Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Self-compacting concrete: design, properties and simulation of the flow characteristics in the L-box

Al-Rubaye, Muna M. 2016. Self-compacting concrete: design, properties and simulation of the flow characteristics in the L-box. PhD Thesis, Cardiff University.
Item availability restricted.

[img]
Preview
PDF - Accepted Post-Print Version
Download (6MB) | Preview
[img] PDF - Supplemental Material
Restricted to Repository staff only

Download (211kB)

Abstract

Self-compacting concrete (SCC) can flow into place and compact under its own weight into a uniform mass even areas of congested reinforcement. Compared to vibrated concrete (VC), SCC has enhanced qualities and improves the durability of concrete, productivity and working conditions due to elimination of external vibration. Although SCC has passed from the research phase into real application, the need to update the knowledge on the fresh and hardened characteristics of SCC increases to overcome the problems associated with such concrete and to improve its performance. The research reported in this thesis divided into three parts. The first part concerns the proportioning of SCC mixes, a simple and rational mix design procedure based on the desired target plastic viscosity and compressive strength of the mix has been developed. Practical guidelines in the form of design charts are provided for choosing the mix proportions of SCC mixes. An extensive experimental program was carried out in order to provide experimental validation of this mix design procedure on a series of SCC mixes in both the fresh and hardened states. All these mixes were extensively tested in the fresh state using the slump cone, J–ring, L–box and V–funnel apparatus; and these tests proved conclusively the validity of the mix proportioning method in the sense that all the mixes satisfied the self–compacting criteria and achieved the desired target plastic viscosity and compressive strength. In the second part of the thesis, the fracture properties of the SCC mixes have been determined. These mixes differ by coarse aggregate volume (CA), paste to solids ratios (p/s) and water to cementitious material (w/cm). The simplified boundary effect approach (SBE) and the non-linear fictitious crack model are used to determine the size-independent fracture energy(

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Uncontrolled Keywords: Self-Compacting Concrete (SCC); fresh and hardened properties of SCC; simulation of the flow characteristics of SCC in the L-Box.
Date of First Compliant Deposit: 13 March 2017
Last Modified: 04 Jun 2017 09:44
URI: http://orca-mwe.cf.ac.uk/id/eprint/98869

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics