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Abstract 

Derivatives of guanine exhibit diverse supramolecular chemistry, with a variety of distinct 

hydrogen-bonding motifs reported in the solid state, including ribbons and quartets, which resemble 

the G-quadruplex found in nucleic acids with sequences rich in guanine. Reflecting this diversity, 

the solid-state structural properties of 3',5'-bis-O-decanoyl-2'-deoxyguanosine, reported in this 

paper, reveal a hydrogen-bonded guanine ribbon motif that has not been observed previously for 

2'-deoxyguanosine derivatives. In this case, structure determination was carried out directly from 

powder XRD data, representing one of the most challenging organic molecular structures (a 

90-atom molecule) that has been solved to date by this technique. While specific challenges were 

encountered in the structure determination process, a successful outcome was achieved by 

augmenting the powder XRD analysis with information derived from solid-state NMR data and 

with dispersion-corrected periodic DFT calculations for structure optimization. The synergy of 

experimental and computational methodologies demonstrated in the present work is likely to be an 

essential feature of strategies to further expand the application of powder XRD as a technique for 

structure determination of organic molecular materials of even greater complexity in the future. 
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Introduction  

Powder X-ray diffraction (XRD) and solid-state NMR spectroscopy are both rich sources of 

structural data for polycrystalline materials. While successful crystal structure determination of 

organic molecular solids can now (since the early 1990s) be carried out directly from powder XRD 

data alone,1-8 the structure determination process is often enhanced significantly by consideration of 

solid-state NMR data for the same material, allowing specific structural details to be established or 

validated. In general, solid-state NMR data are used in two ways to assist the process of structure 

determination from powder XRD data.9 

First, after completing structure refinement (the final stage of structure determination from 

diffraction data), periodic DFT calculations employing the GIPAW (Gauge Including Projector 

Augmented Wave) method10-15 (for example in the CASTEP program16) can be used to calculate 

solid-state NMR data (e.g., isotropic chemical shifts) for the crystal structure, which may then be 

compared with the corresponding experimental solid-state NMR data. Clearly, an acceptable level 

of agreement between calculated and experimental solid-state NMR data can provide strong 

validation of the crystal structure, augmenting the validation that is already provided by the rigorous 

assessment17 of the quality of fit between experimental and calculated powder XRD patterns in the 

final Rietveld refinement. This strategy is becoming an increasingly popular way of enhancing the 

scrutiny and validation of the results obtained in structure determination from powder XRD data.18-

25
 

Second, measurements of internuclear coupling from solid-state NMR experiments have the 

potential to yield information on specific internuclear distances, molecular conformations and/or 

bonding arrangements in the material. For example, measurement of direct (through-space) dipole-

dipole interactions can be used to determine specific internuclear distances in the crystal structure. 

Measurement of indirect (electron-coupled) dipole-dipole interactions (i.e., J-couplings) can also 

provide useful structural insights that may be utilized in the structure determination process. In this 

regard, J-coupling through hydrogen bonds26,27 (e.g., 15N···15N J-coupling in N�±H···N hydrogen 

bonds) can allow the specific functional groups engaged in hydrogen-bonding interactions to be 

identified. Clearly, such knowledge is particularly valuable in the context of structure determination 
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from powder XRD data, as it may allow plausible structural motifs to be identified in trial structures 

during the structure determination process or may allow trial structures containing incorrect motifs 

to be modified or rejected. 

This paper is focused on structure determination directly from powder XRD data in tandem 

with consideration of solid-state NMR data, specifically to elucidate the structure of 3',5'-bis-O-

decanoyl-2'-deoxyguanosine [denoted dG(C10)2; Figure 1]. This material is believed to be 

polymorphic, as two distinct solid forms have been identified on crystallization from ethanol. In 

previous work, Pham et al.28 referred to these two forms as 2q and 2r. The material studied in the 

present work corresponds to 2q, as the powder XRD data matches the powder XRD pattern for 2q 

published previously.29 We note that 2q appears to be more readily obtained, as 2r has only been 

reported once.28 In order to introduce a systematic nomenclature, we define polymorph I of 

dG(C10)2 as 2q and we define polymorph II of dG(C10)2 as 2r. 

 
Figure 1. Molecular structure of dG(C10)2 showing the atom numbering scheme. The green bracket 

indicates the Watson-Crick hydrogen-bonding groups. The non-hydrogen atoms of the guanine 

moiety are labelled 1 to 10 and the non-hydrogen atoms of the 2'-deoxyribose moiety are labelled 1' 

to 6' and 10'. Note that the atom labelled here as N10 was labelled N2 or NH2 in previous 

publications28-30 on dG(C10)2. 

The dG(C10)2 molecule has found applications in the context of photoelectric devices, 

including photoconductive materials,31-33 biphotonic quantum dots34 and photodetectors with 
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rectifying properties.35 It has also been shown36 that dG(C10)2 can reversibly interconvert between 

quartets and ribbons, using a cryptand for cation capture and addition of acid to release the cation. 

In all these applications, the hydrogen bonding of the guanine moieties is a key factor, emphasizing 

the importance of understanding the preferred structural properties of dG(C10)2 in the solid state. 

Among 3',5'-bis-O-alkanoyl derivatives of 2'-deoxyguanosine, crystal structures have been reported 

previously only for 3',5'-bis-O-acetyl-2'-deoxyguanosine [dG(C2)2]
37 and 3',5'-bis-O-propanoyl-2'-

deoxyguanosine [dG(C3)2],
38 although several 3',5'-bis-O-silyl derivatives have also been 

studied39,40 and self-assembly of 2'-deoxyguanosine derivatives in solution has been investigated.41-

44 

 

 
�)�L�J�X�U�H�� ������ ���D���� �7�K�H�� �³�Q�D�U�U�R�Z�´�� �J�X�D�Q�L�Q�H�� �U�L�E�E�R�Q�� �D�Q�G�� ���E���� �W�K�H�� �³�Z�L�G�H�´�� �J�X�D�Q�L�Q�H�� �U�L�E�E�R�Q���� �,�Q�� �H�D�F�K�� �F�D�V�H���� �W�K�H�� 

N�±H···N hydrogen bonds are highlighted and the graph sets45,46 for the hydrogen-bonded rings are 

indicated. 
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Guanine derivatives are known for their rich supramolecular chemistry.47-49 In the solid state, 

a variety of distinct hydrogen-bonding motifs have been reported, including ribbons and quartets, 

which resemble the G-quadruplex50 found in nucleic acids with sequences rich in guanine. Most 

reported ribbon motifs are the so-called �³�Q�D�U�U�R�Z�´���I�R�U�P (Figure 2a), in which neighbouring guanine 

moieties are linked by two hydrogen bonds (N�±H···N and N�±H···O), with each pair of guanines 

forming a hydrogen-bonded ring designated as )9(2
2R  in graph-set notation.45,46 A less common 

motif, described as a �³�Z�L�G�H�´���U�L�E�E�R�Q (Figure 2b), has been observed in two structures [2',3'-O-bis(tri-

isopropylsilyl)guanosine40 and 9-(2,3-bis(hydroxymethyl)cyclobutyl)-guanine51] and contains three 

distinct hydrogen bonds: two N�±H···O hydrogen bonds between the O atom of one guanine moiety 

and two different N atoms of a neighbouring guanine moiety [forming a ring with graph set )6(1
2R ], 

and an N�±H···N hydrogen bond which, together with the two N�±H···O hydrogen bonds, forms a 

ring involving three guanine moieties with graph set )11(3
3R . Another ribbon motif has been 

observed in the solution state41,43 and in a number of salts of 7-methylguanine52 in which two 

distinct hydrogen-bonded rings alternate along the ribbon. Among the reported quartet motifs, there 

are only two cases53,54 in which the quartet is not formed around a metal cation. 

As dG(C10)2 was obtained in our work only as a fine powder (by crystallization from ethanol), 

powder XRD provides the only viable approach for structure determination. As demonstrated over 

the past 20 years or so,1-8 crystal structure determination of organic materials directly from powder 

XRD data has become a relatively mature field. Nevertheless, challenges in structure determination 

can be encountered in specific cases, which can be greatly facilitated by incorporating other sources 

of information (i.e., other experimental data and/or computational insights) within the structure 

determination process. As illustrated by the present study of structure determination of dG(C10)2 �± a 

molecule with 90 atoms �± the successful application of techniques for structure determination from 

powder XRD data is not just limited to the case of relatively small molecules. 

Methods 

The sample of dG(C10)2 was prepared using the method described previously28 and 

crystallized from ethanol. Powder XRD data confirmed that the sample was polymorph I, as defined 

above. High-quality powder XRD data suitable for structure determination were recorded (at 21 
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°C), for a powder sample contained in two flame-sealed capillaries, using a Bruker D8 

Diffractometer (Ge-�P�R�Q�R�F�K�U�R�P�D�W�H�G�� �&�X�.�.1 radiation) operating in transmission mode with a 

Våntec detector covering 3° in 2�T. The data were recorded in the 2�T range from 3° to 50° (step size 

0.017°) with a total data collection time of 57 hrs. A two-dimensional powder XRD pattern was 

also recorded at ambient temperature using an Agilent SuperNova �'�X�D�O���$�W�O�D�V���G�L�I�I�U�D�F�W�R�P�H�W�H�U�����&�X�.�.��

radiation, �� = 1.54180 Å) in order to assess the extent of �³preferred orientation�  ́ in the powder 

sample.55 

Periodic DFT calculations for geometry optimization and calculation of NMR parameters 

were carried out using the CASTEP program16 (Academic Release version 8.0). Geometry 

optimization used ultrasoft pseudopotentials,56 PBE functional,57 semiempirical dispersion 

corrections (TS correction scheme58), fixed unit cell, preserved space group symmetry and periodic 

boundary conditions. Isotropic NMR chemical shifts were calculated using the GIPAW approach,10-

14 while J-coupling values were calculated at the scalar-relativistic level of theory using the ZORA 

method.59-61 All calculations used a basis set cut-off energy of 700 eV and a Monkhorst-Pack grid62 

of minimum sample spacing 0.05 × 2�Œ Å�í��. In the first instance, chemical shifts are referenced 

using the formula 

 �Giso(calc) = �Vref �± �Viso(calc) (1) 

where �Vref is the sum of the mean of the calculated shielding values and the mean of the 

experimental chemical shifts.11 A second referencing method uses the formula 

 �Giso(calc) = �V0 �± m �Viso(calc) (2) 

with the values of �V0 and m obtained from a least-squares fitting procedure to optimize the 

agreement between calculated and experimental chemical shifts.��

Structure Determination 

The powder XRD pattern of polymorph I of dG(C10)2 was indexed using the DICVOL91 

algorithm63 in the program Crysfire,64 giving the following unit cell with monoclinic metric 

symmetry: a = 8.33 Å, b = 7.82 Å, c = 25.79 Å, �E = 97.5°. However, in the subsequent profile-

fitting stage of the structure determination process, progress was hampered significantly by two 
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specific features of the powder XRD pattern of dG(C10)2, which introduced challenges in achieving 

an acceptable quality of profile fitting (Figure 3). First, the powder XRD pattern of dG(C10)2 

contains a very intense peak at low diffraction angle (2�T = 3.4°), which is substantially more intense 

than any of the other peaks. The presence of one peak of dominant intensity initially raised the 

possibility that the powder XRD data may be strongly affected by preferred orientation of the 

crystallites in the sample. However, the powder XRD pattern (see Figure S1 in Electronic 

Supplementary Information) recorded using a two-dimensional detector (for one of the two 

capillaries used to record the one-dimensional data in Figure 3) exhibited uniform intensity around 

the Debye-Scherer rings, indicating that the distribution of crystallite orientations in the powder 

sample was essentially random and hence that there was no significant preferred orientation. 

 
Figure 3. The experimental powder XRD pattern for polymorph I of dG(C10)2. The full powder 

XRD pattern is shown on the left; the expanded region from 2�� = 6° to 40° is shown on the right. 

The second challenging aspect concerns the very high background in the low-angle region of 

the powder XRD pattern, arising from a significant amount of X-ray scattering from air in the 

region of the peak at 2�T = 3.4°. To achieve a high quality of fit in the profile-fitting stage, which 

was carried out using the Le Bail technique65 in the GSAS program,66 it was necessary first to fit the 

baseline of the low-angle region (2�T = 3° to 5°) using a polynomial, which was then subtracted from 

the experimental data. Although this procedure introduced some artefacts to the baseline, these 

artefacts were fitted successfully by the shifted Chebyshev polynomials67 used for baseline 

correction in the Le Bail fitting procedure in GSAS. We note that attempts to fit the original 

baseline using this method were not successful. 
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Figure 4. Results from fitting the powder XRD pattern (with baseline subtracted) for polymorph I of 

dG(C10)2. (a, b) Results from profile fitting using the Le Bail technique. (c, d) Results from the 

initial Rietveld refinement discussed in the text. (e, f) Results from the final Rietveld refinement 

following structure optimization using periodic DFT calculations. The full powder XRD pattern is 

shown in (a), (c) and (e). The expanded region from 2�� = 6° to 40° is shown in (b), (d) and (f). Red 

+ marks, experimental data; green line, calculated data; magenta line, difference plot; black tick 

marks, peak positions.  

The modified powder XRD data were then subjected to Le Bail fitting (Figure 4a; due to the 

high intensity of the first peak relative to all other peaks, the data between 2�T = 6° and 40° are 
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shown separately with an expanded intensity scale in Figure 4b). The lineshape of the first peak is 

rather poorly fitted as a consequence of the double baseline fitting described above. Nevertheless, 

the overall quality of fit obtained in the Le Bail fitting is considered acceptable (Figure 4a; 

Rp = 0.93%, Rwp = 1.23%). 

Density considerations suggest that there are two molecules of dG(C10)2 in the unit cell and, 

given the fact that the dG(C10)2 molecule is chiral, the only plausible space groups are P2 and P21. 

As these space groups could not be distinguished definitively on the basis of systematic absences in 

the powder XRD data [although the absence of the (010) peak may point towards P21], each of 

these space groups was considered in independent structure-solution calculations using the direct-

space genetic algorithm technique68-70 in the program EAGER.71-76 Structure-solution calculations 

for space group P2 did not generate any plausible trial structures and only space group P21 was 

considered further. 

Previous solid-state NMR studies of dG(C10)2 provide direct structural insights concerning the 

hydrogen-bonding between guanine moieties. Pham et al.28, 30 determined the 15N chemical shifts 

and J-couplings for polymorph I of dG(C10)2 (see Table 1), including a 2hJN7N10 coupling of 5.9 Hz, 

while Webber et al.29 reported 1H and 13C chemical shifts and found evidence for several H···H 

short contacts. The value of 2hJN7N10 provides a strong indication that there is a relatively strong  

N�±H···N hydrogen bond involving N7 and N10, which provided a robust criterion for acceptance or 

rejection of trial structures obtained in the structure solution from powder XRD data reported here 

(particularly as a basis for rejecting trial structures that clearly do not contain this hydrogen bond, as 

discussed in more detail below). Furthermore, comparison of the chemical shifts and J-couplings 

calculated for the final refined crystal structure with the chemical shifts and J-couplings measured 

experimentally provides additional scrutiny and validation of the crystal structure following the 

final Rietveld refinement. 

In setting up the structural model to be used in the direct-space genetic algorithm structure 

solution calculations, the dG(C10)2 molecule was constructed as follows. The geometry of the 

guanine moiety was modelled on the structure of one of the molecules in the reported crystal 

structure77 of guanosine dihydrate (CCDC ref. code GUANSH10) and the geometry of the 
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10 

2'-deoxyribose ring was modelled on that in the reported crystal structure37 of dG(C3)2 (CCDC ref. 

code MOFBUE). The two C10 chains were constructed using the average bond lengths and bond 

angles for similar moieties determined using the program Mogul version 1.7.1 (for bonds not 

involving hydrogen) and from Allen et al.78 (for bonds involving hydrogen). The conformation of 

the 2'-deoxyribose ring was kept fixed during the structure solution calculation. As the position 

along the b-axis can be fixed arbitrarily for space group P21, each trial structure was defined by a 

total of 27 structural variables (2 positional, 3 orientational and 22 torsional variables). The 22 

torsional variables are specified in Figure S2. 

With this model, the structure solution calculations in space group P21 generated trial 

structures that were considered plausible, including a geometric relation between N7 and N10 

consistent with N�±H···N hydrogen bonding. In contrast, structure solution calculations using other 

models for the dG(C10)2 molecule (e.g., with the geometry of the 2'-deoxyribose ring based on the 

average bond lengths and bond angles for similar moieties) led to trial structures that were 

considered implausible as they that did not contain hydrogen bonding between N7 and N10. 

The genetic algorithm structure solution calculations in space group P21 considered the 

evolution of 32 independent populations of 500 structures, with 50 mating operations and 250 

mutation operations carried out per generation, and a total of 500 generations in each calculation. In 

two of the calculations, the trial structure giving the best quality of fit between calculated and 

experimental powder XRD data was essentially the same structure, and the quality of fit was 

significantly better than the best-fit structure obtained in any of the other calculations (see 

Electronic Supplementary Information for more details). The trial structure giving the best quality 

of fit from all the structure-solution calculations was used as the initial structural model for Rietveld 

refinement,79 which was carried out using the GSAS program.66 In the Rietveld refinement, 

restraints were applied to bond lengths and bond angles based on the initial molecular model 

(discussed above) and planar restraints were applied to the guanine moiety and the two carbonyl 

moieties. These restraints were relaxed over the course of the refinement. A common isotropic 

atomic displacement parameter was refined for all non-hydrogen atoms and the value for hydrogen 

atoms was set equal to 1.2 times the refined value for non-hydrogen atoms. No corrections were 
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applied for preferred orientation. The Rietveld refinement at this stage gave a reasonably good fit to 

the powder XRD data (Figure 4c; Rp = 1.35%, Rwp = 1.86%). 

The structure obtained in this Rietveld refinement was then subjected to geometry 

optimization using the CASTEP program, leading to small shifts in atomic positions with an 

average atomic displacement of 0.65 Å. The most significant structural changes concerned the 

orientations of the two carbonyl moieties in the decanoyl chains. The structure obtained following 

geometry optimization was then used as the starting structural model for a final Rietveld 

refinement, which gave an improved fit (Figure 4e; Rp = 1.15%, Rwp = 1.56%) compared to the first 

Rietveld refinement discussed above. The final refined unit cell parameters were: a = 8.3072(7) Å, 

b = 7.8052(10) Å, c = 25.7246(27) Å, �E = 97.491(4), V = 1653.73(31) Å3 (2�� range, 3 �± 50°; 2755 

profile points; 289 refined variables). Overall, the combination of geometry optimization followed 

by further Rietveld refinement led to an average atomic displacement of 0.71 Å, with significant 

changes in the conformations of the decanoyl chains (particularly in the region of the carbonyl 

moieties) and a small shift of the 2'-deoxyguanosine moiety, which led to an improvement in 

geometrical aspects of the hydrogen bonding between guanine moieties in neighbouring molecules. 

Discussion 

The crystal structure from the final Rietveld refinement is shown in Figures 5 and 6. Viewed 

along the b-axis (Figure 5), it is clear that the structure comprises hydrogen-bonded ribbons 

constructed from the guanine moieties (the view in Figure 5 is parallel to the plane of the ribbons). 

The ribbons run parallel to the b-axis and the guanine moieties within a given ribbon are related by 

the 21 screw axis. The 2'-deoxyribose moiety and alkyl chains occupy the space between adjacent 

ribbons. The ribbons involve three distinct hydrogen bonds: two N�±H···O hydrogen bonds 

involving N�±H10b and N�±H1 of a given molecule as donors and the C=O group of a neighbouring 

guanine moiety as the acceptor, and an N�±H···N hydrogen bond involving N�±H10a as the donor 

and the N7 atom of a neighbouring guanine moiety as the acceptor (geometric data for these 

hydrogen bonds are given in Table S1 in Supporting Information). The ribbons in dG(C10)2 are 

unambiguously identified (compare Figure 6 and Figure 2�D�����D�V���W�K�H���³�Z�L�G�H�´���U�L�E�E�R�Q���P�R�W�L�I��40, 51 which 

has not been observed previously for any 2'-deoxyguanosine derivative. A C�±H···O hydrogen bond 
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is also identified (see Figure 6) between C8 of the guanine moiety as the C�±H donor and the C=O 

group containing C11' of a neighbouring molecule as the acceptor. 

 
Figure 5. Crystal structure of polymorph I of dG(C10)2 viewed along the b-axis (parallel to the 

direction of the hydrogen-bonded ribbons). 

Page 12 of 24Chemical Science

�&
�K

�H
�P

�L
�F

�D
�O

�6
�F

�L
�H

�Q
�F

�H
�$

�F
�F

�H
�S

�W
�H

�G
�0

�D
�Q

�X
�V

�F
�U

�L
�S

�W

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
M

ar
ch

 2
01

7.
 D

ow
nl

oa
de

d 
on

 2
1/

03
/2

01
7 

15
:3

7:
59

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 
C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

Li
ce

nc
e.

View Article Online
DOI: 10.1039/C7SC00587C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c7sc00587c


13 

 
Figure 6. Crystal structure of polymorph I of dG(C10)2 showing the hydrogen-bonded ribbon of the 

guanine moieties. In this view, the b-axis is vertical. 

There is also evidence for �S···�S interactions between guanine moieties in adjacent ribbons in 

the crystal structure of dG(C10)2, as the distances from the N3, C2 and N10 atoms of one guanine 

moiety to the N7, C8 and N9 atoms, respectively, of a neighbouring molecule are all ca. 3.5 Å 

(Figure 7). Such �S···�S interactions are not observed in the two previously reported crystal 

structures40,51 containing the �³�Z�L�G�H�´���U�L�E�E�R�Q motif.  
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14 

 
Figure 7. Illustration of �S···�S interactions between guanine moieties in the crystal structure of 

polymorph I of dG(C10)2. The dashed lines represent distances of ca. 3.5 Å. 

The relative arrangement of the 2'-deoxyribose and guanine moieties around the N-glycosidic 

bond (N9�±C1') corresponds to the syn conformation, with the Watson-Crick hydrogen-bonding 

groups (see Figure 1) directed towards the 2'-deoxyribose ring.80 Significantly, Webber et al.29 

predicted that the crystal structure of dG(C10)2 should exhibit this structural feature, based on the 

high values of isotropic 13C chemical shift for C8 and C1', which are characteristic of the syn 

conformation. It is noteworthy that the only guanosine derivative that forms �W�K�H�� �³�Z�L�G�H�´�� �U�L�E�E�R�Q��

motif in its crystal structure also has the syn conformation.40 

                 

 
Figure 8. Correlation plots for the calculated and experimental values of the (a) 1H, (b) 13C and (c) 
15N isotropic chemical shifts for polymorph I of dG(C10)2. In each case, the dashed line corresponds 

to �Giso(expt) = �Giso(calc). 
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The isotropic 1H, 13C and 15N chemical shifts calculated using the CASTEP program for the 

crystal structure of polymorph I of dG(C10)2 determined here are compared with the experimental 

values29,30 in Figure 8 (see also Tables S2, S3 and S4). The calculated (using Eq. 1) and 

experimental data are in very good agreement, with RMS deviations of 0.57 ppm, 3.02 ppm and 

2.01 ppm for the 1H, 13C and 15N chemical shifts, respectively. From Figure 8b, it is evident that the 

calculated 13C chemical shifts are higher than the experimental data for the resonances at high ppm 

and lower than the experimental data for the resonances at low ppm. This phenomenon is well 

known and can be addressed cosmetically either by establishing the calculated chemical shifts using 

Eq. 2 and the least-squares fitting procedure (in which the gradient m may deviate from unity) 

described in the Methods section, or by using different reference shieldings for the high-ppm region 

and the low-ppm region of the spectrum.11,23,81 As shown in Figure S3, when the calculated 13C 

chemical shifts are established using Eq. 2, the RMS deviation between calculated and experimental 

13C chemical shifts is decreased to 2.51 ppm. Using the same procedure (based on Eq. 2) to 

establish the calculated 1H and 15N chemical shifts, the RMS deviations between calculated and 

experimental data are decreased to 0.39 ppm and 1.99 ppm, respectively. 

Hartman et al.82 have reported that GIPAW calculations of 13C chemical shifts across a range 

of small organic molecules give an RMS deviation of 2.12 ppm when using the procedure based on 

Eq. 2. Although this deviation is slightly lower than that obtained for our results, it is important to 

note that the dG(C10)2 molecule is significantly larger and more flexible than any of the molecules 

considered by Hartman et al. Furthermore, the slightly higher RMS deviation observed for dG(C10)2 

may be caused, in part, by the fact that 13C chemical shifts for the CH2 moieties were not included 

in our analysis as the 13C resonances for individual CH2 moieties are not resolved in the 

experimental 13C NMR spectrum. 

Three 15N···15N J-couplings across N�±H···N hydrogen bonds between guanine moieties were 

also calculated (see Table 1), specifically the intramolecular couplings 3JN2N3 and 3JN3N9, and the 

intermolecular coupling 2hJN7N10. In each case, the calculated J-coupling is higher, to a greater or 

lesser extent, than the experimental value, but the calculated values successfully reflect the correct 

trend. 
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Concluding Remarks 

Several aspects of the structure determination of dG(C10)2 from powder XRD data reported in 

this paper presented challenges, including the presence of the very intense (001) peak at low angle 

in the powder XRD pattern on a very steeply sloping baseline. This peak represents more than 45% 

of the total diffraction intensity across the 2�� range recorded and it was essential to ensure that the 

method applied for baseline correction did not significantly distort this peak. This factor, combined 

with the complexity of the direct-space search involved in the structure-solution calculation (a 

consequence of the large size and flexibility of the dG(C10)2 molecule), led to a large number of 

distinct trial structures giving similar fits to the data as they corresponded to similar structural 

arrangements when projected on to the ab-plane. In order to identify the correct structure solution, 

information obtained in previous solid-state NMR studies of dG(C10)2 proved to be vital, in 

particular the knowledge that a strong intermolecular N�±H...N hydrogen bond exists between N7 

and N10. After initial Rietveld refinement, geometry optimization using periodic DFT calculations 

(with fixed unit cell) generated a structure which, upon further Rietveld refinement, gave an 

improved fit to the experimental powder XRD data, illustrating the utility of introducing geometry 

optimization as a key step in the overall structure elucidation process. Clearly, the fact that a wide 

range of solid-state NMR parameters calculated from the final refined crystal structure are in good 

agreement with the corresponding experimental solid-state NMR parameters gives additional 

support to the veracity of the structure determined from powder XRD data. The synergy of 

experimental and computational methodologies demonstrated in the present work is likely to be an 

essential feature of strategies to further expand the application of powder XRD as a technique for 

structure determination of organic molecular materials of even greater complexity in the future. 
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Additional Note 

The experimental datasets for this study and the magres output (.magres) files from the 

CASTEP calculations are available from the Cardiff University data catalogue at 

http://research.cardiff.ac.uk/***. 
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Tables 

Table 1. Calculated and experimental JNN-couplings for polymorph I of dG(C10)2. 

 JNN / Hz��

Coupling Calculated Experimental a 
3JN3N9 4.20 3.5 b, 3.8 b 
3JN3N10 5.45 5.3 
2hJN7N10 7.10 5.9 

a Taken from Pham et al. (2007).30 
b The two values correspond to separate measurements on each resonance. 
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Graphical Abstract 

 

 
 

Text for Graphical Abstract: 

Structure determination from powder XRD data, augmented by solid-state NMR and periodic DFT, 

reveals a new hydrogen-bonding motif for a 2'-deoxyguanosine derivative 
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