Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Motion perception following simultaneous adaptation to smooth pursuit eye movement and retinal motion.

Davies, Jonathan Rhys. 2010. Motion perception following simultaneous adaptation to smooth pursuit eye movement and retinal motion. PhD Thesis, Cardiff University.

[thumbnail of U584630.pdf] PDF - Accepted Post-Print Version
Download (9MB)

Abstract

This study employed adaptation paradigms to explore visual motion processing during smooth pursuit eye movement. Two classes of model, classical models and reference signal models, employ estimates of retinal motion and pursuit to estimate head-centred world motion. The pursuit estimate in classical models is purely extra-retinal. In reference signal models the pursuit estimate is additionally modulated by retinal feedback. Chapters 2 and 3 investigated the motion aftereffect (MAE) following adaptation to simultaneous retinal motion and smooth pursuit. In chapter 2 adaptations to either horizontal retinal motion or vertical smooth pursuit respectively resulted in retinal or extra-retinal MAE. Simultaneous orthogonal adaptation to both motions resulted in a unidirectional MAE that bisected the individual MAE directions. Adaptation to a head-centred motion signal (perceived direction) was not supported by the recorded directions for adapting motion and resulting MAE. An explanation employing separate lower level adaptations was favoured. Chapters 3 and 4 examined motion perception following collinear motion adaptation. Additionally, the retinotopic nature of retinal motion adaptation was exploited to limit the effects of retinal sensor adaptation during the test phase. The two classes of model then make differing predictions: Reference signal models predict a pursuit estimate that is modulated by retinal motion, whilst classical models do not. In chapter 3 varying the background motion during adaptation did alter the physical eye movement. However, the properties of the resulting MAE were not modulated by retinal feedback and a classical model was supported. Chapter 4 used a moving test to quantify the perceived stability of a background during smooth pursuit; using a two alternative forced choice paradigm and staircase procedure. Either a phantom velocity aftereffect or a modified reference signal model was suggested as modulating the Filehne illusion in Experiment 6. Two control experiments failed to find evidence for phantom adaptation. Experiment 9 demonstrated a potential retinotopic location bias for background motion when applying a reference signal model, background motion above the test area did not alter perceived stability judgments.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Psychology
Subjects: B Philosophy. Psychology. Religion > BF Psychology
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
ISBN: 9781303197208
Funders: ESRC
Date of First Compliant Deposit: 30 March 2016
Last Modified: 12 Feb 2016 23:12
URI: https://orca.cardiff.ac.uk/id/eprint/54529

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics