 0.0846 0.0355 -0.0182

L
o
a
d
in

g
2

-0.4553 0.4699 -0.5496 -0.4738
0.1385 0.0941 0.0265 -0.0007 -0.4751 0.4809 -0.4895 -0.5268
0.1303 0.0548 0.0250 0.0473 -0.4807 0.5112 -0.4823 -0.4865
0.1582 0.0454 0.0602 -0.0237 -0.4941 0.5052 -0.4524 -0.4912
0.4128 0.4176 0.4151 -0.4448 0.1482 -0.0824 0.0629 0.0641
0.4150 0.4401 0.4358 -0.3682 0.1402 -0.1060 0.0512 0.0434
0.4012 0.4203 0.5003 -0.4802 0.1534 -0.0816 0.0637 -0.0300
0.4293 0.4452 0.3950 -0.4873 0.1601 -0.0771 0.0684 0.0329
0.3385 0.3417 0.3362 -0.3153 0.0200 0.0181 -0.0454 -0.0777
0.3468 0.3453 0.3352 -0.3098 0.0227 0.0221 -0.0606 -0.0773

(a) Two loadings of L1 penalised SGPCA under varying levels of noise on synthetic data

η = 1 η = 2 η = 3 η = 4 η = 1 η = 2 η = 3 η = 4

L
oa

d
in

g
1

0.1266 0.0744 0.0361 -0.0347

L
oa

d
in

g
2

-0.4556 0.4524 -0.5505 -0.0414
0.1388 0.0953 0.0262 -0.0237 -0.4753 0.4750 -0.4890 -0.0324
0.1304 0.0580 0.0249 0.0019 -0.4806 0.5168 -0.4826 0.0375
0.1579 0.0517 0.0599 -0.0195 -0.4939 0.5216 -0.4516 -0.0254
0.4126 0.4255 0.4152 -0.0392 0.1481 -0.0843 0.0627 -0.1338
0.4154 0.4339 0.4355 -0.0510 0.1400 -0.1084 0.0514 -0.1471
0.4015 0.4177 0.5005 -0.0430 0.1534 -0.0700 0.0637 -0.1214
0.4287 0.4470 0.3949 -0.0336 0.1601 -0.0792 0.0684 -0.1211
0.3386 0.3414 0.3362 0.8715 0.0202 0.0146 -0.0454 -0.4866
0.3468 0.3452 0.3352 -0.4808 0.0229 0.0195 -0.0606 -0.8303

(b) Two loadings of SCAD penalised SGPCA under varying levels of noise on synthetic data

η = 1 η = 2 η = 3 η = 4 η = 1 η = 2 η = 3 η = 4

L
oa

d
in

g
1

0.1267 0.1074 0.0358 -0.0177

L
oa

d
in

g
2

-0.4552 0.4933 -0.5501 -0.4747
0.1384 0.0944 0.0263 0.0004 -0.4750 0.4901 -0.4892 -0.5259
0.1303 0.0492 0.0249 0.0469 -0.4807 0.5051 -0.4824 -0.4864
0.1584 0.0318 0.0600 -0.0242 -0.4942 0.4841 -0.4520 -0.4913
0.4129 0.3959 0.4151 -0.4435 0.1483 -0.0684 0.0628 0.0643
0.4149 0.4607 0.4356 -0.3677 0.1403 -0.0936 0.0513 0.0430
0.4011 0.4333 0.5004 -0.4783 0.1533 -0.0980 0.0637 -0.0291
0.4296 0.4412 0.3949 -0.4875 0.1601 -0.0625 0.0684 0.0330
0.3384 0.3304 0.3362 -0.3177 0.0200 -0.0061 -0.0454 -0.0785
0.3467 0.3398 0.3352 -0.3124 0.0226 0.0082 -0.0606 -0.0777

(c) Two loadings of the combined penalty SGPCA under varying levels of noise on synthetic
data

Table 5.4: Investigations of the performance of all three SGPCA variants across varying levels of noise.

17

suggests that the combined penalty SGPCA has the same characteristics. However, Table
5.4b suggests that the SCAD penalised SGPCA is not quite so robust; both loadings seem
to vary more as η increases, with the loadings for η = 4 being very different from those
for η = 1, no longer giving near-equal weights amongst components corresponding to the
same hidden factors. This is, perhaps, not surprising, given the use of the L1 penalty
in RPCA and JSPCA for its robustness to outliers (which become more probable with
increasing magnitude of noise).

5.4. Dependence on Tolerance

In our anecdotal experience of estimating the SGPCA approximation across a variety
of datasets, we found that decreasing the numerical tolerance increased the time taken
to complete the algorithm approximately exponentially. As this could quickly become
untenable, we performed a further simulation study to examine the effects of the tolerance
on the accuracy of the solution. The data was generated in precisely the same way as in
Section 5.1 and the same three SGPCA variants were fitted with the same parameters,
varying only the tolerance. We chose a range of values between 10−4 and 10−9, taking
the results of the latter as the “gold standard” by which we judged the accuracy.

In Figure 5.1a we graph the Euclidean distances of each of the two loadings from each
run of the algorithm against the logarithm of the chosen tolerances. As an alternative
measure, in Figure 5.1b we show the deviances from each fit, “normalised” by division
by the deviance of our gold standard fit. Both figures show that tolerances too large
provide fits which are nearly identical, having had only a few iterations. Beyond a critical
tolerance, the fits quickly converge to the gold standard fit. However, we wish to draw
attention to the axes of both plots – the largest deviance amongst all fits is less than one
half of one percent larger than the gold standard, and the Euclidean distance between
the gold standard and the fit further from it is of order 10−2. We suggest, therefore,
that a practical strategy for choosing a tolerance value would be to choose the smallest
value that allows feasible optimisation times, preferably (if this study is representative)
smaller than 10−7.

6. Healthcare Data

The dataset we analysed is a by-product of a lexicon-based classifier which the health
board developed in response to a need to systematically classify letters sent by consul-
tants to GPs and patients. It consists of just over 40,000 exemplar sentences generated
procedurally from a set of seeds. All observations are labelled either discharge or follow-
up with a heavy imbalance in favour of follow-up; this imbalance is due to the nature
of the problem being addressed, and approximates the expected imbalance in the col-
lection of letters. For the analysis we drew a stratified sample of 200 observations from
the dataset to calculate the projection matrices for each method. The dimension of the
chosen data was 55 in this case. We then drew 50 observations from each of the two
classes to use as a testing dataset, and show the results of applying the projections to
this test set in Figure 6.1. For each algorithm, we plot each pair of the first three prin-
cipal components. Each plot shows the 100 selected points coloured (and with different
point characters) according to the class. Due to the similar performance of the three
types of SGPCA, we performed only the L1 penalised version. We also show GPCA and

18

(a) Euclidean distances between loadings from fits with different tolerance values for each of the
SGPCA variants. The first loading is shown dashed, and the second is shown solid.

−9 −8 −7 −6 −5 −4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Combined Penalty

−9 −8 −7 −6 −5 −4

SCAD Penalty

−9 −8 −7 −6 −5 −4

L1 Penalty

Log of tolerances

D
is

ta
nc

e

(b) Deviances from each fit across a range of tolerance values, divided by the deviance from the
fit with the smallest tolerance. All three SGPCA variants are shown.

−9 −8 −7 −6 −5 −4

1.
00

00
1.

00
05

1.
00

10
1.

00
15

Combined Penalty

−9 −8 −7 −6 −5 −4

SCAD Penalty

−9 −8 −7 −6 −5 −4

L1 Penalty

Log of tolerances

D
ev

ia
nc

e

Figure 5.1: Behaviour of all SGPCA variants as tolerance is varied.

19

−4 −2 0 2 4 6

−
4

−
2

0
2

Component 1

C
om

po
ne

nt
 2

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Component 1

C
om

po
ne

nt
 3

−4 −2 0 2

−
4

−
2

0
2

4

Component 2

C
om

po
ne

nt
 3

(a) L
1 penalty SGPCA

−12 −10 −8 −6 −4 −2 0

−
4

−
2

0
2

4
6

Component 1

C
om

po
ne

nt
 2

−12 −10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4

Component 1

C
om

po
ne

nt
 3

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4

Component 2

C
om

po
ne

nt
 3

(b) GPCA

0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Component 1

C
om

po
ne

nt
 2

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Component 1

C
om

po
ne

nt
 3

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Component 2

C
om

po
ne

nt
 3

(c) PCA

Figure 6.1: Plots of pairs of the first three principal components for the healthcare dataset obtained
from SGPCA, GPCA and PCA.

20

PCA as the most comparable and most widely used algorithms respectively; the other
algorithms are omitted due to a combination of lack of space and poor performance.
Qualitatively, all three algorithms have reasonably similar performance, allowing decent
linear separation of the data. This suggests that our algorithm seems to inherit PCA’s
reputation for frequently providing useful loadings for analysing with respect to some
response variable, despite not using such information itself.

7. Discussion

In this paper we have introduced a sparsifying penalty to the generalised principal
components of Landgraf and Lee (2015), along with an efficient routine by which to
calculate the loadings. By means of simulation and case study we have shown excellent
performance in estimating appropriate (and useful) principal component loadings, giving
arguably the best loadings in the synthetic cases and projections on par with the current
state of the art for text in the healthcare study.

Comparison of the efficacy of the three penalties we used (L1, SCAD and L1 + SCAD)
suggest little difference between them. As such, our preference is for the L1 penalty due
both to its simplicity and its reliance on only one tuning parameter, unlike the SCAD
penalty which has two and the combination of both which has three.

It is worth noting that, as with all non-convex problems, our method will likely have
multiple minima. One way this could be mitigated, should it prove problematic, is to
repeatedly run the optimisation procedure from a variety of initial values and choose
between the found optima by means of the deviance. However, the authors’ experience
is that using Gaussian PCA as the starting point is both convenient (as it provides a left
semi-orthogonal matrix) and effective; the optima the optimisation procedure finds from
this starting point have consistently exhibited the properties we desire.

There is significant scope for extension of this work. Firstly, one can look into a
data-driven method for choosing the optimum values of λL, λ and λS . Secondly, there is
scope for investigating other penalty functions, such as the L0 penalty, to better under-
stand how penalising the coefficients drives sparsity. Another possible extension is the
development of methods for supervised dimension reduction, extending existing methods
such as partial least squares. Finally, a more challenging problem is the development of
kernel-based GPCA and SGPCA for non-linear feature extraction.

Acknowledgements

The authors would like to thank Cardiff and Vale University Health Board for sup-
porting the project and allowing access to the healthcare dataset. We are also deeply
grateful for the insightful comments provided by the reviewers and editor, this article is
much improved for their efforts.

A1. Derivation of deviance

The deviance of our model from the saturated model is properly

D(X|Θ) = −2
(

logP (X|Θ)− logP
(

X|Θ̃
))

21

where Θ̃ is the matrix of saturated parameters for each observation. However, as we
seek only value of Θ which minimises the deviance, we can disregard the contribution of
the log probability from the saturated model, as well as the factor of 2. This leaves the
expression for the pseudo-deviance as

D(X|Θ) = − logP (X|Θ)

= − log

n∏

i=1

{
h(xi) exp

(
x
T
i θi − b(θi)

)}

= −

n∑

i=1

{
log h(xi) + x

T
i θi − b(θi)

}

=

n∑

i=1

{
b(θi)− x

T
i θi

}
(with an additive constant)

=

n∑

i=1

p
∑

j=1

{bj(θij)− xijθij} (using the independence of each component)

This can then be recognised as the expression in (1) by substituting in the appropriate
form for θij .

A2. Derivation of optimality conditions

In order to derive optimality conditions, we need first to construct the Lagrangian of
the problem.

L(U,µ) ..= S(U,µ) + Tr
(
Λ
(
UTU− I

))

where Λ is an l × l symmetric matrix of Lagrange multipliers which we use in order to
capture the semi-orthogonality of U, and S(U,µ) is given in (5). Calculating the partial
derivatives with respect to U, µ and Λ we arrive at the following first-order optimality
conditions, the derivations of which can be found below.

n∑

i=1

p
∑

j=1

(

b′j

(

µj +
[

UUT
(

θ̃i − µ

)]

j

)

− xij

)(

δrjU
T
[l]

(

θ̃i − µ

)

+ Ujs

(

θ̃ir − µr

))

+ λL sgn (Urs) + λSP
′
S (|Urs|) sgn (Urs) + 2ΛT

l Ur = 0 r = 1, . . . , n, s = 1, . . . , p
(B.1)

n∑

i=1

p
∑

j=1

(

b′j

(

µj +
[

UUT
(

θ̃i − µ

)]

j

)

− xij

)(

δjr −
[
UUT

]

jr

)

= 0

r = 1, . . . , n (B.2)

UTU = I (B.3)

where Ai indicates the ith row and A[i] the ith column of the matrix A (where both are
taken as column vectors), and δij is the discrete Kronecker delta. It is important to note

22

that, due to the non-differentiability of the absolute value function at 0, (B.1) only holds
for Urs 6= 0.

We begin by deriving (B.1).

∂

∂Urs

{
n∑

i=1

p
∑

j=1

{

bj

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

{

µj +
[

UUT
{

θ̃i − µ

}]

j

}

+ λSPS (|Uij |)

}

+ λL |U|+Tr
(
Λ
{
UTU− I

})

}

=

n∑

i=1

p
∑

j=1

{{

b′j

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

}
∂

∂Urs

[

µj +
[

UUT
{

θ̃i − µ

}]

j

]}

+ λSP
′
S (|Urs|) sgn (Urs) + λL sgn (Urs) +

∂

∂Urs

Tr
(
Λ
{
UTU− I

})

=

n∑

i=1

p
∑

j=1

{{

b′j

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

}{

δrjU
T
[s]

[

θ̃i − µ

]

︸ ︷︷ ︸

(∗)

+Ujs

[

θ̃ir − µr

]

︸ ︷︷ ︸

(†)

}}

+ λSP
′
S (|Urs|) sgn (Urs) + λL sgn (Urs) + 2ΛT

l Ur
︸ ︷︷ ︸

(‡)

Where (∗) comes from the terms quadratic in Urs, (†) is from the terms linear in Urs, and
(‡) is from the summation definition of the trace. Setting the above equation equal to 0
for each value of r ∈ 1, . . . , n and s ∈ 1, . . . , p yields the first set of first order optimality
conditions. Similarly, we derive the next set by differentiating with respect to the rth

element of µ.

∂

∂µr

{
n∑

i=1

p
∑

j=1

{

bj

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

{

µj +
[

UUT
{

θ̃i − µ

}]

j

}

+ λSPS (|Uij |)

}

+ λL |U|+Tr
(
Λ
{
UTU− I

})

}

=

n∑

i=1

p
∑

j=1

{{

b′j

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

}
∂

∂µr

[

µj +
[

UUT
{

θ̃i − µ

}]

j

]}

=

n∑

i=1

p
∑

j=1

{{

b′j

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

}{

δjr −
∂

∂µr

[
UUTµ

]

j

}}

=

n∑

i=1

p
∑

j=1

{{

b′j

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

}{

δjr −
[
UUT

]

jr

}}

Once again, setting the final expression equal to 0 for each value of r gives the µ optimality
conditions. Finally, the Λ optimality condition is easily derived, this time using matrix

23

differential calculus for convenience.

∂

∂Λ

{
n∑

i=1

p
∑

j=1

{

bj

(

µj +
[

UUT
{

θ̃i − µ

}]

j

)

− xij

{

µj +
[

UUT
{

θ̃i − µ

}]

j

}

+ λSPS (|Uij |)

}

+ λL |U|+Tr
(
Λ
{
UTU− I

})

}

=
∂

∂Λ
Tr

(
Λ
{
UTU− I

})

= vec
(
UTU− I

)

Setting this equal to 0 reduces to UTU = I, the semi-orthogonality condition.

A3. Derivation of gradients

Calculating the gradients of the majorised objective function is very similar to calcu-
lating the first order optimality conditions in Appendix A2, as the terms from D(X,U,µ)
will be the same. Further, the perturbed penalty has no terms in µ, so the µ-gradient
is precisely ∂

∂µ
D(X,U,µ), so this gradient will not be recalculated. This simply leaves

calculating ∂
∂Urs

Mε
P

(
U|U(t−1)

)

∂Mε
P

∂Urs

=
∂

∂Urs

n∑

i=1

p
∑

j=1

{

λL

∣
∣
∣U

(t−1)
ij

∣
∣
∣+ λSPS

(∣
∣
∣U

(t−1)
ij

∣
∣
∣

)

+

[

U2
ij −

(

U
(t−1)
ij

)2
] [

λL + λSP
′
S

(∣
∣
∣U

(t−1)
ij

∣
∣
∣

)]

2
[

ε+
∣
∣
∣U

(t−1)
ij

∣
∣
∣

]

}

=

n∑

i=1

p
∑

j=1

∂

∂Urs

[

U2
ij −

(

U
(t−1)
ij

)2
] λL + λSP

′
S

(∣
∣
∣U

(t−1)
ij

∣
∣
∣

)

2
[

ε+
∣
∣
∣U

(t−1)
ij

∣
∣
∣

]

=
2Urs

(

λL + λSP
′
S

(∣
∣
∣U

(t−1)
rs

∣
∣
∣

))

2
[

ε+
∣
∣
∣U

(t−1)
rs

∣
∣
∣

]

We omit the arguments of λ, a to PS for notational convenience.

A4. Derivation of SCAD penalty from derivative

The SCAD penalty derivative (2) is equivalently given as

p′(θ) =

λ 0 < θ ≤ λ
aλ−θ
a−1 λ < θ < aλ

0 aλ < θ

24

Computing p(θ) is then a matter of integrating carefully. For 0 < θ ≤ λ, p(θ) =
∫ θ

0
λdt =

λθ. For λ < θ ≤ aλ,

p(θ) = p(λ) +

∫ θ

λ

aλ− t

a− 1
dt = λ2 +

[
aλt− 1

2 t
2

a− 1

]t=θ

t=λ

= −
θ2 − 2aλθ + λ2

2(a− 1)

Finally, for aλ < θ, p(θ) = p(aλ) +
∫ θ

aλ
0dt = p(aλ) = (a+1)λ2

2 . Together, this gives (3).

References

Blei, D. M., Ng, A. Y., Jordan, M. I., 2003. Latent dirichlet allocation. Journal of machine Learning
research 3, 993–1022.

Collins, M., Dasgupta, S., Schapire, R. E., 2002. A Generalization of Principal Components Analysis to
the Exponential Family. Advances in Neural Information Processing Systems 14, 617–624.

de Leeuw, J., 2006. Principal component analysis of binary data by iterated singular value decomposition.
Computational Statistics & Data Analysis 50 (1), 21–39.

Diederichs, E., Juditsky, A., Nemirovski, A., Spokoiny, V., 2013. Sparse non Gaussian component analysis
by semidefinite programming. Machine Learning 91, 211–238.

Ding, C., He, X., 2004. K-means clustering via principal component analysis. In: Proceedings of the
twenty-first international conference on Machine learning. ACM, p. 29.

Fan, J., Li, R., 2001. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.
Journal of the American Statistical Association 96 (456), 1348–1360.

Gillis, N., 2014. The Why and How of Nonnegative Matrix Factorization. ArXiv e-prints.
Guan, Y., Dy, J., 2009. Sparse probabilistic principal component analysis. In: Artificial Intelligence and

Statistics. pp. 185–192.
Hoerl, A. E., Kennard, R. W., 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems.

Technometrics 12 (1), 55–67.
Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of

Educational Psychology 24 (6), 417–441.
Hu, Z., Pan, G., Wang, Y., Wu, Z., 2016. Sparse principal component analysis via rotation and trunca-

tion. IEEE transactions on neural networks and learning systems 27 (4), 875–890.
Hunter, D. R., Li, R., 2005. Variable selection using MM algorithms. Annals of Statistics 33 (4), 1617–

1642.
Kwak, N., 2008. Principal component analysis based on l1-norm maximization. IEEE transactions on

pattern analysis and machine intelligence 30 (9), 1672–1680.
Landgraf, A. J., Lee, Y., 2015. Generalized Principal Component Analysis : Projection of Saturated

Model Parameters. Ohio State University Statistics Department Technical Report 892 (892).
Lu, M., Huang, J. Z., Qian, X., 2016. Sparse exponential family Principal Component Analysis. Pattern

Recognition 60, 681–691.
Nocedal, J., Wright, S., 2006. Numerical optimization. Springer Science & Business Media.
Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science 2 (1), 559–572.
R Foundation for Statistical Computing, Vienna, 2011. R Development Core Team. R: A Language and

Environment for Statistical Computing 55, 275–286.
Schönemann, P. H., 1966. A generalized solution of the orthogonal procrustes problem. Psychometrika

31 (1), 1–10.
Taddy, M., 2013. Multinomial Inverse Regression for Text Analysis. Journal of the American Statistical

Association 108 (503), 755–770.
Taddy, M., 2015. Distributed multinomial regression. The Annals of Applied Statistics 9 (3), 1394–1414.
Tibshirani, R., 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical

Society. Series B (Methodological) 58 (1), 267–288.
Tipping, M. E., Bishop, C. M., 1999. Probabilistic Principal Component Analysis. Journal of the Royal

Statistical Society. Series B (Statistical Methodology) 61 (3), 611–622.
Wen, Z., Yin, W., 2013. A feasible method for optimization with orthogonality constraints. Mathematical

Programming 142 (1-2), 397–434.
Zou, H., Hastie, T., 2005. Regularization and Variable Selection via the Elastic Net. Journal of the Royal

Statistical Society. Series B (Methodological) 67 (2), 301–320.

25

Zou, H., Hastie, T., Tibshirani, R., 2006. Sparse Principal Component Analysis. Journal of Computa-
tional and Graphical Statistics 15 (2), 265–286.

26

