Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4

Moradi, Shoeib, Berry, Richard, Pymm, Phillip, Hitchen, Corinne, Beckham, Simone A., Wilce, Matthew C.J., Walpole, Nicholas G., Clements, Craig S., Reid, Hugh H., Perugini, Matthew A., Brooks, Andrew G., Rossjohn, Jamie ORCID: https://orcid.org/0000-0002-2020-7522 and Vivian, Julian P. 2015. The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4. The Journal of Biological Chemistry 10.1074/jbc.M114.612291

Full text not available from this repository.

Abstract

The engagement of Natural Killer (NK) cell Immunoglobulin-Like Receptors (KIRs) with their target ligands, Human Leukocyte Antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA respectively, while the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice, by size-exclusion chromatography, dynamic light scattering, analytical ultra-centrifugation and small-angle X-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Medicine
Subjects: R Medicine > R Medicine (General)
Uncontrolled Keywords: immunoglobulin fold; natural killer cells (NK cells); protein structure; receptor structure-function; small-angle X-ray scattering (SAXS)
Publisher: American Society for Biochemistry and Molecular Biology
ISSN: 1083-351X
Date of Acceptance: 10 March 2015
Last Modified: 01 Nov 2022 09:51
URI: https://orca.cardiff.ac.uk/id/eprint/89431

Citation Data

Cited 17 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item