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A Formal Functional Representation Methodology for 

Conceptual Design of Material Flows-Processing Devices 

Abstract 

Although there has been considerable computer-aided conceptual design research, 

most of the proposed approaches are domain-specific and can merely achieve 

conceptual design of energy flows-processing systems. Therefore, this research is 

devoted to the development of a general (i.e., domain-independent) and 

knowledge-based methodology that can search in a wide multi-disciplinary solution 

space for suitable solution principles for desired material flows-processing functions 

without designers’ biases towards familiar solution principles. It first proposes an 

ontology-based approach for representing desired material flows-processing functions 

in a formal and unambiguous manner. Then a rule-based approach is proposed to 

represent the functional knowledge of a known solution principle in a general and 

flexible manner. Thereafter, a simulation-based retrieval approach is developed, which 

can search for suitable solution principles for desired material flows-processing 

functions. The proposed approaches have been implemented as a computer-aided 

conceptual design system for test. The conceptual design of a coins-sorting device 

demonstrates that our functional representation methodology can make the proposed 

computer-aided conceptual design system to effectively and precisely retrieve suitable 

solution principles for a desired material flows-processing function.  

Keywords: Conceptual Design; Function; Solution Principle; Material 

Flows-Processing Devices 
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1 Introduction 

According to Pahl & Beitz (1997), a critical task of conceptual design is to search for 

suitable solution principles for desired functions. Hereby, a solution principle (also 

called principle solution) of a desired function can be regarded as a basic physical 

mechanism for achieving the desired function. During conceptual design, it is 

encouraged that designers should represent a desired function in a solution-neutral 

way, and search in a wide multi-disciplinary (i.e., cross-domain) solution space for 

novel and promising solution principles. However, this can often pose a big challenge 

for engineering designers, since they are often taught with limited multi-disciplinary 

solution knowledge in a specific major.  

A possible approach to addressing the above challenge is to develop a 

Computer-Aided Conceptual Design (abbreviated as "CACD" later) system, which 

can search in a multi-disciplinary solution space for generating suitable solution 

principles. Note that the CACD approach to be developed here should be different 

from most of the traditional CACD approaches, since it should be independent of any 

specific domains and be able to search in a wide cross-domain solution space. In 

contrast, the traditional CACD approaches, which are often based on the expert 

system methodology, have employed domain-specific representations and reasoning 

rules to generate solution concepts for energy flow-processing systems (e.g., Welch & 

Dixon, 1994; Chakrabarti & Bligh, 1996; Campbell  et al., 2000; Chen et al., 2006; 

Kurtoglu, 2009; Helms et al., 2013). For example, based on the bond graph 

methodology (Rosenberg, 1983), Welch & Dixon (1994) employ a 7-ary tuple for 
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representing the electromechanical flows and rely on a set of transformation rules to 

generate electromechanical solution concepts. It can also be found that little research 

has been carried out to achieve conceptual design of Material Flows-Processing 

(abbreviated as "MFP") devices, which often deals with various domains and thus 

requires a domain-independent CACD approach. An exception is the feature-based 

design catalogue research by Feng et al. (1996), where classifications of function 

verbs and material flows have been developed to index solution principles for 

retrieval. Similar classifications of MFP functions also appear in the reconciled 

functional basis (Hirtz et al., 2002). A major drawback of such functional 

classifications is that they are relatively rough, and cannot explicitly represent what a 

MFP function is, which can make a CACD system unable to precisely search for 

feasible solution principles for a desired MFP function. For example, based on the 

reconciled functional basis, the function, to refine salt (i.e., to separate sand from salt), 

should be roughly represented as to refine solid; since there can be many solution 

principles in the knowledge base that can achieve the function of refining solid, it is 

then difficult for a CACD system to rule out those infeasible solution principles that 

can also refine solid. Another drawback of the classification-based representation 

approach is that it employs an informal verb (e.g., refine), rather than a formal flow, 

state or relation change, to represent a MFP function. As a result, it would be difficult 

for a CACD system to employ such verbs to effectively achieve functional reasoning. 

Therefore, there is still no general (i.e., domain-independent) CACD approach that 

can effectively search in a wide cross-domain solution space for fulfilling conceptual 
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design of MFP devices, which, though, are very common in technical products.  

Therefore, this paper will develop a general and knowledge-based approach for 

the conceptual design of material flows-processing devices. Since such devices are 

often complex, it would be very difficult to take a first principle-based approach to 

address the above issue. Therefore, this research will employ the case-based reasoning 

methodology to achieve conceptual design of MFP devices. Hereby, case-based 

reasoning can be broadly construed as a methodology of reasoning from past 

experiences to generate solutions or explanations to the current problems (Kolodner, 

1993). This paper will be focused on how to represent a desired MFP function, how to 

represent the MFP function of a known solution principle in a material flow-free 

manner, and how to retrieve suitable solution principles for a desired MFP function. 

Note that the research introduced in this paper is not a replacement for existing CACD 

research, but a complement for the current solution principle-generating research. 

This paper is organized as follows. Section 2 reviews the related work. Section 3 

proposes a general approach for representing desired MFP functions. Section 4 then 

develops a formal functional representation approach for indexing existing solution 

principles. Section 5 illustrates a simulation-based approach for retrieving suitable 

solution principles for a desired MFP function. With the conceptual design of a 

coins-sorting device as an example, Section 6 demonstrates how the proposed 

approaches can work. Finally, Section 7 concludes this paper. 
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2 Related Work 

As a critical product development stage, conceptual design is a complex process that 

is often composed of the following tasks, e.g., clarifying functional requirements, 

developing functional structure (also called functional modeling), searching for 

solution principles, generating combinatorial solutions, validating combinatorial 

solutions, and selecting the most promising combinatorial solutions. To support these 

tasks, various CACD approaches or tools have been developed in recent decades, e.g., 

the function-behavior-structure model for representing and reusing solution concepts 

(Gero, 1990), the graph grammar-based machine design algorithm (Schmidt & Cagan, 

1997), the agent-based approach for generating design configurations (e.g., Campbell 

et al., 2000), the morphological matrix-based approach for design concept synthesis 

(Chen et al., 2006; Arnold et al., 2008), the SysML-based approach for functional 

modeling (Ẅlkl & Shea, 2009), the physics-based validation of functional structures 

(Sen et al., 2013), the function-based design verification (Deng et al., 2000). Due to 

limited space, it is impossible to review all kinds of CACD research here. Interested 

readers can find more CACD research in some recent review papers (e.g., Cagan et al., 

2005; Eisenbart et al., 2013). According to our research aim, the following review will 

be focused on the functional representation approaches in the existing CACD research. 

In addition, we also briefly analyze how the existing functional representation 

approaches can be used in the CACD research. 

    As mentioned before, there are primarily three kinds of functional representation 

approaches. The first kind is the verb-noun-phrase-based approaches, which come 
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from the value engineering research and employ the natural language-based 

verb-noun pairs to describe functions (Miles, 1972). This kind of functional 

representation approaches has been widely used in earlier CACD research (e.g., Qian 

& Gero, 1996; Umeda et al., 1996; Sturges et al., 1996). In such CACD research, 

functional representations are more suitable for storing the design intents of existing 

designs for reuse. Since computers are not good at understanding natural language, 

such functional representations can merely support the keywords-based solution 

retrieval. When the verb-noun-phrase-based approaches were used to represent MFP 

functions, the CACD systems would be very poor at retrieving suitable solution 

principles. 

The second kind is the input-output-flow-based approaches. Much CACD 

research has employed some tuples to represent the input and output energy flows in 

mechanical or electromechanical domains, e.g., Ulrich & Seering (1989), Welch & 

Dixon (1994), Chakrabarti & Bligh (1996), Campbell et al. (2000), Chen et al. (2006). 

An advantage of the input-output-flow-based representation consists in that it allows a 

CACD system to employ some domain-specific transformation rules to achieve 

automated functional reasoning. However, since the tuple-based flow representations 

are finely tuned to represent mechanical or electromechanical energy flows, they are 

not general and flexible to represent material flows. Note that different kinds of 

material flows often have different sets of attributes, which thus cannot be represented 

with a unified tuple. For example, a water flow may have the attributes evaporability 

and fluidity, while a salt flow may have the attribute water-solubility; it is impossible 
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to represent such attributes in the tuples used to represent those energy flows. In 

addition, it is also impossible to employ input-output-flow-based approaches to 

formally represent a function that does not deal with explicit flow or state changes 

from input to output. For example, for the relation transformation-focused function, to 

separate sand from salt (i.e., to refine salt), a designer is concerned with that the 

mixed relation between salt and sand should be changed as separated (Chen et al., 

2013; Chen et al., 2015), rather than any specific change(s) of sand and salt. It is then 

self-evident that the existing input-output-flow-based approaches cannot represent 

such a function in a formal and explicit manner.  

The third kind is the classification-based approaches, which employ standard 

classifications of verbs and flow classes to represent functions (e.g., Stone & Wood, 

2000; Hirtz et al., 2002). This kind of representation approaches has been widely used 

in the functional modeling, functional analysis and design synthesis research (e.g., 

Szykman et al., 2000; Stone et al., 2005; Sridharan & Campbell, 2005; Li et al., 2010; 

Kurtoglu et al., 2010; Gu et al., 2012; Sen et al., 2013). As mentioned before, a major 

drawback of the classification-based approach consists in that the standard flow 

classes are rough and thus cannot explicitly represent what a material flow is, which 

can make a CACD system unable to precisely retrieve suitable solution principles for 

a desired MFP function. In addition, the classification-based representation 

approaches also cannot formally represent the detailed state changes of the flows and 

their relation changes from input to output. For example, the function representation, 

to separate solid from solid, cannot indicate what state changes will happen to the 
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related solid flows, and how the relation between the two solid flows will change. 

Without the knowledge about a desired state or relation change, it is impossible for a 

CACD system to understand what a desired function is, and to retrieve the right 

solution principles for the function.  

    It can be found that the functional representation approaches in the existing 

CACD research are not suitable for formally representing MFP functions in an 

explicit manner. As a result, it would be impossible for the existing CACD systems to 

correctly process the functional information and to precisely retrieve suitable solution 

principles from a large multi-disciplinary solution space for a desired MFP function. 

Therefore, it is still necessary to propose a formal methodology for representing MFP 

functions. 

 

3 An ontology-based approach for representing desired MFP 

functions 

To develop a CACD system, it is desirable to have a formal approach for representing 

a desired function in an unambiguous manner. It is increasingly acknowledged that 

ontology can assist engineers in representing knowledge in an explicit and sharable 

manner (Lenat, 1989; Gruber, 1995; Chandrasekaran et al., 1999). Therefore, this 

research takes an ontology-based approach for representing a desired MFP function. 

Since an ontology-based representation deals with not only the object representation, 

but also the representation of the relations between objects (Gruber, 1995), the 
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approach for representing MFP functions here will involve not only how to represent 

a material flow (i.e., object), but also how to represent the concerned relation between 

two material flows, as well as how to formally represent a state or relation change of 

interest.  

3.1 An ontology-based object representation model  

An object here refers to a material flow that is included in a functional description and 

needs to be processed by a solution principle. Unlike the energy flows in the previous 

CACD research (e.g., Welch & Dixon, 1994), an object (i.e., material flow) has 

various attributes (e.g., state-of-matter, temperature, water-dissolubility, location, 

magnetizability, size, density, etc.), and different kinds of material flows may have 

different kinds of attributes. Therefore, it is impossible to employ a rigid tuple-based 

approach for representing material flows. This research thus employs a flexible 

attribute-value approach to represent material flows, where a domain expert is 

allowed to flexibly assign a set of attributes and values to a specific material flow.  

    This research classifies the attributes of an object as state attributes and 

disposition attributes. A state attribute is usually employed to describe the state of an 

object, such as state-of-matter, temperature and location, which are common attributes 

for material flows. In contrast, a disposition attribute describes a physical disposition 

of an object, which represents its potential capability to change from one state into 

another in a specific environment (Bunge, 1977). For example, salt has the 

water-solubility attribute, which is a disposition attribute that allows salt to dissolve 
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into water. Therefore, a disposition attribute can indicate what state change can occur 

to an object, which means it can provide designers with significant clues about what 

physical principles can be employed to process the object, and thus is very important 

for the conceptual design of a MFP device. It is the fact that the existing functional 

representation approaches have largely neglected the disposition attributes of a 

material flow, resulting in that the existing CACD systems (e.g., Prabhakar & Goel, 

1998; Goel, 2013) are unable to precisely judge what physical effects can be 

employed to achieve desired MFP functions. Therefore, the disposition attributes are 

also included in the object representation model proposed here. 

To represent an object with the flexible attribute-value approach, a designer also 

needs to assign values to the attributes. According to the value types, the attributes of 

an object can be classified as enumerable attributes and continuous attributes. An 

enumerable attribute has enumerable values. For example, the attribute state-of-matter 

may have such enumerable values as solid, liquid, gas, etc. In contrast, a continuous 

attribute (e.g. the temperature attribute) merely has a numerical value. Since 

numerical values are not suitable for qualitative reasoning in conceptual design, they 

are discretized into qualitative values. Enlightened by the qualitative simulation 

theory (Kuipers, 1986), this research employs a set of landmark values to divide the 

value range of a continuous attribute into a set of intervals. When a numerical value of 

the attribute falls into a value interval, then the qualitative value of the attribute can be 

set as the value interval. Note that the landmark values here are independent of any 

specific objects, since they should be suitable for representing all possible material 
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flows. With the temperature attribute as an example, some landmark values can be 

chosen as -273oC, -40oC, 0oC, 50oC, 200oC, 500 oC, 1000 oC, 2000oC, 6000oC, etc., 

and the value intervals can be described as (-273oC, -40oC), (-40oC, 0oC), (0oC, 50oC), 

(50oC, 200oC), (200oC, 500oC), (500oC, 1000oC), (1000oC, 2000oC), etc. It should be 

noted that the selection of such landmark values largely depends on engineering 

experience, which might be a weak point. However, compared with some ambiguous 

and subjective descriptions (e.g., high, low, hot, warm, cold), such value 

interval-based descriptions are more explicit and objective. 

To sum up, an object (i.e. material flow) can then be represented as a set of 

attribute-value pairs, i.e., {(attribute, value)}. The attributes of an object here involve 

not only state attributes, but also disposition attributes. For example, the material flow 

in a specific situation, salt, can be represented as {(state_of_matter, "Solid"), 

(temperature, "(0oC, 50oC)"), (water_solubility, "(10g, 100g)"), ...}. To facilitate the 

representation of an object, many possible attributes and their values have been 

collected and standardized, which serve as a content ontology for our functional 

representation approach, and a designer can then choose suitable ones from them for 

representing an object. Note that an attribute-value pair of an object, (attribute, value), 

is equivalent to the representation, attribute(Object) = value, which will also be used 

later. 

3.2 An ontology-based relation representation model 

There can be various kinds of relations between the objects of interest, such as the 
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parallel relation, the mixed relation, the assembly relation, etc. Such relation 

descriptions are informal representations, and, therefore, cannot effectively support 

functional reasoning. To represent MFP functions in a formal manner, it is also 

desirable to have a formal model for representing the relations between two objects. 

Assuming that there are two objects, shaft A and shaft B, which are in a parallel 

relation, it can be found that the parallel relation actually means that these two shafts 

are with the same axial orientation. Therefore, a relation between two objects can be 

formally represented as: 

relation_attribute(Object1, Object2) = relation_value. 

Hereby, relation_attribute indicates what attribute the relation is concerned with, 

and relation_value describes the relation that the objects (i.e., object1 and object2) are 

in with respect to the attribute, which can be set as “=”, “≠”, “>”, “<”, ">>", etc. 

With the mixed relation between salt and sand as an example, their mixed relation can 

be formally represented as: location(Salt, Sand) = "=". It can be found that a relation 

between two objects can also be formally represented with the above ontology-based 

relation model. 

3.3 An ontology-based functional representation approach 

Based on the object representation model and the relation representation model 

proposed above, a 6-nary tuple, (Oin1, Oin2, Rin, Oout1, Oout2, Rout), can then be used to 

conceptualize a MFP function. Here, Oin1 and Oin2 denote two input objects (i.e., 

material flows) of interest, Rin represents the concerned relation between the input 
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objects, Oout1 and Oout2 are used to represent the requirements on the output objects, 

and Rout is the desired relation between the output objects. Note that if a MFP function 

is a flow or state transformation-focused function, the second input object, Oin2, and 

the corresponding output object, Oout2, can be omitted.  

Based on the above conceptual model, a functional representation schema can 

then be proposed, as shown in Fig. 1. Note that the functional description in the 

schema is just an informal remark about the design purpose, which a CACD system 

will not process during conceptual design. Together with the schema, how to 

represent the MFP function, to refine salt (i.e., to separate sand from salt), is also 

illustrated in Fig. 1 as an example. In this function, the (rough) salt to be refined is 

represented as two objects (i.e., salt and sand) and the mixed relation between them, 

while the desired output relation between them is defined as that they should not be in 

the same location, i.e. location(Saltout, Sandout) = "≠".  

It can be found the proposed ontology-based approach can formally represent a 

desired MFP function with the aid of an object-attribute representation and an 

attribute-relation representation, which is then possible for a CACD system to 

correctly process a desired function. Especially, the disposition attributes in an 

object-attribute representation disclose the implicit knowledge about what changes 

can happen to an object, so that it is possible for a CACD system to employ some of 

these changes to achieve a desired function.  

 

[Fig. 1. An ontology-based functional representation schema and an example] 
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4 A rule-based approach for representing functional 

knowledge 

To allow a CACD system to retrieve suitable solution principles, it is also necessary 

to have a formal approach to representing the functional knowledge of a known 

solution principle, i.e., what functions can be achieved by a solution principle. 

Different from the approach proposed in Section 3, the functional knowledge 

representation here should be general and independent of any specific objects (i.e., 

material flows), so that the corresponding solution principle can be retrieved to 

achieve similar functions but with different objects. Note that the functional 

knowledge representation approach here is different from that developed for 

achieving model-based reasoning (e.g., Chandrasekaran, 1994), which is concerned 

with the representation of the internal causal behavior process of an existing device. 

In this research, the functional knowledge of a solution principle is formally 

represented as a rule-based schema. The proposed functional representation approach 

is composed of the precondition knowledge model and the action knowledge model, 

which are elaborated in details as below. 

4.1 The precondition knowledge model 

The precondition knowledge model involves a set of preconditions, which specify 

under what conditions a known solution principle can be used to achieve a desired 
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function. For the solution principle of a MFP system, such preconditions can involve 

the requirements on the state attributes of the input objects, the requirements on their 

disposition attributes, as well as the requirements on the relations between them. For 

example, in order for a water dissolving-based separating solution to work, it is 

required that the state of the two related objects should be in the state of solid, that the 

object to be removed should have a good water solubility (a disposition attribute), and 

that the two input objects should be at the same location (i.e., in the mixed relation), 

etc. 

Note that an attribute requirement of a precondition representation of a known 

solution principle may deal with multiple allowable values, which is different from 

the object representation of a desired MFP function that merely has one value for each 

attribute, since it is possible that a solution principle can act on the objects in different 

states. For example, a gas oven cannot only heat solid food, but also liquid food, as 

well as the mixture food. Therefore, an attribute requirement on the input object 

should be represented as: 

objin.attribute ∈ {allowable_value} 

where, {allowable_value} is a set of allowable values for the solution principle 

with respect to attribute.  

Similarly, a relation requirement in a precondition representation may also deal 

with multiple relation values, and thus should be represented as: 

relation_attribute(Obj1in, Obj2in) ∈ {allowable_relation_value},  

where, {allowable_relation_value} is a set of allowable relation values.  
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Based on the above attribute-value model and the attribute-relation model, the 

functional precondition of a known solution principle can then be explicitly 

represented in a formal manner. Note that the precondition knowledge model of a 

solution principle is merely related to some attributes of a specific object, which often 

has many more attributes than those in the precondition representation. 

4.2 The action knowledge model 

The action knowledge model elaborates what changes a known solution principle can 

make to the input objects and the relations between them, if the known solution 

principle is supposed to act on them. Note that the action knowledge here involves not 

only the expected change(s), but also the unexpected change(s) that is necessary for 

achieving the function. For example, in order for a water-dissolving effect based 

solution to separate sand from salt, the expected (desirable) change is a relation 

change that sand and salt get separated. However, to achieve this expected change, the 

solution principle also needs to dissolve salt into water, which is an unexpected 

change to salt, since this change is not expected by a designer when the designer was 

defining the desired function in a solution-neutral manner. Since such unexpected 

changes are also essential to achieve the desired function, both expected changes and 

unexpected changes should be represented in the action knowledge model of a 

solution principle. As mentioned before, the actions of a solution principle may 

involve both attribute changes and relation changes. Therefore, the action 

representation here should involve two kinds of change representations, i.e., the 
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attribute change representation and the relation change representation. 

An attribute change representation refers to the change that a solution principle 

can make to an attribute of an object, which can usually be represented as a change of 

the value of the attribute from input to output. The change of the value of the attribute 

of the object indicates how the solution principle changes the state of the object. For 

example, state-of-matter is an attribute of salt, and the value of this attribute can be 

changed from solid to liquid, if a water-dissolving effect-based solution acts on the 

salt. Note that an input value can also correspond to multiple output values, since a 

solution principle can be used in different situations to achieve different results. To 

represent the corresponding relationship between the input value and the output 

value(s), an attribute change can be further represented as a rule, i.e.,  

IF (objin.attribute = valuein) THEN (objout.attribute ∈ {valueout}) . 

The above rule means that if the attribute of a desired function's input object objin 

has the value valuein, then the value of the corresponding attribute of the output object 

objout will be changed into one of the values in the value set {valueout}.  Assuming that 

a solution principle can heat an object (e.g., increase its temperature), if the solution 

principle has two allowable values regarding the temperature attribute of the input 

object, i.e., "(0oC, 50oC)" and "(50oC, 200oC)", then two possible action 

representations are as below. Some rules as such can then be represented as below, 

Rule 1: IF (objin.temp = "(0oC, 50oC)")  

      THEN (objout.temp ∈{"(50oC, 200oC)", "(200 oC, 500oC)", ...}); 

Rule 2: IF (objin.temp = "(50oC, 200oC)")  
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      THEN (objout.temp ∈ { "(200oC, 500oC)", "(500oC, 1000oC)", ...}). 

Note that it is also possible that the value of an attribute of an object does not 

change too much, which may result in that the output value does not exceed the 

landmark value. In such a situation, the output value of the attribute still has to be 

assigned with the same qualitative value as the input. In order to indicate the 

difference between the input value and the output one, an input-output relation can 

then be used to represent the input-output change, i.e., 

IF (objin.attribute = valuein) 

THEN {(objout.attribute = valuein) & (attribute(objin, objout) = relation_value)}. 

For example, when a microwave oven is used to warm food, the temperature of 

the output food may not exceed 50 oC. The action knowledge in such a situation can 

then be represented as below: 

IF (objin.temp = "(0oC, 50oC)") 

THEN {(objout.temp = "(0oC, 50oC)") & ( temp(objin, objout) ="<")}. 

A relation change refers to the change that a solution principle is expected to 

make to a relation between two objects, which can also be represented as a relation 

change from input to output. For example, when salt is mixed with sand (i.e., coarse 

salt), the mixed relation means an equal location relation between salt and sand, and a 

dissolving effect based solution can change the relation to unequal. Similar to an 

attribute change, a relation change can also be represented in a form similar to a rule, 

i.e., 

IF (relation_attribute<obj1in, obj2in > = relation_valuein) 
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THEN (relation_attribute<obj1out, obj2out > ∈ {relation_valueout}). 

The above relation change rule means that if the attribute relation indicated by 

relation_attribute between input objects obj1in and obj2in is equal to relation_valuein, 

then the relation value between the output objects will be changed into one of the 

values in the set {relation_valueout}.  For example, the possible relation change that a 

separating solution principle is supposed to achieve can be represented as below, 

IF (location<obj1in, obj2in> = "=")  

THEN (location<obj1out, obj2out > ∈ {" ≠"}). 

Based on the above attribute change representation and the relation change 

representation, the action knowledge of a known solution principle can then be 

explicitly represented in a formal manner. Note that the action knowledge of a known 

solution principle merely involves the changes that are directly related to its function. 

As to the other changes that may come from indirect influences or side effects, they 

are not included in the above functional knowledge representation model, and, 

therefore, are not elaborated here. 

4.3 A functional knowledge representation schema  

Based on the above research, a schema for representing the function of a known 

solution principle can then be proposed, as shown in the upper part of Fig. 2. In this 

schema, the objects in the Given_Func_Obj list are those functional objects that need 

to interact with a solution principle, while the objects in PS_Obj list are the enabling 

objects that a solution principle must have to achieve the desired functionality. For 



21 

example, in order for the water dissolving effect-based separating solution to work, it 

must have the enabling object water; otherwise, the solution principle would not be 

able to work. 

Note that the whole functional representation rule of a known solution principle 

has been decomposed into a set of basic functional rules in the above schema, so that 

it is convenient to implement the functional representation approach in a CACD 

system. In a basic functional rule, an attribute or a relation in the precondition 

representation can merely have one value, which is slightly different from that 

proposed in the above precondition representation model. Therefore, if the 

precondition of a whole functional rule involves some attributes or relations that have 

multiple possible values, the precondition should be exhaustively transformed into 

multiple independent preconditions for indexing multiple basic action rules.  

 A functional knowledge representation case is also given in Fig. 2, which shows 

how to represent the functional knowledge of a water dissolving effect-based solution 

for separating two solid objects. Note that the first rule of the case means that when 

the input object Obj1in has much better water-solubility than Obj2in, i.e., 

water_solubility<Obj1in, Obj2in> = ">>", what the functional changes will be. There 

should also be another rule showing the contrary situation, i.e., the input object Objin1 

has much worse water-solubility than Objin2, which is not shown in the figure for 

conciseness. In addition, rule 2 in Fig. 2 is one regarding a situation similar to rule 1, 

which is represented with a detailed combination to show the water-solubility 

difference between the input objects.  



22 

 

[Fig. 2. A rule-based functional knowledge representation schema and an example] 

 

 It can be found that the proposed functional representation approach can 

explicitly represent the functional knowledge of a known solution principle. Note that 

the proposed functional representation approach can also be used to represent a flow 

or state transformation-focused solution principle, where the redundant flows (i.e., 

Obj2in and Obj2out) and relations in the schema can be neglected. It can be found that 

our functional representation approach has three major advantages. Firstly, it is 

independent of any specific material flows, which makes a known solution principle 

more easily to be reused. Secondly, the precondition representation model allows 

design experts to externalize the implicit requirements (e.g., disposition requirements) 

of a known solution principle on the input objects, which a CACD system can then 

use to rule out the infeasible solution principles for a desired function. Finally, since 

the action representation model can formally represent the state or relation changes, 

which often exist as implicit knowledge behind the verb-noun pair representation, it is 

then possible that a CACD system can use such state or relation changes to achieve 

functional reasoning. 
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5 A simulation-based approach for retrieving solution 

principles 

It can be found that the schema for representing a desired MFP function is largely 

different from the rule-based schema for representing the functional knowledge 

schema of a known solution principle. Therefore, it is impossible to employ a simple 

search approach (e.g., the keywords-based search) to retrieving suitable solution 

principles for a desired MFP function. Therefore, this section will develop a 

simulation-based approach for achieving the solution principle-retrieving task.  

 The simulation-based approach is composed of three major processes. Firstly, the 

CACD system selects a suitable solution principle that can act on the input objects 

and their relations. Secondly, the CACD system employs the action knowledge of the 

solution principle to simulate the action on the input objects and their relations, with a 

result of some output objects and their relations. Finally, the CACD system judges 

whether the output objects can satisfy the requirements of the desired function or not, 

so that suitable solution principles that can achieve the desired function can be 

retrieved. Based on the above idea, a simulation-based algorithm for retrieving 

feasible solution principles for a desired MFP function can then be proposed. A brief 

introduction to the simulation-based retrieval algorithm is given as below: 

Stage 1: A designer inputs into the CACD system a desired MFP function, which 

involves the attribute-based representation of input objects, the relation-based 

representation, and the requirements on the output objects and their relations.  

Stage 2: For each solution principle in the knowledge base, the CACD system 
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checks each of its basic functional rules to see whether its precondition (i.e. the 

requirements on the input objects and their relations) can be satisfied by the 

current input objects of the desired function; if true, set the solution as the current 

solution, and go to next step; otherwise, continue to check the next solution, until 

all solution principles have been searched. 

Stage 3: According to the action knowledge of the current solution, the CACD 

system changes the states of the input objects and the relations between them, 

with a result of some output objects and some new relations between these output 

objects. 

Stage 4: The CACD system judges whether the output objects and the relations 

between them can satisfy the requirements of the desired function on the output 

objects and their relations; if true, add the current solution to the suitable solution 

principle list; return to Stage 2 to check the next solution.  

Stage 5: If all solution principles in the knowledge base have been searched, the 

CACD system displays all suitable solution principles stored in the solution 

principle list to designers, from which designers can then select some as 

promising solution principles for further exploration; if no suitable solution 

principles retrieved, exit with failure. 

Stage 6: Exit with success. 

 Note that the above simulation-based search process is primarily developed for 

assisting designers in retrieving suitable solution principles for desired functions. This 

process is not for achieving automated solution principle synthesis, i.e., it cannot 
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combine multiple solution principles together for achieving a desired function. A 

primary reason consists in that the material flows often have many disposition 

attributes, resulting in that it is difficult to predict all unintended changes (including 

side effects) when a solution principle acts on some new material flows. A possible 

solution to addressing this issue is to develop an interaction prediction system, which 

requires additional research that can be carried out in the future.  

 

6 Test 

With the aid of a SQL database and a web application development tool, the 

functional representation methodology and the simulation-based solution 

principle-retrieving approach proposed before have been implemented as a CACD 

prototype system for test. The prototype system primarily has three subsystems, i.e., 

the basic data management subsystem, which is for knowledge engineers to manage 

some basic data (e.g., object classes, attributes, values), the solution principle 

knowledge modeling subsystem, which is for domain experts to model the design 

knowledge of a known solution principle (e.g., the basic information, the functional 

knowledge, the performance knowledge), and the solution principle-retrieving 

subsystem, which allows a designer to input a desired function and can retrieve 

suitable solution principles for it. Hereby, how to employ the prototype system to 

retrieve suitable solution principles for a desired function, to sort coins, is illustrated 

as below to demonstrate the proposed research. 
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6.1 The representation of the desired function 

With the prevalence of conductor-free bus services, transportation service companies 

often obtain a huge number of coins every day. There is an urgent need for developing 

an efficient coins-sorting device that can rapidly sort different kinds of coins. In this 

case, the device is assumed to separate two kinds of Chinese coins, i.e., dollar coins 

(i.e., one-dollar coins) and dimes (i.e., ten-cent coins). Note that dollar coins are 

primarily made from nickel, while dimes are made from aluminum.  

To enable the prototype system to work, a designer should first represent the 

desired function with the formal functional representation approach proposed in 

Section 2. Here, the desired function is to sort coins, i.e., to separate dollar coins from 

dimes. It is evident that this function is a relation transformation-focused function, 

where the related objects are dollar coins and dimes. The designer should input into 

the prototype system the attribute-value representation of the two kinds of coins, the 

concerned relation change, and the requirements on the output coins. Three of the 

software modules for inputting a desired function are as shown in Fig. 3. Here, the 

concerned input relation is that the two kinds of input coins are at the same location, 

i.e., location (Dollar-Coins, Dimes) ="=", while the desired output relation is that the 

two kinds of coins should not be at the same location, i.e., location (Dollar-Coins, 

Dimes) = "≠". In addition, there are also some additional requirements on the output 

coins, e.g., Dollar-Coins.state-of-matter = “SOLID”, Dimes.state-of-matter = 

“SOLID”. 
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[Fig. 3. Some user interfaces for inputting a desired function] 

 

6.2 The solution principle knowledge base 

The known solution principles in this research primarily come from the previous 

knowledge base developed by Feng et al. (1996) and Chen et al. (2005), which 

contained more than 500 solution principles for achieving various MFP functions. 

Due to limited time, it is impossible to input all these solution principles into the new 

knowledge base developed in this research. In this test, six related solution principles 

are chosen from the previous knowledge base to demonstrate the solution 

principle-retrieving approach, with their sketches shown in Fig. 4.  

 

[Fig. 4. Some sketches of the known solution principles] 

 

The first solution principle (sketch a), called the dissolving effect-based solution, 

comes from Asian washing machines. Through dissolving dirt into detergent and 

water, it separates dirt from clothes. The second solution principle (sketch b), called 

the sieving effect-based solution, comes from a materials-sieving device. Based on the 

vibration of the sieve, smaller materials fall down, while bigger materials remain on 

the sieve. The third solution principle (sketch c), called the high electrical voltage 

effect-based solution, employs the strong electrical field generated by high voltage to 

separate the particulates with good electrical-conductibility from those with poor 
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electro-conductibility. The fourth solution principle (sketch d), called the 

electro-magnetism effect-based solution, could separate particulates that can be 

magnetized from those unable to be magnetized. The fifth solution principle (sketch 

e), called the air-blowing effect-based solution, comes from a device for separating 

beans from shells. It employs the airflow generated by an electrical fan to separate 

materials with bigger density from those with smaller density. The last solution 

principle (sketch f), called the melting effect-based solution, can separate materials 

with a lower melting point from those with a higher melting point. 

Fig. 5 shows three primary modules of our prototype system for managing 

solution principle knowledge. One is for domain experts to input the basic 

information of a known solution principle (e.g., solution type, solution name, 

functional objects), another is for managing the state or disposition precondition for a 

known solution principle, and the other is for managing the relation precondition of a 

known solution principle. There are also some other modules for managing the 

functional knowledge about a solution principle, which, due to limited space, are 

omitted here. 

 

[Fig. 5. Some interfaces for managing the functional knowledge of a solution 

principle] 
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6.3 The solution principle-retrieving process 

Given the representation of the desired function and the solution principle knowledge 

base, the prototype system can then employ the simulation-based approach to retrieve 

suitable solution principles for the desired function of sorting coins. To illustrate the 

solution principle-retrieving process, it is assumed that the solution principle 

knowledge base here merely includes the six solution principles mentioned above. 

 The CACD system will first analyze the first solution principle, i.e., the 

dissolving effect-based solution, whose functional knowledge representation is similar 

to that shown in Fig. 2. Since the precondition of this solution principle requires that 

one input object should have much better water- or detergent-solubility than the other, 

which cannot be met by the two kinds of coins, the CACD system can then rule out 

this solution, and continue to analyze the next solution.  

 The second solution principle is the sieving effect-based solution, which requires 

that the input objects should be with obvious size difference, i.e., size(Obj1, Obj2) ∈ 

{">", ">>"} or  size(Obj1, Obj2) ∈ {"<", "<<"}. This precondition can be met by the 

two kinds of coins, since there is an obvious difference between them, i.e., 

size(Dollar-Coins, Dimes) =">". Therefore, the prototype system can then know that 

this solution principle is suitable for achieving the coins-sorting function. The CACD 

system can then employ the action knowledge of the solution principle to change the 

input objects and their relations, resulting in that the location relation between the 

output coins is set as: location(Dollar-Coins, Dimes) = "≠", which can meet the 

relation requirement of the coins-sorting function on the output coins. Therefore, this 
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solution is retrieved as a suitable solution for the coins-sorting function.  

 The prototype system will continue to analyze other solution principles. Among 

the six solution principles, the prototype system will finally retrieve three suitable 

solution principles for achieving the coins-sorting function, i.e., the sieving 

effect-based solution, the electro-magnetism effect-based solution, and the 

air-blowing effect-based solution. Fig. 6 shows a user interface that displays the 

desired function and the retrieved solution principles, and a user interface that 

displays the detailed functional knowledge of the retrieved solution principle, i.e., the 

electro-magnetism effect based solution. 

 

[Fig. 6. Some interfaces for displaying the solution principle-retrieving results] 

 

Note that the sixth solution principle, i.e., the melting effect-based solution, cannot 

be retrieved as a suitable solution, although the melting-point difference between the 

coins can meet the precondition required by the solution principle, i.e., 

melting_point(Obj1, Obj2) ∈ {">", ">>"} or  melting_point(Obj1, Obj2) ∈ {"<", 

"<<"}. This is because this solution principle has a function-related melting action 

that can change the state-of-matter of coins with lower melting point into liquid, and 

thus cannot meet the requirement on the output coins, i.e., Object1.state-of-matter = 

“SOLID” & Object2.state-of-matter = “SOLID”.  
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6.4 Discussion 

It can be found that after a designer inputs a desired function into the prototype 

system, the prototype system can then retrieve suitable solution principles from the 

knowledge base consisting of solution principles from various domains (e.g., 

mechanical, electrical, electromagnetic), and then outputs the solution principles for 

the designer. Therefore, based on the proposed functional representation methodology 

and the simulation-based search approach, the prototype system can effectively assist 

designers in explicitly representing a MFP function and in retrieving suitable solution 

principles for a desired MFP function. Note that the proposed functional 

representation methodology can also be used for conceptual design of energy or signal 

flows-processing systems, since the proposed methodology is also suitable for 

representing the functions dealing with energy flows and signal flows. In addition, it 

can also be found that the CACD system can alleviate designers’ biases towards 

familiar solution principles, since it can assist designers in retrieving all possible 

solution principles without any biases. 

However, it should be admitted that the proposed solution-retrieving approach also 

requires much more functional information (i.e., the material flow representation) 

than the traditional approaches, which could be a heavy burden for designers. A 

possible solution to alleviate this burden is to provide designers with additional 

knowledge base of material flows, so that designers can easily reuse such knowledge 

when defining a desired function.  



32 

7 Conclusions 

Due to the significance of conceptual design, much CACD research has been carried 

out in recent decades. Although many domain-specific CACD approaches have been 

developed for conceptual design of energy flows-processing systems, there is little 

research for conceptual design of MFP (i.e., Material Flows-Processing) devices. 

Since the solutions of MFP functions often come from various domains, it is then 

impossible to employ the traditional domain-specific approaches to achieve the 

conceptual design of MFP devices. Therefore, this research has been devoted to 

developing a general (i.e., domain-independent) and knowledge-based methodology 

for achieving the conceptual design of MFP devices.  

The primary contributions of this research are as follows. Firstly, it develops a 

flexible ontology-based approach to representing material flows, and their relations 

and changes, so that a desired MFP function can be represented in an unambiguous 

manner. Secondly, it proposes a rule-based approach to representing the functional 

knowledge of a solution principle, so that the functional knowledge can be 

represented in a general and flexible manner. Finally, it develops a simulation-based 

approach for retrieving suitable solution principles for desired MFP functions, which 

can select suitable solution principles from the knowledge base to act on the input 

material flows and their relations to generate output(s). As seen in the test, the 

proposed approaches allow the CACD prototype system to effectively and precisely 

retrieve suitable solution principles for a desired MFP function.  

This research has dealt with how to represent MFP functions and how to retrieve 
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solution principles for them, without additional requirements taken into consideration. 

Since more requirements can be gathered as designing proceeds, which often results 

in the search in an identified solution space for viable solutions, a more flexible 

design search approach should be developed in the future. Another future work can be 

to develop an automated functional reasoning approach, so that a CACD system can 

automatically combine the known solution principles into a combinatorial solution to 

address a MFP function that does not have a solution principle in the knowledge base. 

In addition, since conceptual design is a complex process that involves many other 

kinds of tasks, another future work can be to integrate our solution-searching 

approach with other CACD approaches (e.g., functional modeling approaches, 

systems validation approaches) to provide more complete support for conceptual 

design engineers.  
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