Novel sydnone derivatives carrying azidomethyl-1,2,4-oxadiazole unit and their 1,3-dipolar cycloadditions

Yaşar Dürüsta, Elif Yıldıza, Hamza Karakuşa, and Benson M. Kariukib

aDepartment of Chemistry, Abant İzzet Baysal University, Bolu, Turkey; bSchool of Chemistry, Cardiff University, Cardiff, UK

ABSTRACT

A series of 1,2,4-oxadiazolymethyl sydnones carrying azido group were synthesized and subjected to react with a variety of alkenic and acetylenic dipolarophilic reagents; \(N\)-phenyl maleimide, phenyl vinyl sulfone, and phenyl propiolic acid. All the new products are identified by spectral/physical data including high-resolution mass measurements and X-ray diffraction data.

GRAPHICAL ABSTRACT

ARTICLE HISTORY

Received 27 October 2016

KEYWORDS

1,3-dipolar cycloaddition; Azide; oxadiazole; sydnone; triazole

Introduction

Sydnones are among the important classes of mesoionic systems which were discovered by Earl and Mackney1 and they have been receiving an increasing interest over the decades due to their capability to be converted into heterocycles with potent biological activities.2–4 The electrophilic substitution of sydnones in C4 position is a well-known method for the preparation of a wide range of 4-heterocycle-substituted sydnones.5,6

1,2,4-Oxadiazole derivatives are also important skeletons of biologically or pharmaceutically important compounds. For example, muscarinic agonists, histamine H3 antagonists, antitumoral, anti-inflammatory, and antimycobacterium tuberculosis agents containing a
1,2,4-oxadiazole ring are among them.\cite{7-12} On the other hand, triazole rings have also attracted remarkable attention due to their biological activities such as antifungal, anti-convulsant agents and especially popular in designing anticancer agents.\cite{13-17}

1,3-Dipolar cycloaddition route is a valuable process to assemble molecules having fragments in biologically active agents of five-membered nitrogen heterocycles. From a synthetic standpoint, it may be considered worthy and in principle, available by a sequence involving sydnone functionalization with azido group followed by cycloaddition.

Taking account of the above considerations together with our continuing interest in the 1,3-dipolar cycloaddition chemistry of various ylides leading to triazoles and spiropyroles,\cite{18-21} we focus herein on the synthesis of oxadiazolyl-substituted sydnones starting from sydnones and their carboxamidoxime derivatives which were subsequently converted into azidomethyl compounds. The latter were engaged in a series of representative electron-deficient alkenes and alkynes, and their cycloaddition reactions. These series of sydnones were reacted with three representative dipolarophiles: N-phenyl maleimide, phenyl vinyl sulfone, and phenyl propiolic acid.

Results and discussion

N-Aryl sydnones 5a–f have been synthesized starting from 4-substituted anilines 1 through cyclodehydration of corresponding *N*-nitroso α-amino carboxylic acids 4 according to the previously reported procedures (Scheme 1).\cite{22,23} In this way, we have prepared 6 sydnone derivatives.

To convert sydnones 5 into 4-carboxamidoxime derivatives 9, a reaction sequence has been utilized, which, first, transformed starting materials to sydnone aldehydes 6 by Vilsmeier–Haack formylation.\cite{24} Aldehydes 6 were then transformed into aldoximes 7 which were dehydrated to give nitriles 8.\cite{25} Sydnone nitriles 8 have been reacted with hydroxylamine to yield sydnone amidoximes 9 (Scheme 2). In this way, we have prepared 3 sydnone carboxamide oximes.

Sydnone-4-carboxamidoximes 9 have been converted into 5-chloromethyl-3-substitutedphenyl-1,2,4-oxadiazoles 10a–c by their reaction with chloroacetyl chloride in benzene under reflux. Sydnone azides 11a–d were obtained from the reaction of oxadiazoles 10a–d with NaN₃ according to previously reported procedure (Scheme 3).\cite{21}

![Scheme 1](image.png)

Scheme 1. Synthesis of *N*-aryl sydnones 5a–f.
Among the important spectral characteristics of these novel compounds are azide and carbonyl stretching absorptions in the IR spectra at around 2100 and 1750 cm$^{-1}$; CH$_2$ protons and carbon at around 4.50 and 45 ppm, respectively, in the NMR spectra.

One of the chloromethyl oxadiazolyl sydnones, 10c has been elucidated by obtaining X-Ray ORTEP view (Fig. 1).

Sydnone azides 11a–c were then subjected to 1,3-dipolar cycloaddition with N-phenyl maleimide 12 to give cycloadducts 13a–c which were absolutely identified by X-ray diffraction data (Scheme 4, Fig. 2).

Upon examination of the IR data, strong absorptions arising from both sydnone and maleimide portions of the cycloadducts at around 1770–1720 cm$^{-1}$ were observed. 1H NMR spectra also showed the methylene protons as separate doublets at around 5.55 and 5.20 ppm, while the bridge protons resonated as doublets at 5.65 and 4.55 ppm. Carbonyl carbons appeared at 175–165 ppm region, bridge carbons at around 83 and 56 ppm and methylene carbons at 44 ppm, respectively. These results are in accord with the previous findings.$^{[21]}$ We were also able to obtain an X-ray ORTEP diagram of 13b (Fig. 2).

Azido sydnones 11a and 11b were also assayed for 1,3-dipolar cycloaddition with electron-deficient alkene, and phenyl vinyl sulfone 14 and cycloadducts 15a,b were obtained in lower yields of 13 and 10%, respectively (Scheme 5).

Spectral characteristics of these cycloadducts included a carbonyl absorption in the IR spectrum emerged from the sydnone fragment, symmetric, and asymmetric stretching vibrations of sulfone moiety at 1325–1140 cm$^{-1}$. The proton NMR signals of the triazoline ring and methylene hydrogens existing in the region of 5.60–3.50 ppm were indicative. All these resonances coincide with the previous reports regarding the associated
Figure 1. X-ray ORTEP view of 10c.

compounds.[27,28] We have utilized a number of different reaction conditions for other azido sydnones (11c,d) to obtain a variety of cycloadducts carrying phenyl sulfonyl group, but all the attempts failed, that is, no triazole products were formed.

To explore the cycloaddition of novel azides with an alkyne dipolarophile, we used phenyl propiolic acid 16 and it smoothly underwent cycloaddition to afford the cycloadducts 17a–d with the azido sydnones 11a–d (Scheme 6).

1,3-Dipolar cycloaddition of azido sydnones 11a–d with phenyl propiolic acid resulted in regioselective formation of 4-phenyl regioisomers (triazoline ring numbering) but not

Scheme 4. Cycloaddition of azido sydnones 11a–c with N-phenyl maleimide 12.
Figure 2. X-ray ORTEP view of 13b.

Scheme 5. Cycloaddition of azido sydnone 11 with phenyl vinyl sulfone 14.

5-phenyl regioisomers which are supported by the X-ray diffraction data of 17b (Fig. 3) as well as by an earlier report utilizing electron-deficient alkyne esters.\[25\] Indicative spectral characteristics are the carbonyl absorptions of sydnone part, and C=N absorptions in the IR spectra. 1H NMR spectra of products showed a triazole proton at around 7.90 ppm and methylene protons at around 5.90 ppm.

Scheme 6. Cycloaddition of 11 with phenyl propiolic acid 16 affording 17.
We also attempted to perform a second cycloaddition with the sydnone fragment of the cycloadducts, but despite numerous trials, no reaction occurred; much likely to be attributed to the sterical bulkiness around the ylide that prevents from the approach of dipolarophiles.

One of our goals associated with this work was to screen the novel products for their bioactivities, but, due to low amounts of the end products, it was not possible at this moment. However, we have made some predictions by Lipinski’s rule of five (RO5), a rule of thumb to evaluate druglikeness or determine if a chemical compound with a certain pharmacological or biological activity has properties that would make it a likely orally active drug in humans.\cite{29–31} Below is given a table indicating the estimated Lipinski values (Table 1). In this regard, higher scores are related to the methoxy- and methyl-substituted adducts.

Conclusion

Through this work, we have demonstrated a ten-step reaction sequence leading to the synthesis of the novel sydnones bearing azidomethyl-1,2,4-oxadiazole fragment and their 1,3-dipolar cycloaddition reaction with a series of electron-deficient dipolarophilic reagents; N-phenyl maleimide, phenyl vinyl sulfone, and phenyl propiolic acid. The compounds 13, 15, and 17 resulted from 1,3-dipolar cycloaddition of the sydnone azides.
preferrentially by azide-dipolarophile reaction, but no further reactivity has been observed between sydnone azide cycloadducts and dipolarophiles, even if too many reaction conditions were assayed.

Experimental

Melting points were determined on a Meltemp apparatus and are uncorrected. Infrared spectra were obtained from KBr pellets or neat on NaCl plates for liquids and were recorded on a SHIMADZU FTIR-8400S spectrophotometer. NMR spectra were recorded on Jeol and Varian spectrometers operating at 400 MHz for 1H and at 100 MHz for 13C, all at 25 °C, as specified for each data set. LC–MS spectra were obtained from Waters 2695 Alliance Micromass ZQ instrument. High-resolution mass spectra have been obtained from Waters Lct Premier XE oa-TOF mass spectrometer (Waters Corporation, Milford, MA, USA). Single-crystal X-ray diffraction data were obtained by Bruker Smart Apex II Quazar and Nonius Kappa CCD instruments. All chemical shifts are reported in ppm relative to TMS. Coupling constants (J) are reported in Hz. Routine TLC analyses were performed on pre-oated silica gel plates with fluorescent indicator. Flash column chroma-tography was performed on silica gel (230–400 mesh ASTM). A rotary TLC apparatus (Chromatotron) was utilized for further separation and purifications. Stain solutions of potassium permanganate and iodine were used for visualization of the TLC spots.

Typical reaction procedure for the synthesis of 4-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone (10a)$^{[22]}$

A solution of chloroacetylchloride (0.070 g, 0.62 mmol) in benzene (2 mL) was added dropwise to a solution of 3-(4-methoxyphenyl)sydnone-4-carboxamidoxime $9a$ (0.360 g, 1.54 mmol) in benzene (20 mL) and the mixture was heated under reflux for 24 h. The progress of reaction was monitored by TLC. The reaction mixture was concentrated in vacuo, and the crude residue was purified by flash column chromatography (n-hexane:ethyl acetate; 4:1) to give $10a$ as a white solid.

4-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone (10a)

Yield: 0.400 g, 89%. mp 155–156 °C. R_f: 0.59 (n-hexane:ethyl acetate; 1:1). IR (KBr, vcm$^{-1}$): 3014, 2960, 1797, 1778 (sydnone C=O), 1568 (C=N), 1510, 1444, 1282, 1199, 1058, 1010, 954, 891, 779, 750 (C–Cl). 1H NMR (400 MHz, CDCl$_3$): δ_H 7.45 (d, J 8.4 Hz, 2H), 7.41 (d, J 8.4 Hz, 2H), 4.66 (s, 2H), 2.51 (s, 3H). 13C NMR (100 MHz, CDCl$_3$): δ_C 174.5 (sydnone C=O), 158.5 (C=N), 143.6, 130.3, 124.7, 32.9 (CH$_2$), 21.6 (CH$_3$). LC–MS (80 eV) (m/z (%)): 356 ([MCH_3CNpNa]$^+$, 100), 293 ([MpH]$^+$, 48), 248 (21). HRMS: m/z (ESI-TOF, [MpH]$^+$) calcd for C$_{12}$H$_{10}$N$_4$O$_3$: 293.0441; found: 293.0428.

Typical reaction procedure for the synthesis of 4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone (11a)$^{[19,23]}$

To a stirred solution of 4-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone, $10a$ (0.400 g, 1.37 mmol) in a 10 mL of water/acetone mixture (1:4) was added
sodium azide (0.098 g, 1.51 mmol). The resulting suspension was stirred at room temperature for 24 h. Dichloromethane (DCM) was added to the mixture and the organic layer was separated. The aqueous layer was extracted with 3 x 10 mL aliquots of DCM and the combined organic layers were dried over sodium sulfate. Solvent was removed under reduced pressure to give 11a as a light yellow solid.

4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone (11a)

Yield: 0.200 g, 49%. mp 98–101 °C. Rf: 0.58 (n-hexane:ethyl acetate; 1:1). IR (KBr, ν cm⁻¹): 3061, 2991, 2922, 2098 (N=N=N¼N), 1558 (C=C=N), 1508, 1435, 1319, 1273, 1197, 1056, 1016, 960, 817, 740. ¹H NMR (400 MHz, CDCl₃): δ H = 7.44 (d, J = 8.8 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 4.51 (s, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ C = 174.2 (sydnone C=O), 164.8 (C=N), 158.4 (C=N), 143.4, 131.8, 130.3, 124.5, 44.6 (CH₂), 21.5 (CH₃). LC–MS (80 eV) (m/z (%): 363 ([M+CH₃CN+Na]⁺, 94), 300 ([M+H]⁺, 100). HRMS: m/z (ESI-TOF, [M+H]⁺) calcd for C₁₂H₁₀N₇O₃: 300.0845; found: 300.0834.

Typical reaction procedure for the synthesis of 4-(5-(((3aS,6aR)-4,6-dioxo-5-phenyl-4,5,6,6a-tetrahydropyrrolo[3,4-d][1,2,3]triazol-1(3aH)-yl)methyl)-1,2, 4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone (13a)

A mixture of N-phenyl maleimide 12 (0.030 g, 0.175 mmol) and 4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone 11a (0.050 g, 0.167 mmol) was stirred in benzene (17 mL) and the mixture was heated under reflux for 2–4 d. The reaction was monitored by TLC. The reaction mixture was concentrated in vacuo, and the crude residue was purified by flash column chromatography (n-hexane:ethyl acetate; 1:2) to give 13a as a light yellow solid.

3- (4-methylphenyl)-4- (5-((5-(phenylsulfonyl)-4,5-dihydro-1H-1,2,3-triazol-1-yl)methyl)-1,2, 4-oxadiazol-3-yl)sydnone (15a)

A mixture of phenyl vinyl sulfone 14 (0.024 g, 0.135 mmol) and 4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3-(4-methylphenyl)sydnone 11a (0.040 g, 0.134 mmol) was stirred in...
toluene (7 mL) and the mixture was heated under reflux for 6 d. The reaction was monitored by TLC. The reaction mixture was concentrated *in vacuo*, and the crude residue was purified by flash column chromatography (*n*-hexane:ethyl acetate; 1:2) to give 15a as a light yellow solid.

3-(4-methylphenyl)-4-(5-((5-phenylsulfonyl)-4,5-dihydro-1H-1,2,3-triazol-1-yl) methyl)-1,2,4-oxadiazol-3-yl)sydnone (15a)

Yield: 8 mg, 13%. mp 84 – 86 °C. *R* \(_f\) : 0.20 (*n*-hexane:ethyl acetate; 1:1). IR (KBr, ν\(_{\text{cm}}\)\(^{-1}\)): 2958, 2927, 2852, 1770 (sydnone C=O), 1564 (C=N), 1446, 1321 (asy SO\(_2\)), 1240, 1151 (sym SO\(_2\)), 1082, 1056, 935, 821, 744. \(^1\)H NMR (400 MHz, CDCl\(_3\)) : δ \(_H\) = 7.95 (dd, \(J = 8.0, 0.4\) Hz, 2H), 7.72 (t, \(J = 7.6\) Hz, 1H), 7.60 (t, \(J = 8.0\) Hz, 2H), 7.42 (dd, \(J = 11.6, 8.8\) Hz, 4H), 5.56 (dd, \(J = 8.4, 7.2\) Hz, 1H), 5.19 (d, \(J = 17.6\) Hz, 1H), 4.96 (d, \(J = 17.2\) Hz, 1H), 3.85 (dd, \(J = 11.6, 7.6\) Hz, 1H), 3.52 (t, \(J = 12.0\) Hz, 1H), 2.47 (s, 3H).

\(^1\)C NMR (100 MHz, CDCl\(_3\)) : δ \(_C\) = 173.5 (sydnone C=O), 164.7 (C=N), 158.2 (C=N), 143.6 (C–CH\(_3\)), 136.0, 134.8, 131.7, 130.3, 129.5, 129.3, 124.7, 95.1 (C–SO\(_2\)), 44.9 (CH\(_2\)), 44.2 (CH\(_2\)), 21.5 (CH\(_3\)). LC–MS (80 eV) (*m/z* (%)): 490 ([M+Na]\(^+\), 100), 468 ([M+ H]\(^+\), 19), 459 (60).

Typical reaction procedure for the synthesis of 3-(4-methylphenyl)-4-(5-((5-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1,2,4-oxadiazol-3-yl)sydnone (17a)

Method A

A mixture of phenylpropiolic acid 16 (0.026 g, 0.175 mmol) and 4- (5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3- (4-methylphenyl)sydnone 11a (0.050 g, 0.167 mmol) was stirred in benzene (17 mL) and the mixture was heated under reflux for 4 d. The reaction was monitored by TLC. But no reaction was occurred.

Method B

A mixture of 4- (5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-3- (4-methylphenyl)sydnone 11a (0.050 g, 0.167 mmol), catalytic amount of CuSO\(_4\)-5H\(_2\)O (0.002 g, 0.008 mmol), Na-L-ascorbate (0.009 g, 0.043 mmol), and phenylpropiolic acid 16 (0.026 g, 0.175 mmol) was stirred in \(t\)-BuOH/water mixture (1:2) at room temperature for 2 d. Then, the reaction mixture was extracted with ethyl acetate three times. The combined organic layers were dried over sodium sulfate. The solvent was evaporated under reduced pressure to give 17a as a brown solid.

3-(4-methylphenyl)-4-(5-((5-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1,2,4-oxadiazol-3-yl)sydnone (17a)

Yield: 0.060 g, 90%. mp 129–131 °C. \(R\) \(_f\) : 0.21 (*n*-hexane:ethyl acetate; 1:1). IR (KBr, ν\(_{\text{cm}}\)\(^{-1}\)): 3047, 2935, 1780 (sydnone C=O), 1625, 1568 (C=N), 1450, 1338, 1232, 1068, 908, 815, 761. \(^1\)H NMR (400 MHz, CDCl\(_3\)) : δ \(_H\) = 7.88 (s, 1H), 7.80 (d, \(J = 7.2\) Hz, 2H), 7.44 (t, \(J = 7.2\) Hz, 2H), 7.40–7.34 (m, 3H), 7.29 (d, \(J = 8.4\) Hz, 2H), 5.85 (s, 2H), 2.34 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)) : δ \(_C\) = 167.4 (sydnone C=O), 164.8 (C=N), 143.7, 131.5, 130.2, 129.7, 128.9,
128.6, 125.7, 124.6, 124.1, 120.2, 96.8, 45.0 (CH₂), 21.4 (CH₃). LC–MS (80 eV)
(m/z) (%): 424 ([M+Na]⁺, 83), 402 ([M+H]⁺, 100), 282 (93). ESI-MS (80 eV) (m/z)
(%): 400 ([M H]⁻, 100). HRMS: m/z (ESI-TOF, [M+H]⁺) calcd for C₂₀H₁₆N₇O₃:
402.1315; found: 402.1296.

Acknowledgment

Authors thank Dr. Yunus Zorlu (Gebze Technical University, Kocaeli, Turkey) for X-ray
diffraction data.

Funding

Abant İzzet Baysal University, Directorate of Research Projects Commission (BAP grant
no. 2012.03.03.557) is gratefully acknowledged for financial support.

References

79, 7772–7777.
2010, 12, 3328–3331.
1968, 21, 300–305.
Abstr. 1999, 130, 52415.