Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Nanoscale properties of conjugated polymers by scanning probe microscopy

Lei, Chunhong 2004. Nanoscale properties of conjugated polymers by scanning probe microscopy. PhD Thesis, Cardiff University.

[thumbnail of U584652 (1) dec page removed.pdf]
Preview
PDF - Accepted Post-Print Version
Download (11MB) | Preview

Abstract

Nanoscale properties of conjugated polymers by Scanning Probe Microscopy Atomic force microscopy (AFM) and electrostatic force microscopy (EFM) are explored and developed to study the surface potential distribution for a range of applications, including semiconductor laser devices, the electrical conductivity of aligned DNA molecules. The main focus of the thesis is the application of these techniques to investigate the nanoscale structures and electrical properties of conjugated polymers, including poly-(3-exylthiophene)s (P3ATs), polyfluorene (PFO), and poly-(3,4,-ethylenedioxythiophene) (PEDOT). EFM is a SPM technique, used to measure electrostatic force in non-contact mode. Two modes of EFM, scanning Kelvin probe microscopy (KPM or SKPM) and EFM/phase, are explored. Analytical calculations of tip-surface capacitances and their gradients are presented, aiming at quantifying the measurement. Based on the calculation results, the origin of the measurement resolution in EFM/phase and SKPM is explained, and a procedure is developed to convert the phase shift to the local surface potential. Thus, EFM/phase can also be used to measure the surface potential with higher resolution than SKPM. The self-assembled/aggregation structures of the polymers, as varied by molecular weight, solution preparation and substrates used, are investigated by AFM. The self-assembled structure, usually in the form of a network, obeys certain laws in its formation. The surface potential distributions and charge transport properties in polymer films and network structures are investigated with both EFM modes. The electrical properties of Au on poly-(3-hexylthiophene) (P3HT) and P3HT on Au contacts are investigated. The electrochemical reaction of conjugated polymers, and electropolymerisation of 3,4-ethylenedioxythiophene (EDOT) are carried out on micro electrodes, and studied by AFM. The EDOT electropolymerization is shown to grow polymer nano-wires or a uniform polymer film, depending on conditions the electropolymerization process.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Physics and Astronomy
ISBN: 9781303200229
Funders: China Scholarship Council, EPSRC, Overseas Research Studentship
Date of First Compliant Deposit: 30 March 2016
Last Modified: 30 Nov 2023 14:42
URI: https://orca.cardiff.ac.uk/id/eprint/55924

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics