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We develop a general form logarithmic vector multiplicative error model (log-VMEM) to examine the
interdependence of trading duration, volume and return volatility. The log-VMEM improves on existing
models in two ways. First, it allows the error terms to be cross-dependent and by relaxing weak exogeneity
restrictions and hence it is a more general form model (cf. the recursive model of Manganelli, 2005).
Second, the log-VMEM specification guarantees that the conditional means are nonnegative without any
restrictions imposed on the parameters (cf. the VMEM of Cipollini el al., 2013). We further propose a
multivariate lognormal distribution and a joint maximum likelihood (ML) estimation strategy. The model
is applied to high frequency data associated with a number of NYSE-listed stocks. The results reveal
empirical support for full interdependence among the trivariate processes and show that the log-VMEM
provides a better fit to the data. Moreover, we find that unexpected duration and volume dominate
observed duration and volume in terms of information content, and that volatility and volatility shocks
affect duration in different directions. These results are interpreted with reference to extant microstructure
theory.
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1. Introduction

Microstructure theory indicates that trading duration and volume convey information content with
respect to fundamental asset prices; see, e.g., Easley and O’Hara (1992).1 Such theory has, in turn,
motivated a large number of empirical studies that investigate the information content of trading
via an analysis of the dynamics of trading duration, volume and volatility; see, e.g., Manganelli
(2005). We add to this body of work by specifying a flexible econometric model that avoids a
number of restrictions imposed in existing models. In doing this, further insight is gained into the
validity of extant microstructure theory.
The theoretical relationship between duration, volume and volatility has been the subject of

considerable debate. In Diamond and Verrecchia’s (1987) model, informed trader’s actions are
driven by the arrival of private information. If the news is bad, informed traders will wish to sell (or
alternatively short sell if they do not own the stock). Given short-sale constraints there may be no
trade. This is summarized as “no trade means bad news”, with the empirical implication that long
durations are associated with bad news that should lead to price adjustment and hence increased

∗Corresponding author. Email: nick.taylor@bristol.ac.uk
1Trading duration is defined as the elapsed time between two consecutive transactions. For the sake of brevity we henceforth

refer to trading duration as duration, trading volume as volume, and return volatility as volatility.
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volatility. By contrast, Easley and O’Hara (1992) argue that informed traders only trade when
there is new information (whether good or bad) arriving in the market. Consequently, variation
in trading intensity is closely related to the change in the participation rate of informed traders.
This is summarized as “no trade means no news”, and implies that short duration is a signal of
informed traders participating in the market, which manifests itself in higher volatility.2

The above predictions can be investigated using an augmentation of the autoregressive condi-
tional duration (ACD) econometric model initially proposed by Engle and Russell (1998). Specifi-
cally, the trade characteristics associated with time are incorporated and modelled simultaneously,
so that market microstructure predictions can be evaluated at the transaction level. For instance,
Engle (2000) proposes a recursive framework to represent the dynamics of duration and volatil-
ity. In this model the joint density of duration and volatility is expressed as the product of the
marginal density of duration and the conditional density of volatility (given duration). A further
augmentation to the ACD model is proposed by Manganelli (2005), whereby volume is incorpo-
rated into the Engle (2000) model such that duration, volume and volatility are jointly considered.
Moreover, the joint distribution of duration, volume and volatility is decomposed into the product
of the marginal distribution of duration; the conditional distribution of volume (given duration);
and the conditional distribution of volatility (given duration and volume). Further assumptions of
weak exogeneity are made, such that the three processes are independent and can be estimated
separately.
The virtue of the recursive framework of Engle (2000) and Manganelli (2005) is that it reduces

the complexity of the model, since each process is estimated separately. However, recursive-type
models have limitations. First, it assumes that the error terms are independent. To incorporate
contemporaneous information, Manganelli (2005) specifies causality from duration to volume and
from duration and volume to volatility. However, modelling volatility conditional on duration and
volume is just one way to obtain the joint distribution of the trading processes. As pointed out
by Engle and Sun (2007), it is also possible to model duration conditional on volatility. Other
empirical studies have also assumed the interdependence of the trading processes. For instance,
Hautsch (2008) has found the existence of a common unobserved component that jointly drives
the dynamics of the trade and return processes. This common component explains most of the
causality between these processes, even if the contemporaneous effect of the trade variable on the
return variable is controlled.
A second issue concerns the weak exogeneity assumption made in previous studies. This means

that the conditional expectation of one variable is a function only of its own past conditional expec-
tation, while the past conditional expectations of other variables are not taken into consideration.
This strategy has been adopted in many empirical microstructure studies; see, e.g., Engle (2000),
Dufour and Engle (2000), Manganelli (2005), and Engle and Sun (2007). However, we argue that
this assumption is too restrictive. When studying the information content of trading processes,
various specifications of duration and volume should be considered. For example, trade innovation
may be an exclusive manifestation of the private information of the informed trader. Indeed, Engle
(2000) and Grammig et al. (2007) argue that it is the unexpected components of the trading process
that carry informational content with respect to the fundamental asset price; also see Grammig
and Wellner (2002) for empirical evidence that both volatility and volatility shocks have significant
effects on trading intensity.
Given the above arguments it seems advisable to release weak exogeneity restrictions, and specify

an interdependent model for the dynamics of duration, volume and volatility. To this end we
consider a general form vector multiplicative error model (VMEM) in which duration, volume and
volatility are assumed to be interdependent processes that evolve simultaneously. We contribute to

2A relationship between duration and volatility is also predicted by Admati and Pfleiderer (1988). They assume that frequent
trading is associated with liquidity traders, and therefore low trading means that liquidity (discretionary) traders are inactive,
which leaves a high proportion of informed traders in the market. This again translates into quick price adjustment and hence
higher volatility.
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the existing VMEM literature in two ways. First, the specification of the conditional distribution
of the nonnegative-valued errors in the VMEM is open to debate. Cipollini et al. (2007) initially
consider the multivariate gamma distribution, but find it too restrictive as it only allows positive
error correlation. They further propose a copula-based distribution for the errors. However, they
have to restrict the coefficient matrix to be diagonal in order to achieve full ML estimation. Cipollini
et al. (2013) bypass the specification of the error distribution and only make use of the first two
error moments. Specifically, they propose an unrestricted semiparametric VMEM and a consistent
general method of moments (GMM) estimation methodology. In doing this they partially solve the
above estimation issues. Within this context our contribution to the VMEM literature is to propose
a multivariate lognormal distribution for the errors in combination with a full ML estimation
methodology. Furthermore, we compare our existing methodology to that of Cipollini et al. (2013)
via a simulation experiment, and show that the two methods are consistent. The efficiency loss of
our estimation methodologies due to misspecification of the error distribution is trivial.
The second contribution relates to the nonnegativity of the conditional means of the variables

under study. A sufficient condition for nonnegativity of the conditional means is that all parameters
are nonnegative (He and Teräsvirta, 2004). This is a very strong restriction. Previous studies such
as Manganelli (2005), Engle and Gallo (2006), and Cipollini et al. (2007, 2013) choose not to
impose this restriction. However, their results show that some of their estimated parameters are
negative – thus violating the nonnegativity condition and implying that predicted values could be
negative. Given the nature of the data used such predictions are implausible. To avoid this issue,
we consider a log-VMEM, such that the conditional means are guaranteed to be positive without
any restrictions placed on the parameters. By using this model, we build a system that incorporates
various causal and feedback effects among these variables.
The proposed model is applied to trade and quote NYSE stock data, and is estimated using a

sample of 20 stocks observed over two different time periods. In doing this we are able to empirically
study the information conveyed by trading processes over a variety of conditions. Our empirical
findings are summarized as follows. First, it is recognized that duration and volume contain infor-
mation content with respect to the fundamental asset value. However, the theoretical work does
not draw any conclusion as to whether it is duration (volume) or the duration (volume) shock
that contains information content. Based on our model, we find that both duration (volume) and
duration (volume) shocks have a significant impact on volatility. Moreover, it is shocks that appear
dominant – suggesting that it is unexpected components of duration or volume rather than observed
duration or volume that contains information content. Second, our results show that volatility and
volatility shocks affect duration in different directions – a result consistent with Hasbrouck’s (1988,
1991) prediction that persistent quote changes are driven by private information, and transient
quote changes are due to inventory considerations.
The remainder of this paper is organized as follows. Section 2 describes the model and method-

ology. Section 3 contains the application. Section 4 concludes.

2. Econometric model details

This section contains details of the proposed econometric models and how they are estimated.

2.1. VMEM specification

Define {dt, vt, |rt|}, t = 1, . . . , T , as the three-dimensional time series associated with the intraday
duration, volume and volatility processes, respectively. In particular, duration is defined as the
time elapsing between consecutive trades, volume is the trade size associated with each transaction,
volatility is measured by the absolute return, and returns are calculated using the mid-quote price
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change. The trivariate trading processes are modelled as follows:

{dt, vt, |rt|} ∼ f(dt, vt, |rt||Ωt,θ), (1)

where Ωt denotes the information available up to period t, and θ is a vector incorporating the
parameters of interest.
Letting xt = (dt, vt, |rt|)′, µt = (µ1t, µ2t, µ3t)

′, and ǫt = (ǫ1t, ǫ2t, ǫ3t)
′, we follow Engle (2002) and

Cipollini et al. (2007), and assume the following trivariate VMEM for xt, µt, and ǫt:

xt = µt ⊙ ǫt, ǫt ∼ D(1,Σ), (2)

where

µt = ω +

p∑

i=1

Aixt−i +

q∑

i=1

Biµt−i. (3)

The error vector ǫt has support over [0,+∞), with a unit mean vector 1 and general variance-
covariance matrix Σ. The first two conditional moments of the VMEM are given by E(xt|Ωt) = µt

and var(xt|Ωt) = µtµ
′

t ⊙Σ, with the latter a positive definite matrix by construction.
A complete parametric formulation of the VMEM requires full specification of the conditional

distribution of the nonnegative random process ǫt. In the VMEM literature, Cipollini et al. (2007)
adopt a copula-based approach. However, to enable use of ML estimation, the B matrix has to
be diagonal. To avoid this restriction, Cipollini et al. (2013) propose a semiparametric VMEM in
which GMM estimation (based on the first two moments) is employed. Our VMEM is close to
Cipollini et al. (2013), in the sense that both approaches consider a general form VMEM. However,
we propose to use a multivariate lognormal distribution for the errors, so that we have a full
parametric VMEM.
In the univariate setting, Xu (2013) finds that the lognormal ACD model is superior to the

exponential and Weibull ACD models, while its performance is similar to the Burr and generalized
gamma ACD models. It is also well known that volatility is typically lognormally distributed,
with Cizeau et al. (1997) and Andersen et al. (2001), among others, showing that the lognormal
distribution fitted to realized volatility performs very well. Moreover, Allen et al. (2008) prove
that the lognormal distribution is sufficiently flexible to provide a good approximation to a wide
range of nonnegative distributions, and is also sufficiently accurate so as not to induce unnecessary
numerical difficulties.
The prime limitation of the lognormal VMEM is that it assumes that the variables are positively

valued. This limitation may explain why the lognormal distribution assumption is less popular in
the ACD/MEM literature. Fortunately, most time series considered in extant empirical analysis
(for example, duration, number of trades, volume, bid-ask spread, realised volatility, and daily
range) are actually positively valued. The only exception is the absolute return. To eliminate exact
zero problems in the current application, we add a small constant (10 percent of the mean) to the
absolute return series.1 This simple approach alleviates exact zero problems, but does not adversely
affect the dynamics of absolute returns.

1In a previous version of this paper, we model the return series as an ARMA process and use the absolute value of return
residuals rather than absolute returns as our proxy for volatility. This is also the approach used by Ghysels et al. (2004) to
obtain return sequences that are free of bid-ask bounce effects. Results associated with this approach deliver similar results,
and are available on request.
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2.2. Log-VMEM specification

Another issue concerns the nonnegativity of the conditional mean vector µt. The multivariate
specification has to be parameterized in a way that guarantees the nonnegativity of the conditional
mean at all points in time. Since the VMEM has the same structure as the extended constant
conditional correlation GARCH (ECCC-GARCH) model, the theoretical results on the positivity
of this model can be applied here; see He and Teräsvirta (2004) and Conrad and Karanasos (2010).
In general, a sufficient condition to guarantee nonnegativity of µt is ω ≥ 0,A ≥ 0,B ≥ 0 (He
and Teräsvirta, 2004). Conrad and Karanasos (2010) release this restriction by allowing only one
element of B to be negative. However, it is still highly restrictive. One could follow Manganelli
(2005), Engle and Gallo (2006), and Cipollini et al. (2007, 2013) and not impose nonnegativity
conditions. However, this could deliver negative estimated parameters and thus negative predicted
values of the trivariate series. Given the nature of the data used such predictions are implausible.
Motivated by the log-ACD model of Bauwens and Giot (2000), and Bauwens et al. (2008), we
extend the VMEM into a logarithmic version, so that the conditional mean is guaranteed to be
positive without any restrictions placed on the parameters. Specifically,

xt = µt ⊙ ǫt, ǫt ∼ D(1,Σ) (4)

lnµt = ω +

p∑

i=1

Ai lnxt−i +

q∑

i=1

Bi lnµt−i. (5)

This is referred to as the log-VMEM. In proposing this model we can incorporate various causal
and feedback effects among the variables, while ensuring that their conditional expectations are
always positive. The stationarity and invertibility conditions for the VMEM and log-VMEM are
provided in Appendix A, while impulse response functions associated with first-order versions of
these models are provided in Appendix B.

2.3. The ML estimator and its asymptotic properties

The following ML estimator is proposed:

θ̂ = argmin
θ

−l(θ), (6)

where l(θ) is the log likelihood function. To derive an expression for l(θ) we first note that by
assumption the K-dimension vector ǫt follows a multivariate lognormal distribution such that
ǫt ∼ lnN(M,V), with its density function given by

f(ǫt) = (2π)−K/2|V|−1/2
K∏

i=1

ǫi,t exp(−(ln ǫt −M)′V−1(ln ǫt −M)/2). (7)

It follows that the conditional density of xt will be

f(xt|θ) = (2π)−K/2|V|−1/2
K∏

i=1

xi,t exp(−(lnxt − lnµt −M)′V−1(lnxt − lnµt −M)/2). (8)
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The log likelihood of the model is then

l(θ) =

T∑

t=1

lt(θ) =

T∑

t=1

ln f(xt|θ), (9)

where

ln f(xt|θ) = −K

2
ln 2π− 1

2
ln |V| −

K∑

i=1

lnxi,t −
1

2
(lnxt − lnµt −M)′V−1(lnxt − lnµt −M). (10)

Note that imposing Mi = −Vii/2 ensures that E(ǫt) = 1.
Explicit expressions for the score vector and Hessian matrix in the current context are contained

in the following lemmas. These assume that θ = [β′,ρ], where ρ = vech(V), and φt = lnµt +M.
Here β contains the parameters in µt and M, and the vech operator stacks the lower triangular
elements of the symmetric (K ×K) V matrix into the (K × (K + 1)/2) ρ vector.

Lemma 2.1 The score vector associated with observation t is given by

St(θ) =

[
∂lt(θ)
∂β

∂lt(θ)
∂ρ

]

where

∂lt(θ)

∂β
= −∂φ′

t

∂β
V−1(lnxt − φt),

∂lt(θ)

∂ρ
= −1

2

∂vec(V)′

∂ρ
vec(V−1 −V−1(lnxt − φt)(lnxt − φt)

′V−1).

Proof. Standard vector/matrix differentiation of the log likelihood function in (9) eventually leads
to the above expression.

Lemma 2.2 The Hessian matrix associated with observation t is given by

Ht(θ) =

[
∂2lt(θ)
∂β′∂β

∂2lt(θ)
∂ρ′∂β

∂2lt(θ)
∂β′∂ρ

∂2lt(θ)
∂ρ′∂ρ ,

]

where

∂2lt(θ)

∂β′∂β
= −

(
(V−1(lnxt − φt))

′ ⊗ IK

) ∂2φ′

t

∂β′∂β
+

∂φ′

t

∂β
V−1∂φt

∂β′
,

∂2lt(θ)

∂β′∂ρ
=

1

2

∂vec(V)′

∂ρ

(
(V−1 ⊗V−1)(IK ⊗ (lnxt − φt) + (lnxt − φt)⊗ IK)

)∂φt

∂β′
,

∂2lt(θ)

∂ρ′∂β
=

1

2

∂φ′

t

∂β

(
(IK ⊗ (lnxt − φt)

′ + (lnxt − φt)
′ ⊗ IK)(V−1 ⊗V−1)

)∂vec(V)

∂ρ′
,

∂2lt(θ)

∂ρ′∂ρ
=

1

2

∂vec(V)′

∂ρ

(
(V−1 ⊗V−1)− (V−1 ⊗V−1(lnxt − φt)(lnxt − φt)

′V−1)

− (V−1(lnxt − φt)(lnxt − φt)
′V−1 ⊗V−1)

)∂vec(V)

∂ρ′
.
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Proof. Standard vector/matrix differentiation of the log likelihood function in (9) eventually leads
to the above expression.

The consistency and asymptotic normality of the ML estimator θ̂ follows from a more general
maximum likelihood theory and can be found in Ling and McAleer (2003) and Lütkepohl (2005).
We make use of the specific results in Nakatani and Teräsvirta (2009). Under certain regularity

assumptions, the asymptotic normality of θ̂ is given by1

√
T (θ̂ − θ0)

d−→ N(0, J−1(θ0)I(θ0)J
−1(θ0)), (11)

where the population information matrix is given by the expectation of the outer product of the
score vector evaluated at the true parameter vector θ0, that is,

I(θ0) =
1

T
E(S(θ0)S(θ0)

′) = E(St(θ0)St(θ0)
′), (12)

and the negative of the expected Hessian of the log likelihood function at θ0 is given by

J(θ0) = − 1

T
E(H(θ0)) = −E(Ht(θ0)). (13)

The I(θ0) vector and J(θ0) matrix can be consistently estimated by their sample counterparts.

2.4. A comparison with GMM estimation

The general form VMEM can be estimated using the GMM approach of Cipollini et al. (2013).
Specifically, they propose semiparametric GMM estimation based on the first two moment con-
ditions. While both ML and GMM estimators have good asymptotic properties (consistent and
efficient) relative to estimators based on the equation-by-equation approach, differentiating be-
tween them is an open question that ultimately depends on the nature of the data.
To compare the performance of the two approaches, we conduct a 1000-repetition Monte Carlo

simulation experiment. We adopt the bivariate VMEM given by (2) and (3) with p = q = 1 and a
sample size of 5000 observations. The sign (and size) of the parameters broadly coincide with the
empirical relations between duration and volatility found by extant studies (including our own). Use
of these particular values also ensures that the conditional expectations are positive (the conditions
for positive definiteness of the bivariate VMEM are given in Conrad and Karanasos, 2010).
The disturbance term ǫt is generated under two different distributional assumptions. First, we

use the copula approach of Cipollini et al. (2013). This approach can be broken down into two
steps. The marginal distribution is simulated from a gamma distribution with unit mean and
standard deviation. Then we choose a Gaussian copula and assume two levels of correlation in the
copula function: weak correlation (ρ = 0.4), and strong correlation (ρ = 0.8). Second, we use the
multivariate lognormal distribution, with unit mean and standard deviation and the two correlation
scenarios. We report the estimated parameter means and root mean square errors (RMSEs) using
the GMM and ML approaches in Table 1.

Insert Table 1 here

When the disturbance terms are generated from the copula-based gamma distribution, the GMM
estimator is unbiased and more efficient in all cases. However, the ML estimator (based on the
lognormal distribution) is close to unbiased in most of cases, with the efficiency loss relative to the

1The required regularity conditions involve a stationary condition, an invertibility condition, and a positive semi-definite error
variance-covariance matrix condition. Further details are available on request.
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GMM approach very small. Therefore, the ML estimator appears to perform fairly well even when
the error distribution is misspecified. When the disturbance term is generated from the lognormal
distribution, it is no surprise that our proposed ML approach out performs the GMM approach in
terms of both unbiasedness and efficiency. In particular, the average RMSE value associated with
the ML approach is about half of that associated with the GMM approach. The efficiency gain
achieved by using the ML approach is very large and consistent across experiments.
In general, within the context of a specific parametric model, the ML estimator is fully effi-

cient amongst consistent and asymptotically normally distributed estimators. However, to attain
this efficiency, it is necessary to make highly specific assumptions about the error distribution.
By contrast, GMM estimators move away from parametric assumptions, toward estimators that
are robust to alternative underlying data generating processes.1 Thus while it seems that both
have virtue we note that ML estimation is simple to implement. Moreover, for the sample sizes
usually encountered in financial time series, any loss of efficiency associated with the ML estimator
(encountered if the error distribution is misspecified) is relatively small.

3. An application to NYSE stock data

This section contains details of the data used, descriptions of the estimated models, and a discussion
of tests of two microstructure hypotheses.

3.1. Data

We make use of two different datasets. The first is obtained from the NYSE-based Trades and
Quotes (TAQ) dataset, while the second is obtained from Tickdata.com. Both datasets consist
of time stamped trade and quote information associated with a random selection of stocks. The
primary difference between the datasets relates to the time period used. The first dataset coincides
with that used by Manganelli (2005), and covers the period from January 1, 1998 to June 30, 1999.
The second consists of more recent data, and covers the period from January 1, 2012 to March
31, 2012. These datasets are henceforth referred to as the 1998 and 2012 datasets, respectively. By
using these two datasets we are able to examine the robustness of the results to dataset design,
and to investigate how the trading environment has changed.2

Manganelli (2005) constructs a dataset consisting of ten stocks covering the period from January
1, 1998 to June 30, 1999. Five of these stocks are randomly selected from the second decile of
frequently traded stocks, while five are randomly selected from the eighth decile of stocks. We use
the same raw dataset in this analysis, and prepared the data (including diurnal adjustment for
intraday patterns) as in Manganelli (2005); see subsection 4.1 in Manganelli (2005) for a concise
description of how the data are prepared for use in his and our paper.3 This process of stock
selection and preparation is also used in the construction of the 2012 dataset.4 The tickers of the
ten stocks in the 1998 and 2012 datasets are reported in Table 2.

Insert Table 2 here

1Within the context of volatility modelling, Andersen and Sørensen (1997) show that the relative merits of the ML and GMM
estimators depend on the level of volatility persistence. In particular, the ML estimator is preferable when persistence is high,
while the reverse holds for somewhat lower levels of volatility persistence.
2Since the full implementation of Regulation National Market System (Reg NMS) in 2007, the trading environment has changed
dramatically with high-frequency traders providing the bulk of liquidity within an open limit order book system. These traders

are proprietary traders and perform a similar role to the old specialists in the 1990s, though the former are less likely to hold
inventory for more than one day.
3These data were kindly supplied by Simone Manganelli.
4The deciles associated with the 1998 and 2012 datasets are based on the number of trades of all stocks quoted on the NYSE
during 1997 and 2011, respectively.

8
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The results in Table 2 also provide summary statistics. For the frequently traded stocks, the
number of observations exceeds those associated with the infrequently traded stocks. Furthermore,
the latter stocks have longer durations between trades. For instance, in the 1998 dataset, the
number of observations range from 46,827 to 88,918, with the average duration ranging from 99
seconds to 187 seconds. For the infrequently traded stocks, the number of observations range from
1,969 to 5,155, with the average duration ranging from 1,693 seconds to 4,441 seconds. By contrast,
there is little difference between the volumes associated with the frequently and infrequently traded
stocks. Comparing the 1998 and 2012 datasets, it is noticeable that the trading frequency is much
higher in the latter dataset. This suggests the presence of a trend toward increased trading activity
over the two samples.
The results also indicate that duration, volume and volatility show strong serial autocorrelations,

and this is particularly true for the frequently traded stocks (as evinced by the Ljung-Box statis-
tics). Thus models that are capable of allowing for such dynamics are required. The choice of which
distribution to use in such models is also important. To this end, we compare the non-parametric
density implied by the data with candidate parametric densities given by the exponential and log-
normal distributions; see the subset of plots associated with volume in Figure 1.1 In general, the
lognormal distribution provides a more reasonable fit to the true density than the exponential dis-
tribution. Combining this result with the strong dynamic dependencies evinced in Table 2 supports
use of the lognormal log-VMEM.

Insert Figure 1 here

3.2. Estimated models

In the empirical analysis, we estimate two first-order models: the restricted VMEM and unrestricted
log-VMEM. The VMEM is a restricted model in the sense that we have to impose restrictions
to ensure that the conditional means are nonnegative. If the estimated A and B matrices were
all nonnegative, then the VMEM would be unrestricted. However, if these matrices have negative
elements, then we are required to restrict them to be nonnegative to ensure that predicted values are
nonnegative. In doing this we may lose important information regarding the relationship between
duration, volume and volatility. If this is the case, we should use the log-VMEM, as the conditional
means are guaranteed to be nonnegative without any restrictions. Both models are estimated using
the proposed ML estimation methodology.2

After estimation, we re-parameterize the model such that the impact of unexpected elements of
xt−1 can be interpreted; that is, the VMEM can be written as

µt = ω + (A+B)xt−1 −Bet−1, (14)

where et is the martingale difference between xt and µt, such that et = xt − µt. This model
specification is henceforth denoted M1. Similarly, the log-VMEM can be written as

lnµt = ω + (A+B) lnxt−1 −B ln ǫt−1. (15)

This model specification is henceforth denoted M2.

1The non-parametric density is constructed as in Grammig and Maurer (2000) and Xu (2013). First, we estimate an ACD(1,1)
model with a conditional distribution given by the exponential or lognormal density function. Second, we collect the residuals
from this model and plot their non-parametric density. Third, this density is compared with the parametric density implied by
the exponential or lognormal density.
2To give the VMEM the best possible chance of success in the subsequent empirical analysis, we do not necessarily impose the
restriction that all elements in B are nonnegative. Rather, we follow the approach of Conrad and Karanasos (2010), in which
one off-diagonal element in B is permitted to be negative. If, after estimating the VMEM with no restrictions imposed, we find
that more than one off-diagonal element in B is negative then we restrict all elements to be nonnegative and re-estimate the
model.
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Various causal and feedback effects among the three variables can be examined by using the
above specifications. For example, a31 + b31 (a32 + b32) measures the impact of duration (volume)
on volatility; −b31 (−b32) measures the impact of duration (volume) shocks on volatility; a13 + b13
measures the impact of volatility on trading intensity; and −b13 measures the impact of volatility
shocks on trading intensity.

3.3. Comparative model performance

Measures of model fit associated with M1 and M2 applied to the 1998 and 2012 datasets are
presented in the lower panel of Table 3. In particular, we present the log-likelihood, the Akaike
information criterion, and the Bayesian information criterion values for each model. The results
indicate that M2 almost always provides the best fit to the data. Moreover, many off-diagonal
elements in the M1 A and B matrices are zero. This indicates that the nonnegativity constraints
have been hit and the corresponding parameters are forced to zero. Given the inferior fit of M1
this restriction suggests a loss of useful information.

Insert Table 3 here

In comparison to the recursive model of Manganelli (2005), the proposed VMEM permits the
non-diagonality of the coefficient matrix B and the covariance matrix V. Consequently, the virtue
of our model can be examined by conducting Wald tests in which B and V have zero off-diagonal
restrictions imposed. The results in Table 3 indicate that the tests applied to all off-diagonal
elements of B are almost always significant for all four datasets. Moreover, the tests applied to the
off-diagonal elements of V are universally significant, confirming the existence of cross-dependence
in the error terms. These results support the general form log-VMEM specification (and joint
estimation approach) proposed in this paper.

3.4. Microstructure hypothesis tests

The price impact of trading and the feedback effects on trading intensity have been the subject of
much theoretical and empirical research; see, e.g., Dufour and Engle (2000), Engle (2000) Grammig
and Wellner (2002), Engle and Lunde (2003), and Manganelli (2005). In this section, we use the
results from M2 to investigate the price impact of trading and its relation to trading intensity by
focusing on two hypothesis that cannot be addressed by the recursive model of Manganelli (2005).

3.4.1. The price effect of trades. To evaluate the price impact of trades, the vast majority
of previous studies use raw duration (volume) to proxy private information. However, theoreti-
cal research does not predict whether it is duration (volume) or duration (volume) shocks that
carry information content with respect to the fundamental asset value. If duration (volume) is
unpredictable then there is no difference between realized values and shocks (and their impact). If,
however, duration (volume) is predictable then realized values and their shocks will have different
effects (cf. Hasbrouck, 1988, Engle and Russell, 1998, and Grammig et al., 2007). This motivates
our first hypothesis test: duration (volume) and duration (volume) shocks contain information
content on the fundamental asset value.
When M2 is applied to the data, the results in Table 3 show that the duration coefficient (a31+b31)

and duration shock coefficient (−b31) in the volatility equation are significant in most cases. This
indicates that both duration and duration shocks are related to the arrival of new information,
which manifests itself in higher volatility. Moreover, a31+ b31 is positive and −b31 is negative, with
the latter coefficient larger in absolute terms. Hence, the overall effect is negative – a result that
is consistent with Easley and O’Hara (1992). The implicit implication is that market makers will
associate trading activity that is higher than the expected level as a signal of informed trading,

10
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and adjust the price accordingly.
The volume coefficient (a32+b32) and volume shock coefficient (−b32) are also significant in most

cases. Moreover, these coefficients have different signs, with volume shocks dominant in terms of
overall effect. The results support the prediction of Easley and O’Hara (1987, 1992), that it is the
unexpected component of volume rather than observed volume that carries information. Implicitly,
market makers will only consider trade size that is larger than its expected level as a signal of
private information. It is also notable that these findings are less robust for infrequently traded
stocks (this is consistent with Manganelli, 2005), since many of the coefficients (a31, b31, a32, b32)
are insignificant. This shows that the relevant market microstructure predictions may only be valid
for frequently traded stocks.

3.4.2. The feedback effects from volatility to trading intensity. In terms of the feed-
back effect from volatility to trading intensity, previous empirical microstructure studies report
apparently contradictory results. In particular, Dufour and Engle (2000) and Manganelli (2005)
find that short durations follow large (squared) returns, while Grammig and Wellner (2002) find
that lagged volatility significantly reduces trading intensity.
Theoretically, quote changes could either be inventory-motivated or information-motivated.

Consequently, they have potentially different effects on trading intensity. If they are inventory-
motivated, then large absolute quote changes (or large volumes) may attract opposite side traders,
which would increase trading intensity (Dufour and Engle, 2000). If it is information-motivated,
large absolute quote changes indicate a risk of informed trading such that liquidity traders may
leave or slow down their trading activity to avoid adverse selection (Easley and O’Hara, 1987,
and Admati and Pfleiderer, 1988). Hasbrouck (1988, 1991) has used the short-run and long-run
characteristics of trading behavior to separated quote movements into short-run inventory-related
effects and long-run information-related effects. Persistent quote changes could be related to pri-
vate information as this information is persistent and long lived, while transient quote changes are
related to inventory control as this is an inherently temporary concern. As a result, Hasbrouck
predicts that persistent quote changes have a negative effect on trading intensity and transient
quote changes have a positive effect on trading intensity. Our second hypothesis is to empirically
evaluate these predictions.
We see from Table 3 that when M2 is applied to the frequently traded stock data, the volatility

coefficient (a13 + b13) is positive and significant for both the 1998 dataset and the 2012 dataset,
while the volatility shock coefficient (−b13) is negative and significant for the 10 stocks. The result
is consistent with Hasbrouck’s (1989, 1991) predictions. For example, information-motivated large
absolute quote changes (which we measure via quote change volatility in the empirical analysis
since volatility is highly persistent) indicate a risk of informed trading such that liquidity traders
may leave or slow down their trading activity to avoid adverse selection. By contrast, inventory-
motivated large quote changes (which we measure via shocks to quote change volatility in the
empirical analysis) may attract opposite side traders and increase trading intensity. However, this
result does not tend to hold for infrequently traded stocks (both datasets).

3.4.3. Impulse response function results. From the above analysis it is clear that shocks
to the trading process contain information content with respect to asset prices. It is therefore
natural to measure how long the new information takes to be impounded into prices. To answer
this question we generate the impulse responses that trace the effects of one standard deviation
shocks to duration, volume and volatility on future values of volatility as implied by the M1 and
M2 parameter estimates. These are provided in Figure 2 for the JAX and TKF stocks, and provide
a visual description of the effects up to the 70th trade.

Insert Figure 2 here

11



March 23, 2016 Quantitative Finance MEM˙QF˙rev1

The shapes of the response functions associated with M1 and M2 are fairly similar for volatility
shocks. However, for duration and volume shocks, there are clear differences. The nature of these
responses can also be seen in Table 4, which contains the number of hours for a shock to return to
its long-run equilibrium value.

Insert Table 4 here

The results reveal a number of interesting findings. First, it takes more time for volatility to
be absorbed after a shock when M2 is used (cf. M1) for frequently traded stocks – a result that
suggests that M1 may overestimate the speed of price adjustment in the market. By contrast, it
takes less time for volatility to be absorbed after a shock when M2 is used (cf. M1) for infrequently
traded stocks. The reason lies in the estimated system persistence, which is given by the maximum
eigenvalue (Γ) of A + B in Table 3. By noting this eigenvalue, it can be seen that M1 tends
to overestimate the persistence for infrequently traded stocks, while it tends to underestimate
the persistence for frequently traded stocks. Second, irrespective of the type of shock, it takes
appropriately the same time for volatility to be absorbed into its long-run equilibrium value. Third,
the volatility of frequently traded stocks converges much faster to its long-run equilibrium after
an initial perturbation than it does for infrequently traded stocks. Fourth, volatility in the 2012
dataset converges much faster to its long-run equilibrium, as indicated by the shorter absorbtion
times in this dataset (cf. the 1998 dataset results). This suggests that the speed of price adjustment
is much faster during the era of high frequency trading (that is, in the 2012 dataset).

4. Conclusion

In this paper, we consider a log-VMEM, in which duration, volume and volatility are interdepen-
dent. We further propose a multivariate lognormal density for this model, which allows the error
terms to be contemporaneously correlated. In this way, we build a system that incorporates various
causal and feedback effects among the variables. The findings are summarized as follows:

(i) We compare the proposed log-VMEM with the VMEM and show that the VMEM is a
restricted model while the log-VMEM is an unrestricted model. This leads to the log-
VMEM having a superior fit to the data.

(ii) We compare the proposed log-VMEM with the recursive model of Manganelli (2005). We
find that the lagged (un)expected variables are widely significant in the log-VMEM, chal-
lenging the weak exogeneity assumptions used in the empirical market microstructure lit-
erature.

(iii) We highlight the importance of unexpected components of trading characteristics in that
it is mostly these components that carry information with respect to asset prices. This
result supports the prediction of Easley and O’Hara (1987, 1992). Furthermore, volatility
and volatility shocks affect duration in different directions, confirming Hasbrouck’s (1988,
1991) prediction. However, this effect is less robust for infrequently traded stocks.

The methodology used in this paper can easily be extended to model any other nonnegative-
valued, highly persistent variables. An interesting application would be modeling of volatility. For
example, there are different measures of volatility, but no individual one appears to be a sufficient
measure on its own (see Engle and Gallo, 2006). One possibility is to consider absolute daily returns,
daily high-low range and daily realized volatility within a log-VMEM framework and compare the
forecasting performance with that achieved by the VMEM proposed by Cipollini et al. (2013). This
proposal is left for future research.
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Appendix A: Stationarity and invertibility conditions

In this section the stationarity and invertibility conditions associated with the VMEM and log-
VMEM are derived.

A.1. VMEM derivation

Consider the following VMEM:

xt = µt ⊙ ǫt, ǫt ∼ lnN(M,V), (A.1)

where

µt = ω +

p∑

i=1

Aixt−i +

q∑

i=1

Biµt−i. (A.2)

Taking the difference between xt and µt, we obtain

xt − µt = et, et ∼ IID(0,Π). (A.3)

It follows that

µt = xt − et, (A.4a)

q∑

i=1

Biµt−i =

q∑

i=1

Bixt−i −
q∑

i=1

Biet−i. (A.4b)

Substituting the expressions in (A.4a) and (A.4b) into (A.2) and rearranging we obtain the following
vector autoregressive moving average (VARMA) representation:

xt = ω +

p∑

i=1

Aixt−i +

q∑

i=1

Bixt−i + et −
q∑

i=1

Biet−i,

= ω +

r∑

i=1

Ãixt−i + et −
q∑

i=1

Biet−i, (A.5)

where Ãi = Ai+Bi, and r = max(p, q). Given this VARMA(r,q) representation it follows that the

process is stationary if the modulus of the roots of |I − Ã1z − Ã2z
2 . . . Ãrz

r| = 0 are all greater
than one, and invertible if the modulus of the roots of |I−B1z−B2z

2 . . .Bqz
q| = 0 are all greater

than one.

A.2. Log-VMEM derivation

Consider the following log-VMEM:

xt = µt ⊙ ǫt, ǫt ∼ lnN(M,V), (A.6)
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where

lnµt = ω +

p∑

i=1

Ai lnxt−i +

q∑

i=1

Bi lnµt−i. (A.7)

Taking logs of (A.6) we obtain

lnxt = lnµt + ln ǫt = c+ lnµt + et, et ∼ N(0,Π). (A.8)

It follows that

lnµt = lnxt − c− et, (A.9a)

q∑

i=1

Bi lnµt−i =

q∑

i=1

Bi lnxt−i −
q∑

i=1

Bic−
q∑

i=1

Biet−i. (A.9b)

Substituting the expressions in (A.9a) and (A.9b) into (A.7) and rearranging we obtain the following
vector autoregressive moving average (VARMA) representation:

lnxt = c+

p∑

i=1

Ai lnxt−i +

q∑

i=1

Bi lnxt−i + et −
q∑

i=1

Biet−i,

= c+

r∑

i=1

Ãi lnxt−i + et −
q∑

i=1

Biet−i, (A.10)

where c = c+ω−
∑q

i=1Bic, Ãi = Ai+Bi, and r = max(p, q). Given this VARMA(r,q) representa-

tion it follows that the process is stationary if the modulus of the roots of |I−Ã1z−Ã2z
2 . . . Ãrz

r| =
0 are all greater than one, and invertible if the modulus of the roots of |I−B1z−B2z

2 . . .Bqz
q| = 0

are all greater than one.

Appendix B: Impulse response functions

Under stationary conditions, the impulse response functions associated with the first-order VMEM
and first-order log-VMEM are derived.

B.1. VMEM derivation

Consider the following first-order VMEM:

xt = µt ⊙ ǫt, ǫt ∼ lnN(M,V), (B.1)

where

µt = ω +Axt−1 +Bµt−1. (B.2)

Suppose the system is in steady state up to time t = 0. That is, all the errors before t = 0 equal
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unity. It follows that

xt = µt, (B.3)

µt = (I−A−B)−1ω ∀t < 0. (B.4)

If a shock occurs to xt at time t = 0 then the impulse response function for t > 0 is given by

∂E(µt|Ωt)

∂x′

0

= Λt (B.5)

where Λ = A+B.
The next step is to investigate the effect of a shock occurring to ǫ0 on x0. Suppose now that at

time t = 0 a shock occurs to the ith element of ǫ0 (denoted ǫi0). The size of the shock is assumed
to equal the unconditional standard deviation of the ith element of ǫt. The effect of this shock on
x0 is given by

∂x0

∂ǫi0
= µ0 ⊙ si, (B.6)

where

si =

(
σi
σi1
σ2
i

, σi
σi2
σ2
i

, σi
σi3
σ2
i

)
′

. (B.7)

Here σij is the unconditional covariance between ǫit and ǫjt, and σi is the unconditional standard
deviation of ǫit. This result relies on Engle et al. (2012), who show that E(ǫjt|ǫit = 1 + σi) =
1 + σiσij/σ

2
i .

It follows that the impulse response function for t > 0 given a one standard deviation shock to
ǫ0 is given by

∂E(µt|Ωt)

∂ǫ′0
= Λtdg(µ0)Ξ, (B.8)

where dg(µ0) is a diagonal matrix with µ0 along the diagonal, and

Ξ =



σ1

σ21

σ2

σ31

σ3

σ12

σ1

σ2
σ32

σ3

σ13

σ1

σ23

σ2

σ3


 . (B.9)

This impulse response function is analogous to the Manganelli (2005) result, if we restrict Ξ to be
an identity matrix. Our result differs in that we look at the impulse response of one (unconditional)
standard deviation shocks of ǫ0, while Manganelli (2005) concentrates on the impulse response of
unit shocks of ǫ0.

B.2. Log-VMEM derivation

Consider the following first-order log-VMEM:

xt = µt ⊙ ǫt, ǫt ∼ lnN(M,V), (B.10)
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where

lnµt = ω +A lnxt−1 +B lnµt−1. (B.11)

Suppose the system is in steady state up to time t = 0. That is, all the errors before t = 0 equal
unity. It follows that

lnxt = lnµt, (B.12)

lnµt = (I−A−B)−1ω ∀t < 0. (B.13)

If a shock occurs to xt at time t = 0 then the impulse response function for t > 0 is given by

∂E(lnµt|Ωt)

∂ lnx′

0

= Λt, (B.14)

where Λ is as previously defined.
The next step is to investigate the effect of a shock occurring to ǫ0 on lnx0. Suppose now that at

time t = 0 a shock occurs to the ith element of ǫ0 (denoted ǫi0). The size of the shock is assumed
to equal the unconditional standard deviation of the ith element of ǫt. The effect of this shock on
lnx0 is given by

∂ lnx0

∂ǫi0
= µ0 ⊙

1

x0
⊙ si, (B.15)

where si is as previously defined. It follows that the impulse response function for t > 0 given a
one standard deviation shock to ǫ0 is given by

∂E(lnµt|Ωt)

∂ǫ′0
= ΛtΞ, (B.16)

where Ξ is as previously defined. Moreover,

∂E(µt|Ωt)

∂ǫ′0
= dg(1/µt)Λ

tΞ, (B.17)

where dg(µt) is a diagonal matrix with µt along the diagonal. µt can be derived recursively from
initial values in µ0, such that,

µt = exp(ω +A lnxt−1 +B lnµt−1) ∀t > 0. (B.18)

where µ0 = (I−A−B)−1ω.
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Table 1. Simulation results

Weak Correlation (ρ = 0.4) Strong Correlation (ρ = 0.8)

GMM ML GMM ML

Parameter True Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Panel A: Copula-based gamma distribution

a11 0.10 0.10 0.18 0.13 0.33 0.10 0.15 0.13 0.34
a12 0.01 0.01 0.04 0.01 0.07 0.01 0.05 0.01 0.07
a21 0.01 0.01 0.12 0.02 0.17 0.01 0.18 0.02 0.22
a22 0.08 0.08 0.18 0.10 0.25 0.08 0.12 0.10 0.24
b11 0.85 0.85 0.31 0.85 0.19 0.85 0.20 0.85 0.20
b12 0.02 0.02 0.05 0.02 0.06 0.02 0.06 0.02 0.07
b21 −0.04 −0.04 0.18 −0.04 0.20 −0.04 0.25 −0.05 0.26
b22 0.90 0.89 0.34 0.90 0.12 0.90 0.18 0.90 0.13

Mean RMSE 0.18 0.17 0.15 0.19

Panel B: Lognormal distribution

a11 0.10 0.10 0.18 0.10 0.09 0.10 0.19 0.10 0.10
a12 0.01 0.01 0.04 0.01 0.03 0.01 0.05 0.01 0.04
a21 0.01 0.01 0.13 0.01 0.09 0.01 0.18 0.01 0.12
a22 0.08 0.08 0.17 0.08 0.07 0.08 0.17 0.08 0.07
b11 0.85 0.85 0.28 0.85 0.13 0.85 0.26 0.85 0.14
b12 0.02 0.02 0.05 0.02 0.04 0.02 0.07 0.02 0.05
b21 −0.04 −0.04 0.19 −0.04 0.14 −0.04 0.24 −0.04 0.17
b22 0.90 0.90 0.27 0.90 0.08 0.90 0.25 0.90 0.09

Mean RMSE 0.16 0.08 0.18 0.10

Notes: Results in this table are based on 1000-repetition Monte Carlo simulations each with a sample size of
5000 observations. The true parameter values are reported in the first column. Within each correlation scenario,
we report the estimated parameter mean and RMSE values associated with the GMM and ML approaches. The
last row reports the mean RMSE values across all parameters. For presentation purposes the RMSE values are
multiplied by 10.
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Table 2. Summary statistics

S1 S2 S3 S4 S5

Panel A: 1998 dataset (infrequently traded stocks)

Ticker DTC FTD GBX GSE JAX

# Observations 4162 3925 5155 1969 2766

Mean-Duration 2093.91 2417.11 1693.45 4441.14 3164.67
Mean-Volume 2136.83 736.25 1434.04 1523.77 1000.04
Mean-Volatility 2.25 0.53 1.82 1.69 2.63

LB-Duration 155.35 19.29 1047.46 99.65 109.03
LB-Volume 142.41 69.24 170.84 117.59 104.80
LB-Volatility 143.27 217.45 593.94 149.22 214.31
MLB 531.28 710.52 1967.80 484.34 575.40

Panel B: 1998 dataset (frequently traded stocks)

Ticker AVT COX CP DLP GAP

# Observations 58390 88918 71673 65305 46827

Mean-Duration 150.02 98.60 122.42 134.15 187.30
Mean-Volume 1070.01 2678.86 2892.23 1486.35 824.63
Mean-Volatility 4.57 5.93 5.44 7.42 5.57

LB-Duration 6772.70 29905.30 3713.70 19672.60 4962.56
LB-Volume 413.04 364.91 769.86 1775.60 174.97
LB-Volatility 1258.44 2697.83 3374.14 3253.61 1975.02
MLB 9490.56 33636.59 10160.16 25091.35 7558.88

Panel C: 2012 dataset (infrequently traded stocks)

Ticker CXE KEF MYC NCA TKF

# Observations 6231 2784 5296 6115 2835

Mean-Duration 232.84 521.12 273.94 237.25 511.55
Mean-Volume 859.23 712.58 590.79 664.10 459.96
Mean-Volatility 2.88 2.13 1.49 2.65 1.95

LB-Duration 919.03 205.47 579.17 510.81 470.39
LB-Volume 248.25 302.17 232.56 276.43 122.54
LB-Volatility 337.11 175.99 643.68 207.31 260.50
MLB 1956.66 813.47 1829.47 951.85 1068.52

Panel D: 2012 dataset (frequently traded stocks)

Ticker ARW DLR HLS NBL SPR

# Observations 103468 146810 100634 214021 134762

Mean-Duration 14.02 9.58 14.00 6.78 10.77
Mean-Volume 380.14 390.63 467.00 389.33 467.87
Mean-Volatility 13.27 10.32 15.12 17.70 13.74

LB-Duration 12307.34 12920.46 14672.92 32444.20 32175.59
LB-Volume 302.58 568.94 379.95 872.55 933.73
LB-Volatility 4999.48 9159.89 2837.55 9811.20 6183.91
MLB 20058.15 26314.20 18891.64 51713.23 40663.70

Notes: This table contains summary statistics. The mean of volatility is given in per second terms and is obtained by
dividing the mean of absolute returns by mean duration and multiplying by 106. The univariate Ljung-Box (LB) test
statistic is based on 15 lags of duration, volume, or volatility (given by absolute return). The multivariate Ljung-Box
(MLB) statistics are computed using the method described in Hosking (1980). The 95% critical value associated with the
LB test statistic equals 25.00 and the value associated with MLB test statistic equals 61.66. Mean statistics pertain to the
series before diurnal adjustment, while the (M)LB statistics pertain to the series after diurnal adjustment.
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Table 3. Estimated model parameters

S1 S2 S3 S4 S5

Parameter M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Panel A: 1998 dataset (infrequently traded stocks)

a11 + b11 0.99∗∗ 0.65∗∗ 0.92∗∗ 0.84∗∗ 0.99∗∗ 0.96∗∗ 0.99∗∗ 0.33∗∗ 0.99∗∗ 0.33
a12 + b12 0.00 −0.37 0.07 0.07 0.00 0.14∗∗ 0.00 0.63 0.00 0.67
a13 + b13 0.00 0.24 0.00 0.02 0.00 0.11∗∗ 0.00 −0.57 0.00 −0.87
a21 + b21 0.00 −0.27∗ 0.01 0.00 0.00 0.00 0.00 0.17∗∗ 0.00 0.12
a22 + b22 0.20 0.19 0.67∗∗ 0.99∗∗ 0.55∗∗ 0.72∗∗ 0.96∗∗ 0.78∗∗ 0.61∗∗ 0.66∗

a23 + b23 0.08 0.11 0.00 −0.11∗∗ 0.00 −0.12∗∗ 0.01 0.18 0.14 0.23
a31 + b31 0.02 −0.25∗ 0.00 −0.01 0.01∗∗ 0.01 0.00 0.18∗ 0.00 0.07
a32 + b32 −0.39 −0.63∗∗ −0.32 0.04 −0.18∗∗ −0.19∗∗ 0.00 −0.14 0.00 −0.13
a33 + b33 0.93∗∗ 1.10∗∗ 0.97∗∗ 0.56∗∗ 0.98∗∗ 0.88∗∗ 0.98∗∗ 1.09∗∗ 0.96∗∗ 1.03∗∗

−b11 −0.83∗∗ −0.58∗∗ −0.77∗∗ −0.81∗∗ −0.84∗∗ −0.90∗∗ −0.74∗∗ −0.27∗ −0.48∗∗ −0.25
−b12 0.00 0.27 −0.07 −0.14 0.00 −0.24∗∗ 0.00 −0.85∗ 0.00 −0.98∗

−b13 0.00 −0.29 0.00 −0.03 0.00 −0.14∗∗ 0.00 0.53 0.00 0.88
−b21 0.00 0.22∗ 0.00 −0.01 0.00 −0.02 0.00 −0.18∗∗ 0.00 −0.13
−b22 −0.07 −0.03 −0.51∗∗ −0.90∗∗ −0.45∗∗ −0.56∗∗ −0.94∗∗ −0.68∗∗ −0.51∗∗ −0.48
−b23 −0.07 −0.08 0.00 0.12∗∗ 0.00 0.14∗∗ −0.01 −0.17 −0.14 −0.24
−b31 −0.02 0.22∗ 0.00 −0.04 −0.01 −0.04 0.00 −0.21∗∗ 0.00 −0.10
−b32 0.47 0.73∗∗ 0.49 0.27 0.22∗∗ 0.30∗∗ 0.00 0.21 0.01 0.23
−b33 −0.85∗∗ −1.06∗∗ −0.93∗∗ −0.49∗∗ −0.92∗∗ −0.82∗∗ −0.92∗∗ −1.05∗∗ −0.91∗∗ −0.99∗∗

Wald (bij,i 6=j = 0) R R R R R

σ11 6.32∗∗ 6.26∗∗ 4.35∗∗ 4.34∗∗ 4.56∗∗ 4.73∗∗ 7.90∗∗ 8.02∗∗ 8.88∗∗ 8.80∗∗

σ21 0.01 0.07 −0.11∗∗ −0.12∗∗ −0.08∗ −0.02 −0.19∗ −0.17∗ −0.08 −0.02
σ22 1.61∗∗ 1.56∗∗ 0.93∗∗ 0.91∗∗ 1.55∗∗ 1.50∗∗ 1.41∗∗ 1.37∗∗ 1.03∗∗ 1.01∗∗

σ31 1.23∗∗ 1.26∗∗ 0.66∗∗ 0.45∗∗ 0.88∗∗ 0.95∗∗ 1.34∗∗ 1.41∗∗ 1.57∗∗ 1.66∗∗

σ32 0.08∗∗ 0.06∗ 0.05∗ 0.08∗∗ 0.07∗∗ 0.06∗ 0.04 0.01 0.12∗∗ 0.11∗∗

σ33 2.15∗∗ 2.14∗∗ 2.08∗∗ 2.18∗∗ 2.05∗∗ 2.05∗∗ 2.25∗∗ 2.21∗∗ 2.20∗∗ 2.19∗∗

Wald (σij,i 6= = 0) R R R R R

Γ 0.99 0.98 0.97 0.98 0.99 0.99 0.99 0.97 0.99 0.89

−LL 23.90 23.77 19.23 19.19 28.78 28.59 11.45 11.41 15.74 15.66
AIC 47.85 47.59 38.51 38.44 57.62 57.23 22.95 22.87 31.54 31.38
BIC 48.02 47.76 38.68 38.60 57.80 57.40 23.10 23.02 31.70 31.54

Notes: This table contains estimated parameters associated with the VMEM (M1) and log-VMEM (M2) specifications. Γ

denotes the largest eigenvalue of A+B, LL is the system log-likelihood, AIC is the system Akaike information criterion, and
BIC is the system Bayesian information criterion. Wald (bij,i 6=j = 0) and Wald (σij,i 6=j = 0) provide an indication of Wald test
rejection (R) or non-rejection (N) at the 5% level of the null of zero off-diagonal elements in B and V, respectively. Significance
at the 1% level is indicated by ∗∗, and at the 5% level by ∗.

22



March 23, 2016 Quantitative Finance MEM˙QF˙rev1

Table 3. Estimated model parameters (cont.)

S1 S2 S3 S4 S5

Parameter M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Panel B: 1998 dataset (frequently traded stocks)

a11 + b11 0.99∗∗ 0.97∗∗ 0.99∗∗ 0.93∗∗ 0.99∗∗ 1.04∗∗ 0.99∗∗ 0.96∗∗ 0.99∗∗ 0.97∗∗

a12 + b12 0.00 0.09∗∗ 0.00 0.05∗∗ 0.00 0.02 0.00 0.03∗∗ 0.00 0.07∗∗

a13 + b13 0.00 0.29∗∗ 0.00 0.22∗∗ 0.00 0.24∗∗ 0.00 0.13∗∗ 0.00 0.09∗∗

a21 + b21 0.00 −0.01 0.00 0.04∗∗ 0.00 −0.06∗ 0.00 0.03∗∗ 0.00 0.00
a22 + b22 0.88∗∗ 0.88∗∗ 0.99∗∗ 0.93∗∗ 0.53∗∗ 0.96∗∗ 0.93∗∗ 0.92∗∗ 0.88∗∗ 0.77∗∗

a23 + b23 0.00 −0.19∗∗ 0.00∗∗ −0.10∗∗ 0.01 −0.24∗∗ 0.00 −0.14∗∗ 0.00 −0.16∗∗

a31 + b31 0.01 0.02 0.01 0.08∗∗ 0.00 −0.13∗ 0.01∗∗ 0.06∗∗ 0.01 0.02
a32 + b32 −0.06 −0.19∗∗ 0.00 −0.06∗∗ −0.37 −0.06 −0.02∗∗ −0.09∗∗ −0.06 −0.24∗∗

a33 + b33 0.93∗∗ 0.53∗∗ 0.96∗∗ 0.75∗∗ 0.93∗∗ 0.44∗∗ 0.97∗∗ 0.73∗∗ 0.97∗∗ 0.76∗∗

−b11 −0.85∗∗ −0.87∗∗ −0.86∗∗ −0.82∗∗ −0.94∗∗ −0.98∗∗ −0.91∗∗ −0.89∗∗ −0.88∗∗ −0.91∗∗

−b12 0.00 −0.20∗∗ 0.00 −0.16∗∗ 0.00 −0.11∗∗ 0.00 −0.09∗∗ 0.00 −0.13∗∗

−b13 0.00 −0.33∗∗ 0.00 −0.26∗∗ 0.00 −0.27∗∗ 0.00 −0.15∗∗ 0.00 −0.11∗∗

−b21 0.00 0.00 0.00 −0.06∗∗ 0.00 0.03 0.00 −0.05∗∗ 0.00 −0.02∗

−b22 −0.85∗∗ −0.75∗∗ −0.99∗∗ −0.83∗∗ −0.41∗∗ −0.85∗∗ −0.88∗∗ −0.79∗∗ −0.85∗∗ −0.63∗∗

−b23 0.00 0.19∗∗ 0.00 0.10∗∗ 0.00 0.25∗∗ 0.00 0.15∗∗ 0.00 0.17∗∗

−b31 −0.01∗∗ −0.10∗∗ −0.01∗∗ −0.18∗∗ 0.00 0.05 0.00 −0.12∗∗ −0.01 −0.07∗∗

−b32 0.08∗ 0.36∗∗ 0.00 0.20∗∗ 0.49 0.27∗∗ 0.04∗∗ 0.22∗∗ 0.08 0.37∗∗

−b33 −0.87∗∗ −0.48∗∗ −0.92∗∗ −0.69∗∗ −0.87∗∗ −0.38∗∗ −0.94∗∗ −0.68∗∗ −0.92∗∗ −0.69∗∗

Wald (bij,i 6=j = 0) R R R R R

σ11 2.59∗∗ 2.57∗∗ 2.41∗∗ 2.43∗∗ 2.05∗∗ 2.01∗∗ 2.09∗∗ 2.11∗∗ 2.89∗∗ 2.93∗∗

σ21 −0.09∗∗ −0.07∗∗ −0.04∗∗ −0.01 0.06∗∗ 0.06∗∗ 0.02∗∗ 0.03∗∗ −0.08∗∗ −0.05∗∗

σ22 1.39∗∗ 1.34∗∗ 1.58∗∗ 1.52∗∗ 2.32∗∗ 2.24∗∗ 1.36∗∗ 1.32∗∗ 1.29∗∗ 1.25∗∗

σ31 0.79∗∗ 0.82∗∗ 0.77∗∗ 0.83∗∗ 0.54∗∗ 0.58∗∗ 0.75∗∗ 0.78∗∗ 0.82∗∗ 0.85∗∗

σ32 0.01 −0.01∗ 0.07∗∗ 0.04∗∗ 0.10∗∗ 0.08∗∗ 0.02∗∗ 0.00 0.01 0.00
σ33 2.24∗∗ 2.19∗∗ 2.32∗∗ 2.27∗∗ 2.36∗∗ 2.32∗∗ 2.22∗∗ 2.20∗∗ 2.23∗∗ 2.22∗∗

Wald (σij,i 6= = 0) R R R R R

Γ 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99

−LL 30.65 30.38 47.14 46.72 38.94 38.66 33.45 33.27 24.70 24.55
AIC 61.30 60.77 94.29 93.44 77.88 77.32 66.90 66.54 49.40 49.11
BIC 61.32 60.80 94.31 93.46 77.91 77.34 66.93 66.57 49.42 49.13

Notes: This table contains estimated parameters associated with the VMEM (M1) and log-VMEM (M2) specifications. Γ

denotes the largest eigenvalue of A+B, LL is the system log-likelihood, AIC is the system Akaike information criterion, and
BIC is the system Bayesian information criterion. Wald (bij,i 6=j = 0) and Wald (σij,i 6=j = 0) provide an indication of Wald
test rejection (R) or non-rejection (N) at the 5% level of the null of zero off-diagonal elements in B and V, respectively.
Significance at the 1% level is indicated by ∗∗, and at the 5% level by ∗.
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Table 3. Estimated model parameters (cont.)

S1 S2 S3 S4 S5

Parameter M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Panel C: 2012 dataset (infrequently traded stocks)

a11 + b11 0.99∗∗ 0.79∗∗ 0.97∗∗ 0.70∗∗ 0.99∗∗ 0.48∗∗ 0.93∗∗ 0.74∗∗ 0.99∗∗ 0.78∗∗

a12 + b12 0.00 0.06 0.00 −0.10 0.00 0.15 0.00 0.16 0.00 0.47∗∗

a13 + b13 0.00 0.06 0.02 0.29∗∗ 0.00 0.00 0.06 0.02 0.00 −0.14
a21 + b21 0.02∗∗ 0.01 0.04 −0.02 0.04 0.10∗∗ 0.05∗∗ 0.07∗∗ 0.04 0.02
a22 + b22 0.92∗∗ 0.94∗∗ 0.86∗∗ 0.90∗∗ 0.80∗∗ 0.77∗∗ 0.67∗∗ 0.83∗∗ 0.77 0.75∗∗

a23 + b23 0.00 −0.09∗∗ 0.00 0.02 0.00 0.05 0.00 −0.01 0.02 0.13∗

a31 + b31 0.00 0.01 0.06∗∗ 0.10∗∗ 0.03 0.12∗∗ 0.00 0.09∗∗ 0.03 0.06∗

a32 + b32 0.04 −0.06∗ 0.10 0.10∗ 0.21 0.08 0.29 0.19 0.11 0.36∗∗

a33 + b33 0.69∗∗ 0.72∗∗ 0.70∗∗ 0.69∗∗ 0.57 0.76∗∗ 0.45∗ 0.58∗∗ 0.77 0.56∗∗

−b11 −0.43∗∗ −0.55∗∗ −0.34∗∗ −0.46∗∗ −0.34∗∗ −0.33∗∗ −0.17∗∗ −0.58∗∗ −0.52∗∗ −0.59∗∗

−b12 0.00 −0.14∗∗ 0.00 0.00 0.00 −0.34∗∗ 0.00 −0.37∗ 0.00 −0.71∗∗

−b13 0.00 −0.03 0.00 −0.29∗ 0.00 −0.01 0.00 0.01 0.00 0.12
−b21 −0.01 −0.02 0.00 0.06∗ −0.02 −0.10∗ −0.04∗∗ −0.09∗∗ −0.01 −0.01
−b22 −0.85∗∗ −0.79∗∗ −0.74∗∗ −0.76∗∗ −0.71∗∗ −0.57∗∗ −0.54∗∗ −0.65∗∗ −0.69 −0.60∗∗

−b23 0.00 0.10∗∗ 0.00 −0.01 0.00 −0.06 0.00 0.01 −0.02 −0.14∗

−b31 0.00 −0.10∗∗ −0.06∗∗ −0.15∗∗ −0.03 −0.19∗∗ 0.00 −0.19∗∗ −0.03 −0.10∗∗

−b32 0.11∗∗ 0.23∗∗ −0.09 −0.04 −0.07 0.05 −0.12 −0.07 −0.04 −0.35∗∗

−b33 −0.56∗∗ −0.59∗∗ −0.59∗∗ −0.53∗∗ −0.43 −0.64∗∗ −0.33 −0.44∗∗ −0.63 −0.38∗∗

Wald (bij,i 6=j = 0) R R R R R

σ11 3.88∗∗ 3.99∗∗ 5.13∗∗ 5.18∗∗ 4.60∗∗ 4.57∗∗ 4.59∗∗ 4.53∗∗ 4.91∗∗ 5.04∗∗

σ21 −0.16∗∗ −0.13∗∗ 0.14∗∗ 0.16∗∗ −0.18∗∗ −0.14∗∗ −0.22∗∗ −0.18∗∗ 0.05 0.08∗

σ22 1.43∗∗ 1.37∗∗ 1.16∗∗ 1.14∗∗ 1.19∗∗ 1.15∗∗ 1.20∗∗ 1.17∗∗ 0.93∗∗ 0.91∗∗

σ31 0.61∗∗ 0.76∗∗ 1.07∗∗ 1.17∗∗ 0.99∗∗ 1.03∗∗ 0.97∗∗ 1.01∗∗ 1.17∗∗ 1.27∗∗

σ32 0.04 0.02 0.08∗∗ 0.08∗∗ 0.13∗∗ 0.11∗∗ 0.09∗∗ 0.07∗∗ 0.05∗ 0.06∗

σ33 2.27∗∗ 2.23∗∗ 1.98∗∗ 1.97∗∗ 2.11∗∗ 2.08∗∗ 2.18∗∗ 2.12∗∗ 1.76∗∗ 1.77∗∗

Wald (σij,i 6= = 0) R R R R R

Γ 0.99 0.96 0.97 0.91 0.99 0.87 0.94 0.90 0.99 0.94

−LL 34.56 34.10 15.20 15.05 28.72 28.51 33.39 33.05 14.88 14.74
AIC 69.18 68.24 30.46 30.16 57.49 57.08 66.83 66.15 29.81 29.53
BIC 69.36 68.43 30.62 30.32 57.66 57.26 67.01 66.33 29.97 29.70

Notes: This table contains estimated parameters associated with the VMEM (M1) and log-VMEM (M2) specifications. Γ

denotes the largest eigenvalue of A+B, LL is the system log-likelihood, AIC is the system Akaike information criterion, and
BIC is the system Bayesian information criterion. Wald (bij,i 6=j = 0) and Wald (σij,i 6=j = 0) provide an indication of Wald
test rejection (R) or non-rejection (N) at the 5% level of the null of zero off-diagonal elements in B and V, respectively.
Significance at the 1% level is indicated by ∗∗, and at the 5% level by ∗.
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Table 3. Estimated model parameters (cont.)

S1 S2 S3 S4 S5

Parameter M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Panel D: 2012 dataset (frequently traded stocks)

a11 + b11 0.94∗∗ 0.88∗∗ 0.89∗∗ 0.89∗∗ 0.96∗∗ 0.90∗∗ 0.95∗∗ 0.98∗∗ 0.95∗∗ 0.93∗∗

a12 + b12 0.00 0.15∗∗ 0.00 0.15∗∗ 0.00 0.13∗∗ 0.00 0.18∗∗ 0.00 0.12∗∗

a13 + b13 0.01 0.14∗∗ 0.01 0.10∗∗ 0.01 0.09∗∗ 0.00 0.11∗∗ 0.01 0.07∗∗

a21 + b21 0.00 0.02∗∗ 0.00 0.02∗∗ 0.00 0.03∗∗ 0.00 0.00 0.00 0.03∗∗

a22 + b22 0.69∗∗ 0.96∗∗ 0.65∗∗ 0.96∗∗ 0.74∗∗ 0.94∗∗ 0.89∗∗ 0.93∗∗ 0.67∗∗ 0.94∗∗

a23 + b23 0.00 −0.02∗∗ 0.00 −0.02∗∗ 0.00 −0.03∗∗ 0.00 −0.04∗∗ 0.02∗∗ −0.03∗∗

a31 + b31 0.02 0.12∗∗ 0.00 0.10∗∗ 0.03 0.11∗∗ 0.01 0.03 0.01 0.08∗∗

a32 + b32 −0.76∗∗ −0.15∗ −0.78∗∗ −0.13∗∗ −0.28∗∗ −0.13∗∗ −0.11∗∗ −0.22∗∗ −0.47∗∗ −0.09∗∗

a33 + b33 0.96∗∗ 0.81∗∗ 0.97∗∗ 0.88∗∗ 0.93∗∗ 0.86∗∗ 0.96∗∗ 0.84∗∗ 0.97∗∗ 0.89∗∗

−b11 −0.79∗∗ −0.75∗∗ −0.73∗∗ −0.76∗∗ −0.83∗∗ −0.77∗∗ −0.83∗∗ −0.87∗∗ −0.79∗∗ −0.80∗∗

−b12 0.00 −0.30∗∗ 0.00 −0.29∗∗ 0.00 −0.28∗∗ 0.00 −0.27∗∗ 0.00 −0.27∗∗

−b13 0.00 −0.15∗∗ 0.00 −0.10∗∗ 0.00 −0.08∗∗ 0.00 −0.11∗∗ 0.00 −0.07∗∗

−b21 0.00 −0.03∗∗ 0.00 −0.04∗∗ 0.00 −0.06∗∗ 0.00 −0.03∗∗ 0.00 −0.07∗∗

−b22 −0.66∗∗ −0.93∗∗ −0.62∗∗ −0.92∗∗ −0.68∗∗ −0.86∗∗ −0.86∗∗ −0.89∗∗ −0.61∗∗ −0.85∗∗

−b23 0.00 0.02∗∗ 0.00 0.01∗∗ 0.00 0.03∗∗ 0.00 0.03∗∗ −0.02∗∗ 0.03∗∗

−b31 −0.02∗∗ −0.25∗∗ 0.00 −0.24∗∗ −0.03∗∗ −0.24∗∗ −0.01∗∗ −0.16∗∗ −0.01∗∗ −0.22∗∗

−b32 0.87∗∗ 0.30∗∗ 0.87∗∗ 0.26∗∗ 0.37∗∗ 0.31∗∗ 0.15∗∗ 0.32∗∗ 0.59∗∗ 0.28∗∗

−b33 −0.91∗∗ −0.75∗∗ −0.91∗∗ −0.81∗∗ −0.85∗∗ −0.78∗∗ −0.92∗∗ −0.78∗∗ −0.92∗∗ −0.82∗∗

Wald (bij,i 6=j = 0) R R R R R

σ11 1.58∗∗ 1.51∗∗ 1.30∗∗ 1.23∗∗ 1.59∗∗ 1.50∗∗ 1.08∗∗ 1.03∗∗ 1.31∗∗ 1.24∗∗

σ21 0.04∗∗ 0.04∗∗ 0.02∗∗ 0.02∗∗ 0.01 0.00 0.02∗∗ 0.02∗∗ −0.01∗∗ −0.02∗∗

σ22 0.79∗∗ 0.78∗∗ 0.79∗∗ 0.78∗∗ 0.92∗∗ 0.91∗∗ 0.78∗∗ 0.77∗∗ 0.97∗∗ 0.96∗∗

σ31 0.82∗∗ 0.81∗∗ 0.69∗∗ 0.68∗∗ 0.72∗∗ 0.70∗∗ 0.69∗∗ 0.68∗∗ 0.59∗∗ 0.58∗∗

σ32 0.01∗∗ 0.01∗∗ −0.01 −0.01∗ 0.00 −0.01 0.00 −0.01∗ 0.00 −0.01∗∗

σ33 2.06∗∗ 2.00∗∗ 2.05∗∗ 1.99∗∗ 2.24∗∗ 2.13∗∗ 1.92∗∗ 1.88∗∗ 2.23∗∗ 2.13∗∗

Wald (σij,i 6= = 0) R R R R R

Γ 0.97 0.99 0.97 0.99 0.97 0.98 0.97 1.00 0.95 0.99

−LL 47.71 47.25 66.43 65.69 48.03 47.38 93.36 92.50 63.54 62.74
AIC 95.43 94.51 132.86 131.38 96.07 94.77 186.73 185.00 127.08 125.49
BIC 95.45 94.53 132.89 131.40 96.09 94.79 186.76 185.03 127.11 125.51

Notes: This table contains estimated parameters associated with the VMEM (M1) and log-VMEM (M2) specifications. Γ denotes
the largest eigenvalue of A+B, LL is the system log-likelihood, AIC is the system Akaike information criterion, and BIC is the
system Bayesian information criterion. Wald (bij,i 6=j = 0) and Wald (σij,i 6=j = 0) provide an indication of Wald test rejection
(R) or non-rejection (N) at the 5% level of the null of zero off-diagonal elements in B and V, respectively. Significance at the 1%
level is indicated by ∗∗, and at the 5% level by ∗.
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Table 4. Impulse response function absorbtion times

S1 S2 S3 S4 S5

Shock M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Panel A: 1998 dataset (infrequently traded stocks)

Duration 894.3 365.4 297.4 357.8 784.0 737.4 767.0 690.6 356.9 123.1
Volume 567.3 418.9 384.0 435.0 621.6 677.6 662.2 670.9 322.6 119.5
Volatility 830.9 429.4 391.3 400.7 725.6 749.6 823.8 689.4 380.6 129.2

Panel B: 1998 dataset (frequently traded stocks)

Duration 59.3 71.5 40.2 133.0 44.2 60.4 56.6 89.7 81.0 57.5
Volume 46.8 67.0 32.2 98.0 31.8 60.2 40.2 77.7 64.2 52.0
Volatility 54.6 71.0 37.1 132.3 39.4 60.4 52.7 88.4 75.1 56.5

Panel C: 2012 dataset (infrequently traded stocks)

Duration 69.9 19.8 100.9 19.7 14.1 8.1 14.9 8.8 219.5 30.8
Volume 56.2 22.7 85.4 20.8 94.6 8.1 10.9 9.0 166.8 31.7
Volatility 62.2 21.5 94.7 19.1 105.4 8.1 13.9 8.3 206.5 30.6

Panel D: 2012 dataset (frequently traded stocks)

Duration 1.4 4.9 1.4 4.1 2.1 3.3 0.9 5.7 0.9 4.9
Volume 1.5 5.3 1.5 4.3 1.8 3.5 0.9 5.8 0.9 5.1
Volatility 1.4 4.8 1.4 4.0 2.0 3.0 0.9 5.5 0.9 4.5

Notes: This table contains the time in hours for a shock to be absorbed into the volatility equation (that is, when the variance
of the volatility response is less than 10−7). We use the Manganelli (2005) method to approximate the calendar time the
system takes to return to its long-run equilibrium, by multiplying the number of transactions by their average duration.
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(a) Exponential (JAX ticker, 1998 dataset) (b) Lognormal (JAX ticker, 1998 dataset)

(c) Exponential (TKF ticker, 2012 dataset) (d) Lognormal (TKF ticker, 2012 dataset)

Figure 1. A comparison of parametric and non-parametric densities
This figure contains distribution plots of trading volume associated with parametric and non-parametric densities. The first
column of panels contain plots of non-parametric and exponential densities; the second column of panels contain plots of non-
parametric and lognormal densities. In both cases the non-parametric (parametric) densities are given by the solid (dashed)
line.
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(a) JAX Duration Shock (b) JAX Volume Shock (c) JAX Volatility Shock

(d) TKF Duration Shock (e) TKF Volume Shock (f) TKF Volatility Shock

Figure 2. Impulse response functions
This figure contains impulse response functions associated with the volatility reaction to various shocks using M1 and M2 parameter values.
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