Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010

This is a report of the above cited paper. Please read the original paper from the URL link!
Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010

ABSTRACT: Recent special reports on climate extremes have shown evidences of changes in the patterns of climate extremes at global, regional and local scales. Understanding the characteristics of climate extremes at regional and local levels is critical not only for the development of preparedness and early warning systems, but is also fundamental in the development of any adaptation strategies. There is still very limited knowledge regarding the past, present and future patterns of climate extremes in the Greater Horn of Africa (GHA). This study, which was supported by the World Bank Global Facility for Disaster Reduction and Recovery (WB-GFDRR) and implemented by the World Meteorological Organization, was organized in terms of three workshops with three main objectives; (i) analysis of daily rainfall and temperature extremes for ten countries in the GHA region using observed in-situ data running from 1971 to 2006, (ii) assessing whether the United Kingdom Met-office and Hadley centre Providing REGional Climates for Impact Studies (UK-PRECIS) modeling system can provide realistic representation of the past and present climate extremes as observed by available in-situ data, and (iii) studying the future regional climate extremes under different scenarios to further assess the expected changes in climate extremes. This paper, therefore, uses the outputs of these workshops and also includes post-workshop analyses to assess the changes of climate extremes within the GHA. The results showed a significant decrease in total precipitation in wet days greater than 1 mm and increasing warm extremes, particularly at night, while cold extremes are decreasing. Considering a combination of geophysical models and satellite gravimetry observations from the Gravity Recovery And Climate Experiment (GRACE) mission in the frame of GRACE daily Kalman-smoothing models, for the years 2002 to 2010, we explored a decline in total water storage variations over the GHA.

KEY WORDS: climate extremes; Greater Horn of Africa; climate indices; water storage changes; PRECIS model
1. Introduction

Extreme events not only cause property damage, injury, hunger, loss of life and threaten the existence of some species (see, e.g., Downing 1991), but also drive changes in natural and human systems much more than average climate (Parmesan et al., 2000; Peterson et al., 2008, Tierney et al., 2013). Impacts of extreme climate change and variability lead to human suffering, particularly for the poor as witnessed, e.g., during the prevalent droughts and floods in the GHA region (Lyon and DeWitt, 2012). Analysis of changes in extreme climate events, therefore, is important due to the potentially high social, economic, and ecological impact of such events (e.g., Bohle et al., 1994; Arnell, 2004). Limited availability of long records of daily climate data in some parts of the world, including the GHA, hampers efforts to analyze the impacts of climate change and variability on the frequency and severity of climate extremes (Folland et al., 2001).

Long records of daily climate data for the GHA region are discussed in Camberlin and Philippon (2002); WMO (2003); Brant et al. (2012) and Omondi (2011, 2012). Availability of long term high quality data in the region is hampered by inadequate monitoring networks; gaps in the records; a general decline of number of stations; chronic under-funding; differences in processing and quality control; and differences in data policies (WMO, 2003). It is evident that the GHA countries share pronounced climatic trends (Tierney et al., 2013) and variability and are vulnerable to extreme climatic conditions (e.g., Downing, 1991; Schreck and Semazzi, 2004; Anyah and Qiu, 2012 and Omondi et al., 2012).

It is increasingly becoming apparent that behind the ongoing research and debate on climate change, many parts of Africa are already witnessing dire consequences of erratic climatic conditions (Anyah and Qui, 2011; Shongwe et al., 2011) that are likely associated with regional climatic changes (Funk et al., 2008, 2012). This is expected to pose unprecedented challenges to most African economies that are significantly hinged on a predominantly rain-fed agriculture. Further challenges lie in understanding low frequency multi-decadal and centennial climate variability in the vastness and uniqueness of the complex African terrain and climate systems over eastern Africa (Omondi et al., 2012; Tierney et al., 2013).

In recent years over the GHA region, particularly in Kenya, Ethiopia and Somali, climate related extremes have been the dominant trigger of natural disasters. The region has recently witnessed frequent episodes of both excessive (e.g. Anyah and Semazzi, 2006; Hastenrath et al., 2010; Kijazi and Reason, 2009a; Viste et al., 2012) and deficient rainfall (e.g. Hastenrath et al., 2007, 2010; Kijazi and Reason, 2009b; Omondi et al., 2012). Consequently, there has been an upsurge in interest both from the scientific communities (e.g., van Oldenborgh et al., 2005; Oumumbo, 2011) and policy makers to the risk of increased extreme climatic events. A recent climate analysis for East Africa was conducted by Christy and co-authors examining air temperature trends at 60 stations across Kenya (Christy et al., 2009). After spatially interpolating the station-based data, the study reports finding a statistically significant upward trend in minimum temperature (Tn) in the Kenyan Highlands region. Oumumbo et al. (2011) found evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. An upward trend of \(\approx 0.2 ^\circ \text{C/decade} \) was observed in all three temperature variables (\(P < 0.01 \)). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST \((r = 0.50; p < 0.01 \)). Other authors have also studied malaria resurgence using extreme climatic events over the region (e.g., Hay et al., 2002; Pascal et al., 2006 among others). Analysis of rainfall, minimum and maximum temperatures records showed increasing trends in annual minimum and maximum temperatures from 1951 to 2002 (0.4 \(^\circ \text{C/decade} \) and 0.2 \(^\circ \text{C/decade} \),
respectively) but little trend in rainfall from 1901–50, 1951–2002 and 1901–2002 (Conway et al., 2004). In analysis of rainfall seasonality index (SI), precipitation concentration index (PCI) and modified Fournier index (MFI), Elagib (2010) found no statistically significant trends in observed rainfall for the hyper-arid region of Sudan during the common data period of 1945–2007.

Some recent studies using Global Climate Models (GCMs) have shown that changes in climate over the region are expected in a global warming scenario (IPCC, 2007; Shongwe, 2010; Anyah and Qiu, 2012). These are likely to include changes in the intensity, duration, and frequency of droughts and floods, heat waves, etc, and will have serious implications on agriculture, human health, as well as human activities. It is well documented that some parts of the GHA region is perennially prone to droughts and floods (Hastenrath et al., 2007; Kijazi and Reason, 2009a, b; Omondi, 2011; Bradfield and DeWitt, 2012).

Although there is a lack of long records of daily data for extreme climate change detection, international collaboration is significantly improving the situation, culminating in an analysis (see, e.g., Alexander et al., 2006) that provided a near-global perspective on changing climate extremes for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (IPCC, 2007). Yet quantifiable information, describing how weather and climate extremes are changing over the GHA region has been unavailable. In preparation for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, a major effort by the Expert Team on Climate Change Detection and Indices (ETCCDI) has been undertaken to analyze how extremes are changing over as much of the world as possible (Alexander et al., 2006). This included intensive international collaboration on data exchange and analysis, and, where data were not available, holding regional climate change workshops to generate information on extremes (Alexander et al., 2006). This global assessment initiative has greatly benefited from the contributions from a series of workshops (Peterson and Manton, 2008) coordinated by ETCCDI which is jointly sponsored by the WMO Commission for Climatology (CCI), the Joint Commission for Oceanography and Marine Meteorology (JCOMM), as well as the Research Programme on Climate Variability and Predictability (CLIVAR). The ETCCDI workshops seek to bring participants together from countries within a data sparse region to fill in data gaps and to provide capacity building.

The availability of daily observation data is steadily improving and has led to the development of gridded regional (Haylock et al., 2008) and global datasets (Caesar et al., 2006). For some areas such as the GHA region where daily data availability is still relatively poor, assembling and research using this data would be useful in decision making and policy formulation on the climate sensitive sectors of the region.

To address the issue of data shortage in GHA, therefore, and in line with global standard practice (e.g., Alexander et al., 2006), this study is intended to help fill the data gap in the region by assembling the necessary climate observations. Further, the understanding and use of regional climate downscaling tool known as PRECIS would help GHA countries design adaptation policies and reduce climate associated risks.

This study is divided into four parts namely (i) the assessment of the adequacy of regional climate observations and trends for adaptation purposes, (ii) the assessment of the adequacy and reliability of available model based climate projections for adaptation needs, (iii) the assessment of the expected changes in climate extremes needed to assist in developing effective adaptation and climate risk management strategies, and (iv) the analysis of changes in total water storage for the period 2002 to 2010 in order to assess recent vulnerability of GHA region to climatic
variations. The study is inherently regional in nature since, to be useful, regional climate models need observational support from as wide a region as possible. Climate does not recognize national boundaries, so in order to analyze and validate models, it is necessary to take a regional approach.

The presentation is organized as follows; in section 2, the study area, data used, and the analysis methods are presented. Section 3 presents the results, which are discussed in section 4. The study is then concluded in Section 5.

2. Data and methods

2.1. The Greater Horn of Africa

At the time of this study, the GHA region comprised of Burundi, Djibouti, Ethiopia, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania and Uganda (Figure 1). But currently, South Sudan that recently ceased and became sovereign state on 9th of July 2011 forms the 11th country in the GHA region. Majority of these countries are classified as least developed where most of the societies survive on less than one dollar per day (UNDP 2004). Its climate may be classified as arid and semi-arid with frequent recurrences of floods and droughts. The recurrences of floods and droughts have been associated with many socio-economic miseries. Furthermore, the region is often faced with serious food insecurity and resource-based conflicts. For example, 2010-2011 has been shown to be the driest period in 60 years with more than 12 million people in need of emergency relief (CRS Report, 2012). Recent assessments (IPCC, 2007) showed that climate change is real and the poor are the most vulnerable due to the already high level of vulnerability and low coping capacity. The vulnerability is amplified by the fact that many of East Africans livelihoods are dependent on farming and livestock; two sectors that are especially sensitive to perturbations in the climate system. Climate change is, therefore, likely to set back development and food production in many of the predominantly agro-based economies of most communities. The GHA countries, like other African countries have short and/or fragmented climate records, often as a result of armed conflict at various times in the last 50 years. In a few cases, the available records are too short to be used for the adequate calculation of climate trends, but they are still valuable in providing a baseline for future analyses, as well as monitoring inter-annual climate variability.

2.2. Station data and quality control

It is important to note that three workshops were organized to aid with the collection of data from the member countries that would hitherto not be possible when organized by an individual country. The workshop participants brought along with them selection of their best quality digitized daily temperature and precipitation series (Figure 2).

Daily observed station data for maximum and minimum temperatures together with precipitation for a total of 73 stations from the 10 countries are employed in the analysis (Figure 1 and Table 1). These data sets were subjected to quality control and homogeneity of their series using RClimDex software (Peterson et al., 2002; Zhang et al., 2009). RHtest software was also used to perform homogeneity tests (Aguilar et al., 2005, 2009). These packages were downloaded from the ETCCDI website1.

1http://ccma.seos.uvic.ca/ETCCDI/
Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These ‘standard’ meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications (Omumbo et al., 2011). The statistical and visual procedures contained in the RClimDex package were complemented by the required tests, following the guidelines given in Brunet et al. (2008). In fact, the tests are focused on the detection of nonsystematic errors usually caused by data processing, which happens most frequently during digitization procedure (Aguilar et al., 2005, 2009). Ambiguous values (e.g. negative precipitation or maximum temperature lower than minimum temperature) were identified. Also, the distribution of the precipitation data was visually inspected, as were plots of the temperature and precipitation time series in order to detect outlying values.

In the case of temperature, statistical outliers, identified as daily values outside a threshold of the mean value for that particular day plus/minus four standard deviations were also flagged (see Section 2.4). The suspicious data were validated, set to missing value or corrected on the basis of subjective inspection of partial time series for the adjacent days at the same period with other years and by spatial comparison with those available close neighboring stations.

Once the data passed the quality control checks, they were evaluated for homogeneity. The station data underwent homogeneity testing using the RHtest software package (Aguilar et al., 2005, 2009), which helps in identifying step changes in a time series by comparing the goodness of fit of a two-phase regression model with that of a linear trend for the entire series (Wang, 2003, 2008a, 2008b). RHtest is used to help identify series break points for further investigations. Selection of data for analysis was based on series length and completeness, quality control and homogeneity (Aguilar et al., 2005, 2009). In this study, we used a base period of 1961–1990 and 1971-2000 where most of the station data are available. In some cases such as in Somalia, Sudan and Rwanda; we used a shorter base period; for example, the data supplied for Gikongoro in Rwanda began in 1967, so we used a base period of 1967–1996. To be included in the analysis, time series need to be sampled for at least 30 years and contain fewer than 10% of missing/rejected values. The reference period of 1971–2000 was chosen to maximize the number of stations with available data for calculation of the percentile-based indices. Even with this maximization, only 8 countries with a total 58 of the 73 original stations had long enough homogeneous periods to be included in the analysis, and not all the indices were calculated for all the stations. Figure 1 shows the location of stations and Figure 2 the data availability for these stations.

Of the ten countries that had participants in the workshop, Somalia and Sudan had data time series falling outside the 1971-2000 period (Figure 2). Since many of the stations had data problems prior to 1970, the analysis was limited to the period 1971 to 2009. For percentile-based indices (e.g., the number of days exceeding the 90th percentile of minimum temperature), the methodology uses bootstrapping for calculating the baseline period values in order to avoid discontinuities in the indices time series at the beginning or end of the base period following the approach by Zhang et al. (2005).

The PRECIS modeling system was applied over the region to develop high-resolution climate scenarios. It was driven with initial and lateral boundary conditions using the UK Met Office Hadley Center Regional Climate Model (HadRM3P), which is a high-resolution atmospheric component of the Hadley Centre coupled ocean-atmosphere GCM-HadCM3, with a resolution of 1.875° in longitude and 1.25° in latitude. Details of the Global Climate Models (GCMs) used in
verification of the PRECIS Regional Climate Model (RCM) can be obtained in Simon et al. (2004).

2.3 Gravity Recovery And Climate Experiment (GRACE)

Global and regional water cycles are related to different phenomena within the Earth system, including variations in atmosphere, hydrosphere, ice cover and land surface in various ways, while ranging from sub-seasonal and inter-annual to decadal and secular interactions. These all make it difficult to develop realistic models to simulate or predict water variations.

The gravity field of the Earth and its temporal variations, measured globally by GRACE (a joint US-German satellite mission launched in March 2002) however, are interrelated to total water storage (TWS) variations of the Earth (Wahr et al., 1998). This offers the unique opportunity to detect spatio-temporal variations of water within the Earth system from space (Tapley et al., 2004a,b).

The GRACE mission consists of two identical spacecrafts flying approximately 220 km apart in the same near-polar orbit of about 450 km (Tapley et al., 2004a,b). The main observable is the distance between the two satellites, measured using a microwave ranging system. Additional tracking information is provided by Global Positioning System (GPS) receivers on board each of the spacecraft and Satellite Laser Ranging (SLR) reflector. On-board accelerometers sense non-conservative forces such as atmospheric drag and solar radiation pressure. Time-variable gravity field solutions are obtained by the exploitation of GRACE observation data over certain time intervals, namely daily to monthly gravity field solutions. The solutions are computed in terms of spherical harmonics (SHs). GRACE time-variable products have been frequently used to study water variations and their relations to climate change, as documented, e.g., in Ramillien et al. (2004), Awange et al. (2008, 2009, 2011), Becker, et al. (2010) and Forootan et al. (2012).

This study made use of the ITG-GRACE2010 daily solutions (Kurtenbach et al., 2009), which are computed up to the SHs of degree and order 40, covering October 2002 to September 2009. For computation of such daily fields, the WaterGAP global hydrology model (WGHM), the atmospheric model European Centre for Medium-Range Weather Forecasts (ECMWF), and the ocean circulation model (OMCT) have been used, within the framework of a Kalman-smoother procedure, to derive the temporal correlations while using GRACE observations as the main information for computation of the gravity models. Details of computations can be found in (Kurtenbach, 2011).

The priority of using daily solutions for studying water variations when it is compared to those of monthly solutions is that it allows to recover fast gravity field (its equivalent water) variations as detailed as possible with reasonable temporal resolution. For studying TWS variation over the GHA, first 2588 daily gravity solutions covering October 2002 to September 2009 were downloaded from the official website of the Astronomical Physical und Mathematical Geodesy (APMG) group at Bonn University. These fields were then used to generate the global TWS values according to the approach of Wahr et al. (1998) and the boundary of the GHA as it is shown in Figure 1 was extracted from the fields. Finally, spatially averaged TWS along with their corresponding cumulated TWS variations were computed (see Figure 7b). Daily GRACE products, in this study, have been used to examine the impact of climate variability on total water storage variations for recent years (2002 to 2009) when the station data sets were not

\[\text{http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010} \]
available. In fact, TWS variability reflected in GRACE data indicates the prolonged impact of
decadal climate change over the region. Discussions on the use of GRACE-TWS for drought
monitoring, for instance, can be found in Houborg et al. (2012).

2.4. Analysis methods

2.4.1 Trend calculation and Indices

All stations from different countries were analyzed. Trends for individual stations were
calculated by adapting Sen’s (1968) slope estimator. This method has been applied in other
similar works describing extreme indices (Aguilar et al., 2005, 2009; Zhang et al., 2005; Caesar
et al., 2010) and also adapted to climatological data by Zhang et al. (2000) in a study of annual
temperatures over Canada and by Wang and Swail (2001) in their analysis of extreme wave
heights over the Northern Hemisphere. Trends are significant at the 5% level when results are
±1.96 standard deviations from the median trend. We require at least 70% of annual data to be
non-missing to calculate a trend and refer to trends as being significant if they are determined to
be statistically significant at the 5% level. To avoid biased estimates, station level trends were
not calculated for series with excessive missing values.

A total of 27 indices, based upon recommendations of the ETCCDI, were calculated using
RClimDex (Caesar et al., 2006, 2010). Many of the indices use locally defined thresholds, making it easier to compare results over a wide region. The indices are primarily based on station
level thresholds calculated over a base period, such as the 90th percentile of minimum
temperature. These thresholds are determined for each day of the year using data from that day
and two days on either side of it over the course of the base period. Table 2 lists the indices
presented in this paper while detailed descriptions of the indices and the exact formulae for
calculating them are available on the ETCCDI web page3.

All the indices are essentially anomalies from the same base period. However, some precipitation
indices could potentially be dominated by those stations with the greatest precipitation, as those
stations may see precipitation vary from year to year by more than the total annual precipitation
at stations with the least total precipitation (Aguilar et al., 2009). To determine whether this was
the case for the stations analyzed, precipitation indices were also calculated by first standardizing
the indices (dividing by the index’s standard deviation). As a comparison of both approaches
revealed similar shape and trends, the standardized indices are not used and the results are
provided through the analysis of the simple anomaly series.

2.4.2. Modeling of extreme rainfall and temperature

Using the PRECIS regional climate modeling system, this study analyses the distribution of
extremes of temperature and precipitation in GHA in the recent past (1961–1990) and in a future
(2071–2100) climate under the IPCC SRES A2 and B2 emissions scenarios (IPCC 2007, chapter
19 page 18). Rainfall and temperature were simulated by PRECIS RCM and compared with
observations (in areas in which data are available) for the period 1961–1990. The main task here
is to evaluate the simulations of current climate (particularly precipitation) of regional climate
model by comparing them with currently available data, and thereby assessing the uncertainty
associated with future climate predictions. The UK-Met Office high resolution PRECIS model
runs are compared with available data to assess its performance. The model is used to generate
future climate projections to demonstrate how they can be used and interpreted at the national

3 http://cccma.seos.uvic.ca/ETCCDI/
level. Emphasis is placed on determining the extremes, trend and the variance explained by each model. The purpose of the simulation of regional climate is to examine and compare statistics relevant to the region in observations extremes and regional circulation model. This further demonstrates value of climate observations and regional models for decision making, to provide advice on model performance and limitations, and to improve capabilities across the region for using climate data records and model projections.

2.4.3. Temporal Independent Component Analysis of GRACE spatio-temporal total water storage products

Independent component analysis (ICA) is a higher-order statistical technique, which can be viewed as an extension to the commonly used Principle Component Analysis (PCA) (Forootan and Kusche, 2012, 2013). Using an ICA algorithm, the input data (spatio-temporal observations) are assumed to consist of a linear mixture of unknown source signals, which cannot be directly measured. By incorporating higher order statistical information contained in the data in the decomposition procedure, ICA extracts statistically independent components that reflect spatial and temporal manifestations of physical processes hidden in the data (Lotsch et al., 2003; Hannachi et al., 2009).

Generally, there are two alternative ways to implement ICA on a temporal sequence of gridded datasets in which either temporally independent components or spatially independent time series can be estimated. The methods are respectively called temporal ICA and spatial ICA (for details see e.g., Forootan and Kusche, 2012 and Forootan et al., 2012). This study made use of temporal ICA method, since the scope of the study is to extract the temporal behavior of TWS changes for the period 2002 to 2010, to further investigate the impacts of rainfall after the long-term study of 1970 to 2000.

3. Results

3.1 Trends in temperature indices

Trends for the temperature indices for some selected countries are shown in Table 3 in comparison to global and other regional indices. The two countries i.e., Ethiopia and Kenya are used for comparison purposes since their data coverage is relatively good and trends calculated include similar window period of 1971 to 2003. The warm extremes are increasing while cold extremes decreasing, these series clearly indicate significant warming. Individual stations show most spatial coherence in the TN90p index, that is, frequency of nights warmer than the 90th percentile. Nearly half of the available stations indicate a significant increase in this index over the period 1971–2004. Sample time series for the percentile-based temperature indices are shown in Fig. 3 for Asmara in Eritrea. The frequencies of warm days and nights, relative to the base period 1961–1990, increased strongly between 1961 and 1990, with a large increase in the number of nights per year exceeding the 90th percentile threshold. There were also large reductions in the frequency of cold nights and cold days over the 49 years. The warmest day and night of the year is warming at a rate approximately comparable to the global average.

In general, over the entire region, the frequency of warm days and warm nights has increased, and the frequency of cold days and cold nights has decreased. This agrees with the results from other studies that have analyzed these trends across different parts of the world (Griffiths et al., 2005; Klein Tank et al., 2006; Choi et al., 2009; Caesar et al., 2010). However, the results for the absolute temperature indices (TXx, TNx, etc.) defined for the entire region are sensitive to the large variability in these indices across the region. The percentile indices (e.g. TN90p) are more robust across large regions because they account for the influence of local climate effects. There
has been a significant increase in the absolute annual maximum of both daily maximum and
minimum temperatures, again in common with the global picture (Griffiths et al., 2005; Klein
Tank et al., 2006; Choi et al., 2009; Caesar et al., 2010). The coldest day and night of the year is
warming slower than the global average, although planetary trend for the coldest day is not
significant.

3.2 Trends in precipitation indices

The map in Figure 4b depicts total precipitation in wet days (> 1 mm) (PRCPTOT) and it is an
typical example indicating relative lack of spatial coherence for precipitation in the region. The number
of stations with significant negative or positive trends is low. Sample graphs of trends, calculated
for various precipitation indices are shown in Figures 4a, 5a and 5b, while Table 4 compares
similar trends at regional and global scales (Alexander et al. 2006, Caesar et al., 2010) at similar
window period. Western Lake Victoria, southern Sudan and western Ethiopia generally show
significant decreases in total precipitation (e.g., see Figure 4b). For Asmara (Figure 4a) and
Djibouti (Figure not shown), there are sharp drops in the total annual precipitation time series
around 2000 to 2010. Likely associated with the decrease in total precipitation, the length of the
maximum number of consecutive dry days is increasing in Asmara and Djibouti, while the length
of the maximum number of consecutive wet days shows a significant decrease (figure not
shown). The Simple Daily Intensity Index (SDII), which takes into account the number of days
with rainfall greater than or equal to 1 mm shows no significant changes. In general, decreasing
trend in total precipitation in wet days (> 1 mm) is observed in the north western sector (western
Ethiopia and southern Sudan), and equatorial sector around Lake Victoria, while much of
Ethiopia had significant positive increase (Figure 4b). The precipitation due to very wet days
greater than 95th percentile (R95p) index (Figure 5a) indicate that the annual amount of
precipitation contributed on days exceeding the long-term 95th percentile has decreased from
about 50 mm to around 30 mm in Khartoum, but this change is non-significant (Figure 5a). The
highest precipitation amount in five-day period or maximum 5-day precipitation (RX5day) index
(Figure 5b) depicts significant reduction over the 40-year period.

Similar time series of R95p for the southern sector is represented by Dodoma (Figure 6a). There
are increases in R95p over the southern sector, a marginal decrease over the equatorial sector,
and a decrease over the northern sub-region. Between them, only the change within the southern
sector is statistically significant.

Table 4 lists the regional trends for the precipitation indices and also the global trends. The same
problems exist with defining some of the precipitation indices across the whole region that
applied to the absolute temperature indices, and indices defined relative to a local climatology
(e.g. percentile based) are preferable for comparing across such a large region.

Compared to the temperature indices, there are fewer significant trends in the precipitation
indices. In contrast to the other sub-regions, the northern sector has decreasing trends in all
precipitation indices, apart from the consecutive dry day index, suggesting a consistent change
towards drier conditions. However, it must be emphasized that these trends are not-significant.
Over the region as a whole, the precipitation trends are mixed (Funk et al., 2008, 2012). This
does not parallel the global results of Caesar et al. (2010) indicating consistent trends towards
wetter conditions across nearly all of the indices, although it should be noted that analysis was
for a different time period (1971–2005) and had only limited coverage of the tropics.

3.3 Relationship between precipitation and TWS changes
Regarding the precipitation results, it was clear that the overall precipitation over the GHA is declining. To support the precipitation results of the last 7 years of the study (2002-2009), we used daily TWS products as described in Section 2.3. The goal was to see whether the total water availability of the region is affected by climate variations or not. As a matter of fact, TWS tells quite more sophisticated story of water variations over the study region by providing information on daily precipitation minus evaporation minus run-off over the region. Our results of spatially-averaged TWS over the GHA (Fig. 7) show that TWS declined between 2002 and 2007. An increase in TWS in 2007 is associated with the El Niño southern oscillation phenomenon, which usually brings rainfall to most parts of the region (Ogallo et al., 1988; Janowiak, 1988; Indeje, 2000; Mutemi, 2003). This has been followed again by a decline in TWS variations over the GHA up to the end of the study period. The cumulative TWS over the study period supports the results of precipitation (e.g., Figure 4a), showing that the total water availability has decreased over the GHA during the last 7 years of the study (see Fig. 7b, bottom).

Applying the ICA method on GRACE-TWS data over the GHA shows that the first ICA mode (IC1) extracts 75% of variability in TWS changes. The spatial pattern of IC1 shows a dipole spatial structure with respect to the Equator. The temporal pattern of IC1 shows a dominant annual water cycle over the study area. The second ICA mode (IC2) corresponds to 15% of the variance, while the temporal pattern shows a summation of a long-term trend and an inter-annual variability. Considering the spatial pattern, therefore, a declining rate for the regions of the Lake Victoria Basin and the surrounding lakes were found. The declining pattern of TWS is also extended up to the south of Sudan (c.f., figure 4b). In contrast, over the tropical regions as well as Ethiopia a slight increase of TWS during 2002 to 2010 is seen (c.f., figure 4b). The spatial and temporal patterns of IC2, therefore, confirm the results of precipitation, which was derived for the long-term period during 1970 to 2000.

3.4 Modeling precipitation extremes

PRECIS Regional Climate Model (RCM) analyzed correctly and reproduced the mean seasonal and annual cycles of precipitation for the period 1961-1990 over the southern (Figure 8a), northern (Figure 8b) and equatorial (Figure 8c) sectors. The mean surface temperature climatology for all the four seasons of the region i.e. March-May (MAM), June-August (JJA), October-December (OND) and December-February (DJF) are spatially and temporally (Figure 8d) simulated for the baseline period of 1961-1990 compared with the observed Climate Research Unit (CRU) data (gridded data based on the set aggregated to the RCM grid). The results show that, compared to CRU, the model underestimates rainfall over most parts of eastern highlands during OND while over the central sector (around Lake Victoria area) and southern sector of the region, the model overestimates rainfall (Figure 8a). On the contrary, over northern sector, the model produces the observed rainfall reasonably well (figure not shown). It is thus evident that the simulated rainfall by the PRECIS model is fairly consistent with the observed values over most parts of the study area. Results from the inter-annual variability of PRECIS simulated surface air temperature showed that during JJA season, some sections of the region recorded the lowest temperature and the warmest temperatures during the DJF season (Figure 8b). The model results agree reasonably well with the observed patterns in terms of the spatial location of the extreme maximum temperatures.

The trends calculated for projected precipitation indices for the period 2010-2040 are shown in Figure 9. Only central Uganda represented by Mbarara, Masindi and Jinja show significant increases in total precipitation. Sample time series for Gulu is shown by Figure 9a and regional projected trends in Figure 9b. Total annual rainfall (PRCPTOT) showed a decreasing trend for
many of the stations over Sudan except for the Khartoum that had significant positive trend. Generally, consecutive wet days (CWD) showed a decreasing trend while the consecutive dry days (CDD) showed an increasing trend. While temperature indices vary from station to station, the dominant features seem to be an increasing trend in the number of cold nights (TN10p) with a decreasing trend in the number of warm nights (TN90p). Time series for projected Total Rainfall (PRCPTOT) over Rwanda, where three stations (Kigali, Kamembe, and Gikongoro) were analyzed showed evidence of decreasing trends in rainfall. Results show general increasing trend in Consecutive Dry Days (CDD) and decreasing trend for Consecutive Wet Days (CWD) for Gikongoro.

4. Discussion

A set of daily station observations from countries in the GHA region were for the first time compiled and analyzed to enable assessment of changes in climate extremes over the region. Most stations showed decrease of total precipitation in wet days greater than 1 mm (PRCPTOT) as well as heavy rainy days (R10mm), maximum one-day precipitation (Rx1day), maximum five-day precipitation (Rx5day), heavy precipitation days (R10mm) and warm spell duration (WSDI). Index for warm days (Tx90P) showed increasing trend, while the index for cool days (TX10P) showed decreasing trend. The TXn index (monthly minimum value of daily maximum temperature) showed an increasing trend in most parts of the region. The TNx index (monthly maximum value of daily minimum temperature) showed an increasing trend over most parts of the region, and more significantly in the north-eastern and southern sectors of the region; indicating that there is a general increasing trend of warm nights for most of the stations in the region. Increasing trend in warm nights is indicative of significant night time warming.

Thus, increasing trends for warm nights were the most spatially coherent index consistent with the results of other regional workshops (Klein Tank et al., 2006, Choi et al., 2009) and the global analysis (Alexander et al., 2006, Caesar et al., 2010). Less spatial coherence trends in precipitation indices across the region and fewer trends that are locally significant when compared with the temperature indices are observed. In the few cases where statistically significant trends in precipitation indices are identified for regions and sub-regions, there is generally a trend towards wetter conditions consistent with the global results of Alexander et al. (2006).

5. Conclusion

The study aimed at:

(i) Assessing the adequacy of regional climate observations and trends for adaptation purposes. In this regard, the study found that there is inadequate in-situ data for an individual country analysis but provided sufficient ground for regional level climate analysis. The results further showed increasing/decreasing trend in warm/cold extremes. Furthermore, frequencies of warm days and nights increased strongly, with a large increase in the number of nights per year exceeding the 90th percentile threshold between 1961 and 1990. On the contrary, precipitation patterns are mixed with fewer significant trends except significant decrease in total precipitation in wet days greater than 1 mm across the whole region.

(ii) Assessing the adequacy and reliability of available model based climate projections for adaptation needs. To this end, the study found that the simulated climate is fairly consistent with the observed values over most parts of the study area.
(iii) Assessing the expected changes in climate extremes needed to assist in developing effective adaptation and climate risk management strategies. Here, the study established that, generally, the model projected decreasing/increasing trend in consecutive wet/dry days with variations in temperature indices from one station to another. The dominant features in the region seem to be an increasing trend in the number of cold nights with a decreasing trend in the number of warm nights. Increasing trends for warm nights were the most spatially coherent index consistent with the results of other regions of the globe.

(iv) Assessing changes in the total water storage for the period 2002-2010. Here, the study established a decline in total water availability over the GHA region during the last 7 years. Our findings therefore showed that increasing trends in both night and day temperatures had the most spatially coherent indices. The model simulates well the spatial distribution of extreme temperature and rainfall events when compared with present climate observations, with temperature simulation being more realistic across the region. Overall, the future occurrence of warm days and nights are projected to be more frequent in the entire GHA, while the occurrence of cold night events is likely to decrease. The overall precipitation in the region decreased between 2002 and 2007 from the TWS products.

Acknowledgements
The authors would like to thank R. Huth (editor) and two anonymous reviewers whose comments considerably improved the manuscript. The Nairobi workshop was funded by the World Bank’s Global Facility for Disaster Reduction and Recovery (GFDRR) Track II support and implemented through World Meteorological Organization (WMO); World Climate Research Programme (WCRP); Global Climate Observing System (GCOS). The workshop participants would like to thank all the National Meteorological and Hydrological Services (NMHSs) of the respective countries for providing daily rainfall and temperature data used in the analysis. Special thanks to United Kingdom (UK) Met Office for offering expertise to the workshops.
References

Elagib N. A., 2010: Changing rainfall, seasonality and erosivity in the hyper-arid zone of Sudan. Published online 22 July 2010 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/lrd.1023

http://www.malariajournal.com/content/10/1/12

UNDP, 2004: Disasters for Least Developed Countries.

Figure 1: Location of the Greater Horn of Africa region in Africa together with stations used in the study (see Table 1 for full names, the values of latitude and longitude for each station).
Figure 2: Available data for the time series used in the analysis. White indicates no data; upper box indicate rainfall while the lower one indicates temperature. The arrows show the common years available for all the countries.
Figure 3: 1971–2010 time series for (a) cold days, (b) warm days, (c) cold nights and (d) warm nights (units: %). Bold line indicates ordinary least squares fit for Asmara, Eritrea.
Figure 4: Precipitation Total (PRCPTOT). Individual station’s time series and regional trend (a) Individual time series 1980–2010 for Asmara in Eritrea, (b) Regionally averaged station trends. Positive (negative) trends are shown in red (blue) circles. Large (small) circles indicate significant (insignificant) trends.
Figure 5: 1961–2000 time series for (a) contribution from very wet days (R95p, units: mm) and (b) annual maximum 5-day precipitation amounts (RX5day, units: mm) for Khartoum. Bold lines indicate ordinary least squares fit.

Figure 6: 1970 –2010 time series for (a) contribution from very wet days (R95p, units: mm) and (b) annual maximum 5-day precipitation amounts (RX5day, units: mm) for Dodoma. Bold lines indicate ordinary least squares fit.
Figure 7a: (top) Spatially-averaged total water storage (EWT) variations over the GHA, derived from daily Kalman-smoother GRACE products, (bottom) Accumulated EWT changes over the GHA.
Figure 7b: Implementing the temporal ICA method over 2588 days of TWS maps over the GHA, computed from Kalman-smoother daily GRACE products provided by the APMG group at Bonn University. Independent patterns are ordered according to the variance they represent. One can reconstruct each mode of TWS variability by multiplying the spatial patterns with their corresponding temporal components.
(a) Southern sector

(b) Northern Sector
Figure 8: Simulated and observed mean climate cycles for some stations located in various sectors of the region.
(a) Gulu

Figure 9: Projected Precipitation Total (PRCPTOT). Individual station time series and regional trend (a) Individual time series 2010–2040 for Gulu in Uganda, (b) Regionally averaged station trends. Positive (negative) trends are shown in red (blue) circles. Large (small) circles indicate significant (nonsignificant) trends.
Table 1. List of stations (see Fig. 1 for their exact location).

<table>
<thead>
<tr>
<th>NO</th>
<th>STATION</th>
<th>STN</th>
<th>CODE</th>
<th>LON</th>
<th>LAT</th>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABU HAMAD</td>
<td>ABH</td>
<td>62640</td>
<td>33.3</td>
<td>19.5</td>
<td>1960-2002</td>
</tr>
<tr>
<td>2</td>
<td>ARBA MINCH</td>
<td>ABM</td>
<td>63500</td>
<td>37.7</td>
<td>6.1</td>
<td>1966-2007</td>
</tr>
<tr>
<td>3</td>
<td>ASMARA</td>
<td>ASM</td>
<td>63021</td>
<td>38.9</td>
<td>15.3</td>
<td>1960-2009</td>
</tr>
<tr>
<td>4</td>
<td>ATBARA</td>
<td>ATB</td>
<td>62680</td>
<td>34.0</td>
<td>17.7</td>
<td>1960-2000</td>
</tr>
<tr>
<td>5</td>
<td>AWASSA</td>
<td>AWA</td>
<td>63460</td>
<td>38.5</td>
<td>7.1</td>
<td>1971-2007</td>
</tr>
<tr>
<td>6</td>
<td>BUJUMBURA</td>
<td>BUJ</td>
<td>64390</td>
<td>29.3</td>
<td>-3.3</td>
<td>1970-2010</td>
</tr>
<tr>
<td>7</td>
<td>BUKOBA</td>
<td>BUK</td>
<td>63729</td>
<td>31.8</td>
<td>-1.3</td>
<td>1960-1991</td>
</tr>
<tr>
<td>8</td>
<td>GIKONGORO</td>
<td>GIK</td>
<td>30.1</td>
<td>1.6</td>
<td>1967-2010</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GISENYI</td>
<td>GNY</td>
<td>29.3</td>
<td>-1.7</td>
<td>1971-2010</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>KAMEMBE</td>
<td>KBM</td>
<td>28.9</td>
<td>-2.5</td>
<td>1971-2010</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>METE</td>
<td>METE</td>
<td>39.9</td>
<td>8.87</td>
<td>1983-2007</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NAAMSE</td>
<td>NAA</td>
<td>34.08</td>
<td>12.44</td>
<td>1963-2000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ORE</td>
<td>ORE</td>
<td>35.53</td>
<td>8.15</td>
<td>1951-2007</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DAGORETTI</td>
<td>DAG</td>
<td>36.8</td>
<td>-1.3</td>
<td>1960-1991</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DAR.I.AI.RP.</td>
<td>DIA</td>
<td>39.2</td>
<td>-6.9</td>
<td>1971-2009</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DEBRE MARCOS</td>
<td>DEBRE MARCOS</td>
<td>37.7</td>
<td>10.4</td>
<td>1970-2003</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DIRE DAWA</td>
<td>DDAWA</td>
<td>41.9</td>
<td>9.6</td>
<td>1970-2003</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>DJIBOUTI</td>
<td>DJB</td>
<td>43.2</td>
<td>11.6</td>
<td>1979-2010</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DODOMA</td>
<td>DOD</td>
<td>35.8</td>
<td>-6.2</td>
<td>1971-2009</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>GENEINA</td>
<td>GIN</td>
<td>22.5</td>
<td>13.5</td>
<td>1960-2001</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>GONDAR</td>
<td>GON</td>
<td>37.4</td>
<td>12.5</td>
<td>1970-2003</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>GORE</td>
<td>GOR</td>
<td>35.6</td>
<td>8.2</td>
<td>1970-2003</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>JINJA</td>
<td>JIN</td>
<td>33.2</td>
<td>0.5</td>
<td>1970-2003</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>JUBA</td>
<td>JUB</td>
<td>31.4</td>
<td>4.5</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>KHARTOUM</td>
<td>KHA</td>
<td>32.6</td>
<td>15.6</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>KIGALI</td>
<td>KIG</td>
<td>30.1</td>
<td>-2.0</td>
<td>1971-2010</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>KOSTI</td>
<td>KOS</td>
<td>32.4</td>
<td>13.1</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>LODWAR</td>
<td>LOD</td>
<td>35.6</td>
<td>3.1</td>
<td>1960-1991</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>MAKINDU</td>
<td>MAK</td>
<td>37.8</td>
<td>-2.3</td>
<td>1960-1991</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MALAKAL</td>
<td>MAL</td>
<td>31.7</td>
<td>9.6</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>MASINDI</td>
<td>MAS</td>
<td>31.7</td>
<td>1.7</td>
<td>1960-1991</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>MBeya</td>
<td>MBY</td>
<td>33.5</td>
<td>-8.9</td>
<td>1970-2009</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>MWANZA</td>
<td>MWA</td>
<td>32.9</td>
<td>-2.5</td>
<td>1960-1991</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>NDONGOLA</td>
<td>NDO</td>
<td>30.5</td>
<td>19.2</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>NEKEMTE</td>
<td>NEK</td>
<td>36.6</td>
<td>9.1</td>
<td>1952-2007</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>NYALA</td>
<td>NYA</td>
<td>24.9</td>
<td>12.1</td>
<td>1960-2000</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ROBE</td>
<td>ROB</td>
<td>40.0</td>
<td>7.1</td>
<td>1983-2007</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>*SOMALIA</td>
<td>SOM</td>
<td>* Missing Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. List of the ETCCDI indices used in this study

<table>
<thead>
<tr>
<th>ID</th>
<th>Indicator Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD *</td>
<td>frost days</td>
<td>count of days where TN (daily minimum temperature) < 0°C</td>
<td>Days</td>
</tr>
<tr>
<td>SU</td>
<td>summer days</td>
<td>count of days where TX (daily maximum temperature) > 25°C</td>
<td>Days</td>
</tr>
<tr>
<td>ID</td>
<td>icing days</td>
<td>count of days where TX < 0°C</td>
<td>Days</td>
</tr>
<tr>
<td>TR</td>
<td>tropical nights</td>
<td>count of days where TN > 20°C</td>
<td>Days</td>
</tr>
<tr>
<td>GSL *</td>
<td>growing season length</td>
<td>annual count of days between first span of at least six days where TG (daily mean temperature) > 5°C and first span in second half of the year of at least six days where TG < 5°C. monthly maximum value of daily maximum temperature</td>
<td>Days</td>
</tr>
<tr>
<td>TXx</td>
<td></td>
<td>monthly maximum value of daily minimum temperature</td>
<td>°C</td>
</tr>
<tr>
<td>TNx</td>
<td></td>
<td>monthly minimum value of daily maximum temperature</td>
<td>°C</td>
</tr>
<tr>
<td>TXn</td>
<td></td>
<td>monthly minimum value of daily minimum temperature</td>
<td>°C</td>
</tr>
<tr>
<td>TNn</td>
<td></td>
<td>monthly minimum value of daily minimum temperature</td>
<td>°C</td>
</tr>
<tr>
<td>TN10p</td>
<td>cold nights</td>
<td>count of days where TN < 10th percentile</td>
<td>%</td>
</tr>
<tr>
<td>TX10p</td>
<td>cold day-times</td>
<td>count of days where TX < 10th percentile</td>
<td>%</td>
</tr>
<tr>
<td>TN90p</td>
<td>warm nights</td>
<td>count of days where TN > 90th percentile</td>
<td>%</td>
</tr>
<tr>
<td>TX90p</td>
<td>warm day-times</td>
<td>count of days where TX > 90th percentile</td>
<td>%</td>
</tr>
<tr>
<td>WSDI *</td>
<td>warm spell duration index</td>
<td>count of days in a span of at least six days where TX > 90th percentile</td>
<td>%</td>
</tr>
<tr>
<td>CSDI</td>
<td>cold spell duration index</td>
<td>count of days in a span of at least six days where TN > 10th percentile</td>
<td>Days</td>
</tr>
<tr>
<td>DTR</td>
<td>diurnal temperature range</td>
<td>mean difference between TX and TN (°C)</td>
<td></td>
</tr>
<tr>
<td>RX1day</td>
<td>maximum one-day precipitation</td>
<td>highest precipitation amount in one-day period</td>
<td>mm</td>
</tr>
<tr>
<td>RX5day*</td>
<td>maximum 5-day precipitation</td>
<td>highest precipitation amount in five-day period</td>
<td>mm</td>
</tr>
<tr>
<td>SDII *</td>
<td>simple daily intensity index</td>
<td>mean precipitation amount on a wet day</td>
<td>mm</td>
</tr>
<tr>
<td>R10mm *</td>
<td>heavy precipitation days</td>
<td>count of days where RR (daily precipitation amount) ≥ 10 mm</td>
<td>Days</td>
</tr>
<tr>
<td>R20mm</td>
<td>very heavy precipitation days</td>
<td>count of days where RR ≥ 20 mm</td>
<td>Days</td>
</tr>
<tr>
<td>Rnn</td>
<td>mm</td>
<td>count of days where RR ≥ user-defined threshold in mm</td>
<td>Days</td>
</tr>
<tr>
<td>CDD *</td>
<td>consecutive dry days</td>
<td>maximum length of dry spell (RR < 1 mm)</td>
<td>Days</td>
</tr>
<tr>
<td>CWD</td>
<td>consecutive wet days</td>
<td>maximum length of wet spell (RR ≥ 1 mm)</td>
<td>Days</td>
</tr>
<tr>
<td>R95pTOT</td>
<td>precipitation due to very wet days (> 95th percentile)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>R99pTOT</td>
<td>precipitation due to extremely wet days (> 99th percentile)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>PRCPTOT</td>
<td>total precipitation in wet days (> 1 mm)</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

Full definitions are available from the ETCCDI website http://cccma.seos.uvic.ca/ETCCDI/
Table 3: Regional Trends in Temperature Indices\(^a\)

<table>
<thead>
<tr>
<th>Index</th>
<th>Guinea</th>
<th>Central Africa</th>
<th>Zimbabwe</th>
<th>Global</th>
<th>Kenya</th>
<th>Ethiopia</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmest day</td>
<td>0.14</td>
<td>0.25</td>
<td>0.15</td>
<td>0.21</td>
<td>0.35</td>
<td>0.11</td>
<td>(^\circ)C /decade</td>
</tr>
<tr>
<td>Warmest night</td>
<td>0.17</td>
<td>0.21</td>
<td>0.10</td>
<td>0.30</td>
<td>0.17</td>
<td>0.33</td>
<td>(^\circ)C /decade</td>
</tr>
<tr>
<td>Coldest day</td>
<td>0.23</td>
<td>0.13</td>
<td>0.00</td>
<td>0.37</td>
<td>0.02</td>
<td>0.10</td>
<td>(^\circ)C /decade</td>
</tr>
<tr>
<td>Coldest night</td>
<td>0.04</td>
<td>0.23</td>
<td>0.02</td>
<td>0.71</td>
<td>0.21</td>
<td>0.32</td>
<td>(^\circ)C /decade</td>
</tr>
<tr>
<td>DTR</td>
<td>0.12</td>
<td>0.00</td>
<td>0.11</td>
<td>-0.08</td>
<td>0.22</td>
<td>0.61</td>
<td>(^\circ)C /decade</td>
</tr>
<tr>
<td>Cold Night frequency</td>
<td>-0.21</td>
<td>-1.71</td>
<td>-1.24</td>
<td>-1.26</td>
<td>-1.10</td>
<td>-1.23</td>
<td>% of days in a year/Decade</td>
</tr>
<tr>
<td>Cold Day frequency</td>
<td>-2.15</td>
<td>-1.22</td>
<td>-1.05</td>
<td>-0.62</td>
<td>-1.6</td>
<td>-1.0</td>
<td>% of days in a year/Decade</td>
</tr>
<tr>
<td>Warm night frequency</td>
<td>1.19</td>
<td>3.24</td>
<td>0.71</td>
<td>1.58</td>
<td>1.44</td>
<td>2.14</td>
<td>% of days in a year/Decade</td>
</tr>
<tr>
<td>Warm day frequency</td>
<td>1.56</td>
<td>2.87</td>
<td>1.86</td>
<td>0.89</td>
<td>1.07</td>
<td>0.65</td>
<td>% of days in a year/Decade</td>
</tr>
</tbody>
</table>

\(^a\)The trends for the globe area from Alexander et al. (2006) and Caesar et al. (2010) based on the time period 1955-2003. A trend significant at the 5% level is marked with bold font.

Table 4: Regional and global trends in precipitation Indices for the period 1971-2005

<table>
<thead>
<tr>
<th>Index</th>
<th>Indian Ocean</th>
<th>Himalayas</th>
<th>Indo-Pacific</th>
<th>Global</th>
<th>Northern sector</th>
<th>Equatorial sector</th>
<th>Southern sector</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRCPTOT</td>
<td>81.84</td>
<td>41.77</td>
<td>-2.86</td>
<td>5.91</td>
<td>-2.92</td>
<td>-0.85</td>
<td>10.3</td>
<td>mm /decade</td>
</tr>
<tr>
<td>SDII</td>
<td>1.05</td>
<td>1.55</td>
<td>0.25</td>
<td>0.05</td>
<td>-0.81</td>
<td>-0.89</td>
<td>-0.13</td>
<td>mm/day/decade</td>
</tr>
<tr>
<td>CDD</td>
<td>0.66</td>
<td>2.61</td>
<td>-1.01</td>
<td>-1.19</td>
<td>0.37</td>
<td>0.32</td>
<td>0.45</td>
<td>Days /decade</td>
</tr>
<tr>
<td>CWD</td>
<td>0.10</td>
<td>-0.24</td>
<td>-0.13</td>
<td>-0.07</td>
<td>-0.05</td>
<td>-0.50</td>
<td>-0.07</td>
<td>Days /decade</td>
</tr>
<tr>
<td>RX1day</td>
<td>1.12</td>
<td>1.70</td>
<td>-1.12</td>
<td>0.26</td>
<td>0.48</td>
<td>-0.33</td>
<td>-0.72</td>
<td>mm /decade</td>
</tr>
<tr>
<td>RX5day</td>
<td>5.96</td>
<td>16.39</td>
<td>0.90</td>
<td>0.73</td>
<td>0.67</td>
<td>-0.67</td>
<td>0.12</td>
<td>mm /decade</td>
</tr>
<tr>
<td>R10mm</td>
<td>2.09</td>
<td>0.00</td>
<td>-0.14</td>
<td>0.03</td>
<td>-0.29</td>
<td>-0.28</td>
<td>0.35</td>
<td>Days /decade</td>
</tr>
<tr>
<td>R20mm</td>
<td>1.26</td>
<td>0.53</td>
<td>-0.04</td>
<td>0.06</td>
<td>-0.01</td>
<td>-0.04</td>
<td>0.14</td>
<td>Days /decade</td>
</tr>
<tr>
<td>R95p</td>
<td>22.66</td>
<td>82.30</td>
<td>12.24</td>
<td>4.68</td>
<td>12.9</td>
<td>-0.50</td>
<td>1.79</td>
<td>mm/Decade</td>
</tr>
<tr>
<td>R99p</td>
<td>-12.61</td>
<td>32.39</td>
<td>4.98</td>
<td>3.38</td>
<td>51.1</td>
<td>-2.30</td>
<td>8.05</td>
<td>mm/Decade</td>
</tr>
</tbody>
</table>

Note that global trends were calculated from Alexander et al. (2006) together with Caesar et al. (2010) data and referred to the period 1971 to 2003. Trends significant at the 5% level are shown in bold font.