Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Challenges on primary frequency control and potential solution from EVs in the future GB electricity system

Teng, Fei, Mu, Yunfei, Jia, Hongjie, Wu, Jianzhong, Zeng, Pingliang and Strbac, Goran 2017. Challenges on primary frequency control and potential solution from EVs in the future GB electricity system. Applied Energy 194 , pp. 353-362. 10.1016/j.apenergy.2016.05.123

Full text not available from this repository.

Abstract

System inertia reduction, driven by the integration of renewables, imposes significant challenges on the primary frequency control. Electrification of road transport not only reduces carbon emission by shifting from fossil fuel consumption to cleaner electricity consumption, but also potentially provide flexibility to facilitate the integration of renewables, such as supporting primary frequency control. In this context, this paper develops a techno-economic evaluation framework to quantify the challenges on primary frequency control and assess the benefits of EVs in providing primary frequency response. A simplified GB power system dynamic model is used to analyze the impact of declining system inertia on the primary frequency control and the technical potential of primary frequency response provision from EVs. Furthermore, an advanced stochastic system scheduling tool with explicitly modeling of inertia reduction effect is applied to assess the cost and emission driven by primary frequency control as well as the benefits of EVs in providing primary frequency response under two representative GB 2030 system scenarios. This paper also identifies the synergy between PFR provision from EVs and “smart charging” strategy as well as the impact of synthetic inertia from wind turbines.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Uncontrolled Keywords: Primary frequency control; Electric vehicles; Techno-economic evaluation; Dynamic simulation; Stochastic system scheduling
Publisher: Elsevier
ISSN: 0306-2619
Funders: Engineering and Physical Sciences Research Council
Date of Acceptance: 20 May 2016
Last Modified: 09 Nov 2017 14:37
URI: http://orca-mwe.cf.ac.uk/id/eprint/95680

Actions (repository staff only)

Edit Item Edit Item