A coupled Thermo-Hygro-Chemical model for characterising autogenous healing in ordinary cementitious materials

Adriana Silviana Chiteza,
Anthony Duncan Jeffersona, *

aCardiff University, School of Engineering, Queen’s Buildings, The Parade CF24 3AA, UK,
www.cardiff.ac.uk

* Corresponding author. JeffersonAD@cardiff.ac.uk (A.D. Jefferson)
Tel.: +44 (0)29 20 865697

Abstract

Experimental work has demonstrated that cracks can be healed in ordinary cementitious materials in the presence of water. The primary healing mechanisms are hydration of the unreacted nuclei of cement particles and the long-term formation of calcite. A mathematical model for simulating early-age autogenous healing of ordinary cement-based materials is proposed, which employs a coupled thermo-hygro-chemical (THC) framework and which uses a reactive water transport component to predict the movement of healing materials. A single concentration variable is employed for the healing component of the model that is derived directly from the quantity of unreacted cement and computed using a generalised cement hydration model component. The hydration component is directly linked to an expression for capillary porosity and for the porosity of the material within a healed crack. The results from a series of model simulations are in good general agreement with experimental data from tests on autogenous healing.

Nomenclature

\begin{align*}
a & \quad \text{material parameter} \\
a_i & \quad \text{constant; } i \in [1,5] \\
A,k,A,l & \quad \text{material parameters} \\
A,p,A,w & \quad \text{material parameters \([K^{-1}]\)} \\
A,\lambda & \quad \text{area under the crack width curve \([\mu m^2]\)} \\
A,\text{crack} & \quad \text{area under the crack width curve \([\mu m^2]\)} \\
K,X & \quad \text{order of reaction of mineral } X \\
m & \quad \text{material parameter} \\
m_i & \quad \text{mass of } i \text{ per unit volume \([kgm^{-3}]\)} \\
m_i & \quad \text{mass of } i \text{ per unit volume \([kgm^{-3}]\)} \\
\dot{m},\pi & \quad \text{type } i \text{ mass rate of phase } \pi \text{ \([kgm^{-3}s^{-1}]\)} \\
mc,i & \quad \text{type } i \text{ moisture content}
\end{align*}
Greek symbols

\(\alpha \) empirical constant
\(\alpha_{LS} \) longitudinal dispersivity coefficient [m]
\(\alpha_p \) precipitation parameter
\(\beta \) hydration shape parameter
\(\beta_{Tr} \) transversal dispersivity coefficient [m]
\(\beta_p \) precipitation parameter
\(\gamma \) filling fraction
\(\gamma_{norm} \) normalized filling fraction
\(\Gamma \) degree of hydration
\(\Gamma_q \) boundary of the domain
\(\delta_{ij} \) Kronecker delta
\(\delta_T \) heat transfer coefficient [W m\(^2\) K\(^{-1}\)]
\(\delta_{wv} \) moisture transfer coefficient [m s\(^{-1}\)]
\(\delta_w \) solute transfer coefficient [kg s\(^{-1}\) m\(^{-2}\)]
\(\delta \) increment of the vector of unknowns
\(\Delta H_v \) specific heat of evaporation [J kg\(^{-1}\)]
\(\Delta t \) time increment [s]
\(\eta \) porosity
\(\kappa_X \) rate constant of the mineral \(X \)
\(k_{eff} \) effective thermal conductivity of a dry material [W m K\(^{-1}\)]
\(\mu_w \) dynamic viscosity of liquid water [\(\mu Pa s \)]
\(\rho_\pi \) density of phase/material \(\pi \) [kg m\(^{-3}\)]
\(\overline{\rho_\pi} \) phase-averaged density of \(\pi \) [kg m\(^{-3}\)]
\(\rho C_p \) storage heat capacity [J m\(^{-3}\) K\(^{-1}\)]
\(\tau \) hydration time parameter
\(\Phi \) vector of unknowns
\(\Psi \) residual vector
\(\omega \) mass of unreacted cement per mass of capillary solution [kg kg\(^{-1}\)]
\(\Omega \) domain

31
1. Introduction

Cementitious composites are quasi-brittle materials that develop their porous internal microstructure during hydration. The complex pore structure within these materials, along with any micro-cracks present, largely governs the moisture and heat transfer properties of the composite material. Structures formed from these cementitious materials have frequently suffered from poor durability that has resulted in expensive repair and maintenance work. In recent years, researchers have investigated new cementitious materials that have the ability to self-repair, as a possible remedy to these durability problems.

Since Turner’s first discussion on crack repair [1], the pace of experimental research on self-healing in cementitious has greatly accelerated [2-4]. Van Tittelboom and De Belie [2] provided an extensive state-of-the-art review of research on self-healing in cementitious...
materials in which the authors identified two main groups of self-healing techniques: (i) ‘autonomic’ healing, in which a single or multi-component healing agent is released from embedded capsules or vascular systems by damage and temperature activation [3] and (ii) ‘intrinsic’/‘autogenic’ self-healing, based on the chemical reactions between the components of the cementitious matrix. In the latter case, the recovery of mechanical or durability properties is obtained either by autogenous healing or by healing in a polymer modified concrete [2]. Initially, autogenous healing was attributed solely to ongoing hydration of the remnant clinker and intercrystallisation of the fractured crystals [1]. More recent research suggests that continuous hydration is only predominant in the first weeks after casting, when the amount of unreacted cement is significant, but that calcite formation is the main mechanism thereafter [2,4–6]. Experimental tests showed a decrease of water permeability, a recovery of stiffness and a regain of compressive and flexural strengths [4–11]. The number of numerical studies on autogenous healing is still limited. Ter Heide [12] incorporated the bar and ribbon models developed by Lokhorst [13] and Koenders [14] and used bridging particles to fill the existing gaps between the clusters of hydrates formed as a result of the expansion of unhydrated cement. The distribution and further hydration of these particles were simulated considering diffusion and thermodynamic principles in the HYMOSTRUC [15] model. Huang and collaborators proposed an alternative modelling approach for autogenous healing in high performance concrete [16]. Again, the distribution and fraction of the unreacted cement particles were determined with the microstructural model HYMOSTRUC 3D. This time though, the dissociated ions from the clinker minerals were transported to the crack surface via a diffusion model, while the precipitation of the hydrates was represented in a thermodynamic model comprising mass and charge balance as well as chemical equilibrium. The mechanical recovery of the cracked cement paste was investigated using finite element models by Remmers and de Borst [17] and Hilloulin et al. [18]. Remmers and de Borst introduced momentum and mass balance equations for a fluid-saturated porous medium and modelled crack rebonding by adding a strength and stiffness increment of the interface to the constitutive relation that governs the crack opening. Hilloulin et al., on the other hand, solved a hydro-chemo-mechanical problem in which the chemical reactions were simulated in a hydration model based on the Arrhenius law.

In this paper a numerical study is presented on the simulation of autogenous healing of young cement-based materials. Dissolved clinker is modelled as a single solute that can be diffused and advected due to concentration and water pressure gradients, respectively. The thermo-hygral model formulated for transport phenomena in a porous medium [19,20] has been extended with a mass balance equation for the healing product. The kinetics of phase change, from dissolved clinker to precipitated material, is modelled using Freundlich
equilibrium isotherm. The formation and variation of the porous network before and during crack recovery is assessed using the microstructural model STOICH_HC2 [21,22]. The model is validated using data from recent tests undertaken at Cardiff University as well as from autogenous healing experiments reported in the literature. As discussed more fully in section 3, the authors consider that the efficiency of this semi-phenomenological model would allow it to be coupled to a mechanical analysis and employed in the analysis of full-scale structures. The assumptions upon which the model is based means that is more applicable to early age self-healing than to long-term calcite formation.

2. Structure of the hydrated cement

The hydration of cement based materials leads, in the early stages of the reaction, to the appearance of an unstable chemical system with varying physical and chemical properties.

![Figure 1](image)

Figure 1 Water forms within the calcium silicate hydrate gel

In the current investigation, the microstructural model STOICH_HC2 [21,22] is adopted to trace the hydration kinetics of Portland cement. This model, based on Jennings’ description [23] of the calcium silicate hydrate (C–S–H) gel, which is depicted here in Figure 1, takes into account the quantitative evolution of the mix constituents, the transformation of the porous network and the chemical shrinkage. According to Jennings, Portland cement
behaves as a colloidal material due to the existence of various water forms. Its gel-like structure comprises:

- Ca^{2+}, Si^{2+} and O^{2-} ions that form the solid skeleton of the reacted clinker (SSRC);
- chemically bound water (CBW) strongly attached to the solid skeleton;
- intraglobular, interlayer and adsorbed water (IGW+ILW+AW);
- water in small gel pores (SGW) encapsulated between the silicate globules and
- water in large gel pores (LGW) that separate two neighbouring globule flocs.

The above morphological description contradicts the recent work of Müller et al. [24–26] that found only two nanoscale pore sizes associated with the calcium silicate hydrate. Their 1H nuclear magnetic resonance (NMR) relaxation tests revealed the fact that the large gel pores reported by Jennings do not seem to be an intrinsic part of the $C-S-H$. In spite of this, the validity of our work does not depend on the veracity of these NMR determined measurements. The authors acknowledge that if compatibility with Müller et al.’s results is sought, the classification of our ‘grouped’ water forms and their corresponding relative humidity boundaries, mentioned below, would need to be altered.

In STOICH_HC2 it is assumed that the sequential desorption of LGW, SGW and IGW+ILW+AW occurs during three humidity ranges: [60%, 40%), [40%, 11%) and [11%, 0%) [23,27,28] which are demarcated in terms of water content by four water mole thresholds. Therefore, the gel liquid phases and the capillary water (CW) are quantified by solving iteratively the chemical reactions listed in Annex A, Table A. 1 using the four sets of stoichiometric coefficients from Table A. 2. A brief description of the computational procedure is presented below, but more details can be found in [21,22].

The reaction kinetics encompass three main stages: (i) the induction period, (ii) the nucleation and growth stage and (iii) the diffusion controlled hydration [29,30]. The general form of the corresponding individual hydration curves is given in equation (1), whilst the values of the hydration parameters are provided in Annex A, Table A. 3.

$$
\Gamma_X(t) = \begin{cases}
\frac{\Gamma_X^l t}{t_X^l} - 1 & , \forall t < t_X^l \\
\exp \left[\frac{\Gamma_X^l t}{3600} \right] & , \forall t_X^l \leq t < t_X^{NG} \\
1 - \frac{\sqrt{2D_X}}{R_x} \sqrt{t - t_X^{NG}} + \frac{1}{2} - \frac{1}{\Gamma_X^l} & , \forall t \geq t_X^{NG}
\end{cases}
$$

where $X = C_3S$ (alite), C_2S (belite), C_3A (aluminate), C_4AF (aluminoferrite)
For each time step, the quantities of clinker and water phases consumed during the hydrolysis are determined using equation (1). The masses of LGW, SGW, GW+ILW+AW and CBW per unit volume of material are then computed from \(w_{60\%}, w_{40\%}, w_{11\%}, w_{0\%} \), which are the masses of the depleted water within the boundaries of the above mentioned humidity intervals:

\[
\begin{align*}
\text{LGW}(t) &= w_{60\%}(t) - w_{40\%}(t) \\
\text{SGW}(t) &= w_{40\%}(t) - w_{11\%}(t) \\
\text{GW+ILW+AW}(t) &= w_{11\%}(t) - w_{0\%}(t) \\
\text{CBW}(t) &= w_{0\%}(t)
\end{align*}
\]

(2)

The microstructural model also predicts the ultimate hydration degree. This parameter is computed as the ratio between the effective water-cement ratio and the lowest water-cement ratio that would permit complete hydration [31]:

\[
\Gamma_{ult} = \frac{w_{\text{eff}}}{w_{0\%}} \leq 1
\]

(3)

3. Governing equations

Assuming that the gas remains constant at atmospheric pressure [32] and that the mechanical component does not significantly affect the thermo-hygro-chemical behaviour of the material, three macroscopic equilibrium equations are derived from the volume averaging theorem within the hybrid mixture theory [33,34]:

\[
\frac{D^t \bar{\rho}_w}{Dt} + \frac{D^t \bar{\rho}_w}{Dt} + \text{div}(J_w^A) + \text{div}(J_w^D) = -m_w^{\text{hid}} - m_w^{\text{agg}} + m_w^{\text{des}}
\]

(4)

\[
\rho C_p \frac{D^t T}{Dt} - \text{div}(J_w^{CD}) + (\dot{m}_w \Delta H_v - Q_v) = 0
\]

(5)

where \(\dot{m}_w = \hat{\rho}_w + \text{div}(J_w^A) + m_w^{\text{hid}} + m_w^{\text{agg}} - m_w^{\text{des}} \)

\[
\frac{D^t \bar{\rho}_s}{Dt} + \text{div}(J_s^A) + \text{div}(J_s^{DD}) = -\dot{m}_s
\]

(6)

In the mass balance equations (4) and (6) the transfer of moisture and solute is assumed to take place in the capillary pore network. Thus, the averaged densities of water, water vapour and solute are equal to:

\[
\bar{\rho}_w = \eta_{\text{cap}} S_w^{\text{cap}} \rho_w \\
\bar{\rho}_s = \eta_{\text{cap}} S_g \rho_w; \quad S_g = 1 - S_w^{\text{cap}} - S_p \\
\bar{\rho}_s = \omega \eta_{\text{cap}} S_w^{\text{cap}} \rho_w
\]

(7)

The equilibrium equations are formulated based on the work of Gawin and co-authors [20,35], that can be regarded as standard for such models. The constitutive laws employed are briefly enumerated in Table B. 1 together with the material parameters valid in the current investigation for all the numerical examples.

Regarding the three sink/source terms found in the right-hand side part of equation (4):
• \dot{m}_{w}^{hyd} accounts for the rate of water consumed during the hydration process and is computed using the stoichiometrically determined water forms:

$$\dot{m}_{w}^{\text{hyd}} = \sum_{i} (w_{i}^{\text{act}}) \dot{f}_{i} ; \quad i \in \{SGW, IGW + ILW + AW, CBW\}$$ \hspace{1cm} (8)

• \dot{m}_{w}^{agg} represents the rate of absorption/desorption by the aggregate and is given by:

$$\dot{m}_{w}^{\text{agg}}(t) = mc_{\text{sat}} \left[mc_{0} + \left(mc_{r} - mc_{0} \right) + \alpha \exp \left(-c_{1} \frac{t}{t_{\text{sat}}} \right) \right] \left[1 - \exp \left(-c_{2} \frac{t}{t_{\text{sat}}} \right) \right]$$ \hspace{1cm} (9)

where the parameters equal to: $mc_{\text{sat}} = 0.578$, $mc_{r} = 0.5$, $mc_{0} = 0$, $t_{\text{sat}} = 1$, $c_{1} = 0.5$, $c_{2} = 2.178$ and $\alpha = 1.035 [22]$;

• \dot{m}_{w}^{des} is the rate by which the capillary network is supplied with aqueous phase from the gel pores when the inner relative humidity drops below the critical value of 40% [23,36,37]. The mass of gel water to be supplied equals:

$$\dot{m}_{w}^{\text{des}} = \left\{ \begin{array}{ll}
\left(\eta_{\text{cap}} \frac{\rho_{w} \rho^{\pi}_{\text{cap}}}{V_{\text{tot}}} \right) \frac{\partial RH}{\partial t} & , \forall RH \leq RH_{cr} \\
0 & , \forall RH > RH_{cr} \end{array} \right. $$ \hspace{1cm} (10)

In the enthalpy balance equation (5), all the phases existing in the porous material contribute to the heat capacity, as follows:

$$\bar{\rho}C_{p} = \sum_{\pi} \left[\bar{\rho}_{\pi}C_{p}^{\pi} \right] ; \quad \pi \in \{s, w, g\}$$ \hspace{1cm} (11)

The rate of heat generation, Q_{h}, is determined using the relationship:

$$Q_{h} = H_{\text{tot}} \frac{d\Gamma}{dt} = H_{\text{tot}} \dot{\Gamma}$$ \hspace{1cm} (12)

in which: the total heat release at complete hydration equals [38]:

$$H_{\text{tot}} = \sum_{i} (H_{i} f_{i}) \sum_{j} f_{j} ; \quad i \in \{cem, GGB, FA\}$$ \hspace{1cm} (13)

and the hydration rate, Γ, which represents the summation of the hydration rates of the different cement compounds, is computed from the STOICH_HC2 model.

The development of the porous network is influenced in the current model by both the hydration degree and the volume of material that precipitates during self-healing. Using the principles of Powers’ model [27,39] and the stoichiometric algorithm STOICH_HC2, the following porosity function is used within the cementitious material:
\[
\eta_i^{pm}(\Gamma, V_p) = \begin{cases}
\frac{m_w - \Gamma \cdot c_{FA}^i \sum w_i^{ult}}{m_w - \Gamma \cdot c_{FA}^i \sum w_i^{ult}} \eta_i^{pm}(\Gamma_{per}, V_p) & , \forall \Gamma < \Gamma_{per} \\
\frac{m_w}{m_{cem}} + \frac{\rho_w}{\rho_{cem}} V_{ea} - \left[V_{str}(\Gamma) \frac{\rho_w}{m_{cem}} + \Gamma \cdot c_{FA}^i \left(C_{qs}^{i_S} + \frac{\rho_w}{m_{cem}} V_p \right) \right] & , \forall \Gamma \geq \Gamma_{per}
\end{cases}
\]

In which the percolation hydration degree \(\Gamma_{per} \) equals 0.1 and \(C_{qs}^{i_S} \) has the expression:

\[
C_{qs}^{cap} = \frac{\rho_w}{m_{cem}} \sum w_i^{ult} ; i \in \{SGW, JGW + ILW + AW, CBW\} \quad C_{qs}^{tot} = \frac{\rho_w}{m_{cem}} \frac{w_i^{ult}}{\rho_{CBW}}
\]

where \(d_{cz} \) is a coefficient that increases the porosity of the deposited material based on a locally higher water-cement ratio. It is clear that when transported material is first precipitated, the water cement ratio is extremely high, if based on the total amount of water in a crack. Therefore an assumption is needed that gives a realistic \(w/c \) ratio that results in a material with, initially, a relatively high but realistic porosity. This constant \((d_{cz}) \) is calibrated using data from the first example and then adjusted accordingly for the other examples. At present, back-calibration is our only means of identifying this constant, due to the lack of the extremely detailed experimental data that would be required to measure its value independently.

Returning to the mass balance equation (6), the sink source term \(\dot{m}_w \) accounts for autogenous healing which, from the chemical point of view, represents an interaction between the liquid phase containing various dissociated ions from the unreacted cement and the solid compounds. The dissolution of the clinker minerals leads to the supersaturation of the aqueous phase with respect to the hydrates and is followed by precipitation from solution. In general, these types of reactions are well modelled using the thermodynamic principles. However, in the case of cement science, the available database from geochemical systems cannot be used since it does not contain sufficient information for the relevant solids and aqueous species. The addition of the missing data is an extremely challenging task, as discussed in [40], because both the experimental and numerical determination of the solubility of the clinker minerals has several limitations. For this reason, a simplified approach, which assumes thermodynamic equilibrium between precipitated and
dissolved chemical products, was investigated in the current research to simulate the overall formation and accumulation of hydrates in the crack. A Freundlich type isotherm, which according to Chen et al. [41] is widely used to describe the adsorption of solutes in solution by solid phases, was preferred and employed. This approach was also presented in [42,43] to model salt (NaCl) precipitation/dissolution process in mortars. The isotherm given in (17) links the degree of pore saturation with precipitated salt, S_p, to the concentration of dissolved clinker, ω:

$$S_p = \alpha_p S_w^{\beta_p} \omega^\beta_p$$ \hspace{1cm} (17)

This relationship, in which α_p depends on the binder composition of the cement-based material and β_p represents the order of the chemical process, is used to obtain the expression of m_ω as follows:

$$m_\omega = \left(\alpha_p S_w^{\beta_p} \omega^\beta_p\right) \rho_w \eta_{cap}$$ \hspace{1cm} (18)

At the initiation of the autogenous healing process, the starting value of ω is computed as a mass ratio between the existing unhydrated cement and the effective capillary water:

$$\omega_0 = \frac{m_{UCP}}{m_{CW+LGW}}$$ \hspace{1cm} (19)

where the mass of effective capillary water, m_{CW+LGW}, is given by the expression:

$$m_{CW+LGW} = m_{CW}^{ult} + \left(m_u - m_{CW}^{ult}\right) \left(\Gamma_{ult} - \Gamma_{endST1}\right) + m_{LGW}^{ult} \frac{\Gamma_{endST1}}{\Gamma_{ult}}$$ \hspace{1cm} (20)

This initial concentration is calculated assuming that during the induction period of cement hydration, a semipermeable layer of $\text{C}_3\text{S} - \text{H}$ forms around the C_3S grain [44,45]. The transport of Ca^{2+} and OH^- between the grains and the pore solution is permitted, but the release of the larger silicate anions is hindered until the osmotic pressure, that builds up during the preferential diffusion, breaks down the protective layer. Therefore in order to account for this effect in the proposed numerical investigation, a reduction coefficient n_{UCP} is applied to the overall initial available mass of unreacted clinker, as can be seen in equation (21):

$$m_{UCP} = n_{UCP} \left[\left(m_{cem} + m_{FA}\right) - m_{clink}^{ult} \left(\Gamma_{ult} - \Gamma_{endST1}\right) \right] + m_{clink}^{ult}$$ \hspace{1cm} (21)

Our somewhat phenomenological approach to the simulation of self-healing transport and precipitation processes warrants a few further remarks. A number of authors have recently developed models that attempt to simulate the diffusion of individual ions and precipitation of specific chemicals (e.g. calcite) [46–48]. These models are dependent and sensitive to some highly variable and uncertain parameters, such as chemical diffusion and kinetic rate constants as well as permeability coefficients. This type of model would become very...
expensive if all of the chemical processes associated with self-healing cementitious
materials were to be simulated. Indeed, if models are going to be employed for the analysis
of real structures, some more tractable and efficient approaches are needed in the near to
mid-term. The proposed semi-phenomenological model potentially provides such an
approach. As Hilloudin et al. [18] point out ‘Modelling the autogenous healing in concrete is
still a great challenge because it relies on the development of coupled models. Further
investigations are needed to understand the recovery of mechanical and transport
properties’.

Most authors agree that ‘autogenic’ self-healing is greatest in young cementitious materials
when there is a significant amount of unhydrated cement and water [3,11,12,16,47]. By
implication, under these conditions, materials have a more open pore structure than in their
mature state. The pore structure, in particular the network of capillary pores, is known to be
a significant factor in the efficiency of self-healing [47]. The proposed model is able to
capture these features, particularly because it tracks the amount of hydrated material and
water forms, as well as having a proper link to developing porosity. The model is most
applicable to simulating self-healing in relatively young materials and since cracks frequently
form in the first few months of a structure’s life [49], this aspect of self-healing is considered
to be very important.

A number of recent self-healing experiments have suggested that the material deposited in
cracks contains significantly more portlandite (CH) (which will subsequently will form calcite
in the presence of CO_2) than $C-S-H$ [16,50,51]. The hydration model considers all main
hydration compounds, which encompasses both $C-S-H$ and CH, and keeps track of the
amount of all main unhydrated cementitious components. Whilst the exact nature of the
healing material may be of interest, the present self-healing transport model – that does not
distinguish between these two main compounds – has considerable value provided the
mechanical properties of the deposited material are known. These can be established from
separate mechanical experiments.

The authors fully acknowledge that this model, as with all other existing coupled models for
transport processes in cementitious materials, has a number of parameters that have to be
calibrated for specific problems. These include the d_v parameter from equation (16) and the
Freundlich constants in equation (17), all of which are guided by general considerations and
previous work and then calibrated using the examples below. As with other existing coupled
models for cementitious materials, true predictions can only be undertaken if sufficient prior
data exists for calibration.
4. Numerical formulation

The non-linear system, which comprises equations (4) to (6), is solved in space by means of the finite element method formulated using Galerkin’s weighting procedure [19,20,52]. The equilibrium relationships are expressed in terms of the principal variables \(S^\text{cap} \), \(T \) and \(\omega \) in the domain \(\Omega \) and Cauchy type boundary conditions from equations (22), (23) and (24) are applied.

\[
\begin{align*}
(J^{A} + J^{B}) \cdot \vec{n} - q_{\text{env}} - \delta_{\text{env}}(\rho_{\text{v}} - \rho_{\text{v}}^\text{env}) &= 0 \quad \text{on } \Gamma_{q1} \\
(J^{CD} - J^{A} \Delta H_{\text{v}}) \cdot \vec{n} - q_{\text{T}} - \delta_{\text{T}}(T - T^\text{env}) &= 0 \quad \text{on } \Gamma_{q2} \\
(J^{A} + J^{DD}) \cdot \vec{n} - q_{\omega} - \delta_{\omega}(\omega - \omega^\text{env}) &= 0 \quad \text{on } \Gamma_{q3} ; \quad \Gamma_{q} = \Gamma_{q1} \cup \Gamma_{q2} \cup \Gamma_{q3}
\end{align*}
\]

The Gauss-Green Divergence Theorem [19] is used to obtain the weak form of the elemental system of equations, which is then assembled to give the following global algebraic system:

\[
\begin{bmatrix}
\hat{C}_{11} & \hat{C}_{12} & \hat{C}_{13} \\
\hat{C}_{21} & \hat{C}_{22} & \hat{C}_{23} \\
\hat{C}_{31} & \hat{C}_{32} & \hat{C}_{33}
\end{bmatrix}
\begin{bmatrix}
S^\text{cap} \\
\dot{T} \\
\dot{\omega}
\end{bmatrix}
+ \begin{bmatrix}
\hat{K}_{11} & \hat{K}_{12} & \hat{K}_{13} \\
\hat{K}_{21} & \hat{K}_{22} & \hat{K}_{23} \\
\hat{K}_{31} & \hat{K}_{32} & \hat{K}_{33}
\end{bmatrix}
\begin{bmatrix}
T \\
\omega
\end{bmatrix}
= \begin{bmatrix}
\hat{F}_{1} \\
\hat{F}_{2} \\
\hat{F}_{3}
\end{bmatrix}
\]

\[
\hat{C}_{ij} = \sum_{e=1}^{ne} \int_{\Omega^e} NC_{ij} N^T_{j} d\Omega^e
\]

\[
\hat{K}_{ij} = \sum_{e=1}^{ne} \int_{\Omega^e} NK_{ij} N^T_{j} d\Omega^e
\]

\[
\hat{F}_{i} = \sum_{e=1}^{ne} \left(\int_{\Omega^e} \nabla N F_{ji} d\Omega^e + \int_{\Gamma_{\text{q}}} N F_{ji} d\Gamma^e + \int_{\Omega^e} N F_{\text{T}i} d\Omega^e \right)
\]

The integrands included in the assembling procedure depend on the principal variables as can be seen in Annex C. Further details may be found in [21].

To perform the time discretisation of the proposed THC model, an implicit finite difference approximation [19] is applied to equation (29) that represents the condensed form of matrix equation (25):

\[
\hat{C} \Phi + \hat{K} \Phi = \hat{F}
\]

The residual of the above relationship at the current time step \(n \) equals:

\[
\Psi(\Phi_{n}) = \hat{C}(\Phi_{n} - \Phi_{n-1}) + (t_{n} - t_{n-1})(\hat{K} \Phi - \hat{F})
\]
This residual is minimised for each time step in a Newton-Raphson-type iterative procedure. The vector of variables is updated successively by the increment Φ^{k+1} until the L2 norm of Ψ is lower than a specified tolerance:

$$\Phi^{k+1} = \Phi^k + \delta \Phi^{k+1}$$

(31)

The increment is computed using the standard procedure of equating the truncated form of Taylor’s series expansion for Ψ to zero, which results in the following:

$$\frac{\partial \Psi^p}{\partial \Phi} = \left[\begin{array}{ccc} \frac{\partial \Psi_1^p}{\partial \Phi_1} & \frac{\partial \Psi_2^p}{\partial \Phi_1} & \frac{\partial \Psi_3^p}{\partial \Phi_1} \\ \frac{\partial \Psi_1^p}{\partial \Phi_2} & \frac{\partial \Psi_2^p}{\partial \Phi_2} & \frac{\partial \Psi_3^p}{\partial \Phi_2} \\ \frac{\partial \Psi_1^p}{\partial \Phi_3} & \frac{\partial \Psi_2^p}{\partial \Phi_3} & \frac{\partial \Psi_3^p}{\partial \Phi_3} \end{array} \right]^{-1} \begin{bmatrix} -\Psi_1(\Phi^k) \\ -\Psi_2(\Phi^k) \\ -\Psi_3(\Phi^k) \end{bmatrix}$$

(32)

where the Jacobian of the approximation error, $\frac{\partial \Psi}{\partial \Phi}$, is:

$$\frac{\partial \Psi^p}{\partial \Phi} = \left\{ \tilde{C}_{pr} + \sum_{t=t-1}^{t-n} \sum_{s=1}^{s-n} \frac{\partial \tilde{C}_{ps}^t}{\partial \Phi} \Delta \Phi_{st} \right\} + \left(t_n - t_{n-1} \right) \left\{ \tilde{K}_{pr} + \sum_{t=t-1}^{t-n} \sum_{s=1}^{s-n} \frac{\partial \tilde{K}_{ps}^t}{\partial \Phi} \Phi_{st} \right\}$$

(33)

$p, r \in [1, 3]; \quad n_n = \text{number of nodes per finite element}$

$\Delta \Phi_{st} = \text{difference between the current and the previous value of } \Phi_{st}$

5. Numerical simulations

In the following section, three self-healing experiments are considered. The first is based on data obtained by Davies [53] in our laboratories at Cardiff, the other two use data from the tests of Huang et al. [16] and Van Tittelboom [50] respectively. The selection of the experiments was made with the intention of testing the efficiency of the proposed THC model under different healing conditions. Attention was focused on studying the influence of the crack width and of the available quantity of unhydrated cement upon the material behaviour. The mix designs listed in Table 1, which are made of Portland cements with different chemical compositions (see Table 2), were investigated. Their porous network and hydration characteristics were evaluated numerically using the microstructural model STOICH_HC2 in order to provide the input needed for the autogenous healing model. The parameters given by STOICH_HC2, required for defining the porosity curves and the initial concentration of unreacted clinker in the capillary water, are found in Table 3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Mix design of investigated cementitious materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix type</td>
<td>m_{cem}</td>
</tr>
<tr>
<td>M1</td>
<td>400</td>
</tr>
</tbody>
</table>
Table 2 Chemical composition of different types of cementitious mixes

<table>
<thead>
<tr>
<th>Cement Type</th>
<th>f_{C_A}</th>
<th>f_{C_S}</th>
<th>f_{C_A}</th>
<th>f_{C_AF}</th>
<th>f_{SO_4}</th>
<th>f_{gypsum}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 CEM II/B-V 32.5R</td>
<td>3.03</td>
<td>57.28</td>
<td>23.98</td>
<td>7.59</td>
<td>2.04</td>
<td>4.39</td>
</tr>
<tr>
<td>M2 CEM 42.5N</td>
<td>8.00</td>
<td>64.00</td>
<td>13.00</td>
<td>9.00</td>
<td>2.57</td>
<td>5.53 [16]</td>
</tr>
<tr>
<td>M3 CEM I 52.5 N</td>
<td>6.34</td>
<td>63.88</td>
<td>5.50</td>
<td>12.14</td>
<td>3.07</td>
<td>6.60 [54]</td>
</tr>
</tbody>
</table>

Table 3 Data from STOICH_HC2 model

<table>
<thead>
<tr>
<th>Cap $C^{cap}_{Q_S}$</th>
<th>Tot $C^{tot}_{Q_S}$</th>
<th>m^{cw}_{UL}</th>
<th>m^{LGW}_{UL}</th>
<th>m^{clink}_{UL}</th>
<th>Γ_{UL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 0.279 0.144</td>
<td>121.77</td>
<td>29.92</td>
<td>17.76</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M2 0.204 0.104</td>
<td>0.13</td>
<td>89.85</td>
<td>515.58</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>M3 0.272 0.138</td>
<td>0</td>
<td>39.91</td>
<td>38.29</td>
<td>0.98</td>
<td></td>
</tr>
</tbody>
</table>

As was discussed earlier, in the crack region there is an increased water-cement ratio and thus a greater porosity of the deposited material is expected. In order to estimate d_{c_c} from equation (16), a local w/c ranging between 4.5 and 5 was assumed. Thus, the adopted values of d_{c_c} are: 3.2 for M1, 3.4 for M2 and 5.5 for M3.

Regarding the reactive transport processes associated with self-healing, Table 4 provides the data necessary for defining the movement of the solute and the Freundlich type isotherm mentioned in equation (17). In this table the reader can also identify the values of the thermo-hygral material parameters that vary with the mix composition. In all of the examples, the density of the precipitated material, ρ_p, is taken 2600 kg/m3, whilst the tolerance used in the Newton-Raphson solution of the nonlinear finite element equations is taken as 10^{-3}. Table 4 also includes some additional comments that provide guidance of how these model parameters were obtained.
Table 4 Thermo-hygro-chemical parameters

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 days</td>
<td>14 days</td>
<td>28 days</td>
<td>αp and βp are guided by general considerations</td>
</tr>
<tr>
<td>αp</td>
<td>2.5</td>
<td>0.042</td>
<td>0.023</td>
<td>in [42,55] and then calibrated using the</td>
</tr>
<tr>
<td>βp</td>
<td>0.07</td>
<td>10</td>
<td>10</td>
<td>examples below.</td>
</tr>
<tr>
<td>C^s / C^FA</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>C^s / C^FA is based on the value given in</td>
</tr>
<tr>
<td>D_mol</td>
<td>1*10^-8</td>
<td>3*10^-9</td>
<td>5*10^-6</td>
<td>reference [56].</td>
</tr>
<tr>
<td>δ_w</td>
<td>2.5*10^-4</td>
<td>3*10^-4</td>
<td>3*10^-3</td>
<td>δ_w and δ_T are based on the values given</td>
</tr>
<tr>
<td>δ_T</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>in reference [22].</td>
</tr>
<tr>
<td>δ_w</td>
<td>10^-6</td>
<td>10^-6</td>
<td>10^-6</td>
<td>δ_w is based on the value given in reference</td>
</tr>
<tr>
<td>k^intmat</td>
<td>5*10^21</td>
<td>2*10^21</td>
<td>2*10^21</td>
<td>k_w^intmat were originally set to the values</td>
</tr>
<tr>
<td>a</td>
<td>183.80</td>
<td>370.57</td>
<td>183.80</td>
<td>510^-21 m^2 and 610^-22 m^2 given in</td>
</tr>
<tr>
<td>b</td>
<td>2.28</td>
<td>2.17</td>
<td>2.28</td>
<td>reference [22] for cement pastes and</td>
</tr>
<tr>
<td>cη</td>
<td>-10</td>
<td>-11</td>
<td>-10</td>
<td>concrete mixes and then calibrated for the</td>
</tr>
</tbody>
</table>

5.1 Example 1

In the first experiment considered [53], a rectangular beam (255 X 75 X 75mm) was cast using the cementitious mix M1. A steel shim was used to pre-form a narrow central notch of 0.2mm in the lower face of the specimen, as can be seen in Figure 3 (a). The beam was left in the mould and covered with a hessian sack for 26 hours at 50% environmental relative humidity and 293K. The steel shim was removed after the first 6 hours and the mortar beam was completely immersed in water for 13, 27 and 41 days. At the end of these time intervals,
the sample was broken in a three-point bending test and the crack recovery was visually measured at the central notch. The camera images of the cross section revealed the formation of a white crystalline substance on the external surface and the building up of a ridge of material with the same colour as the bulk sample, in the interior. SEM tests detected portlandite (CH), ettringite (\(C_6A\bar{S}_3 H_{32}\)) and calcium-silicate-hydrate, whilst XRD tests identified portlandite, silica and calcite (\(CaCO_3\)) in the composition of the deposited material. All the images were processes using ImageJ (see Figure 2) and the degree of self-healing in terms of area fraction of new precipitated material was estimated.
Figure 2 Samples of processed self-healed cross sections at (a) 13, (b) 27 and (c) 41 days; $h_x = 127.4$ mm

The environmental conditions were symmetrical with respect to the middle cross section throughout the self-healing process. The proportion of mesh adjacent to the crack, which is formed of 101 (21 X 5) bilinear finite elements, is depicted Figure 3 (b).

Figure 3 Experimental set-up of the example 1

For the time discretisation, a varying time step Δt, expressed in seconds, is adopted:
\[\Delta t = \begin{cases}
3600, & 1 \leq \text{itime} \leq 200 \\
7200, & 200 < \text{itime} \leq 250 \\
10800, & 250 < \text{itime} \leq 300 \\
14400, & 300 < \text{itime}
\end{cases} \]

The thermo-hygral variables at the beginning of the self-healing process correspond to the values reached at 26 hours after casting. A preliminary TH simulation of the moist air curing (using the model in [22]) stage was carried out to evaluate the TH state at the end of this stage, the results from which are presented in Figure 4. The corresponding hydration degree of the mix, used in equations (21) and Error! Reference source not found., equals to \(\Gamma_{\text{endST1}} = 0.30 \), while the initial concentration of solute is \(\omega_b = 0.49 \).

![Figure 4](image)

Figure 4 Example 1: distribution of \(S_w^{cap} \) and \(T \) at the end of moist air curing

The Freundlich type isotherm is calibrated to account for both the potential ongoing hydration and carbonation. The numerical results from Figure 5 show that the deposition of the new material occurs during the first days of autogenous healing throughout the sample.
Figure 5 Distribution in time of the mass of precipitated material in (a) mortar and (b) crack

Figure 6 Evolution of the self-healed area fraction in the crack
However, the process is less intense within the mortar beam and diminishes after the 3rd day, while in the crack region, the accumulation is continuous and much more significant. In terms of self-healed area fraction, Figure 6 confirms that the numerical findings are in good agreement with the experimental data, especially at the 14th and 27th day of curing.

5.2 Example 2

The second example simulates the experiment performed by Huang et al. [16] that quantifies, by means of ESEM observations, the precipitation of healing products in cracks having $w_{ref} \approx 10\mu m$ in width. The cement paste prisms M2 (160 X 40 X 40mm) were cast and subjected to controlled three-point bending tests after 7, 14 and 28 days from casting. Once the crack was formed, the specimens were introduced in sealed containers partially filled with water, in order to avoid carbonation, and left there to heal for about 200 hours. The temperature measured in the surrounding environment of the prisms was $20 \pm 1^\circ C$. The schematic representation of the experiment is given in Figure 7 (a).

![Figure 7](image_url)

Figure 7 Experimental set-up and meshing for the numerical examples 2 and 3

The present model does not consider capillary flow in the discrete crack, in the sense described by Gardner et al. [59]. However, our continuum flow model predicts that the entire crack becomes saturated during the self-healing period, which is consistent with the experimental observations of Huang et al. [16].
At the end of the self-healing period, the morphology of the precipitates was investigated using ESEM equipped with EDS, whilst the mineralogy and the percentage of each constituent in the crack were established in FTIR and TGA tests. Huang et al. identified both crystal and gel-like healing products that contained: CH, CaCO$_3$ and other hydrates, including C – S – H.

The amount of newly formed hydrates was quantified using BSE image analysis. The specimens were impregnated with epoxy, cut in 3 sections along the crack and 105 images per specimen were taken and examined. The effective measured crack width at different times was employed to compute the normalized filling fraction according to:

$$\gamma_{\text{norm}} = \gamma \cdot \frac{W_{\text{crack}}}{W_{\text{ref}}}$$ \hspace{1cm} (35)

During the self-healing experiment, only the bottom part of the prism was submerged due to a limited amount of water. Moreover, the environmental conditions were symmetrical with respect to the middle cross section. The proportion of mesh adjacent to the crack, composed of 80 (16 X 5) bilinear finite elements, is depicted in Figure 7 (c).

For this numerical example a constant time step equal to 3600 seconds was chosen. The starting values of S_{cap}^w and T, presented here in Figure 8, as well as the initial hydration degrees and concentrations of solute, listed in Table 5, were taken from a TH simulation (using the model in [22]) that considered moisture sealed curing conditions for 7, 14 and 28 days. The modelled crack had an initial size of 10μm and was filled with water throughout the experiment.

![Figure 8](image_url)

Figure 8 Example 2: distribution of S_{cap}^w and T before autogenous healing

<table>
<thead>
<tr>
<th></th>
<th>7 days</th>
<th>14 days</th>
<th>28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{endST1}</td>
<td>0.54</td>
<td>0.58</td>
<td>0.62</td>
</tr>
<tr>
<td>ω_h</td>
<td>1.30</td>
<td>1.39</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Table 5 Initial values for Example 2
Figure 9 shows the self-healing efficiency due to further hydration under saturated conditions. The simulation results are reasonably consistent with the experimental findings, especially for the first 150 hours in the case of the specimen cracked at 7 days. In the case of the older cement pastes, that are plotted in Figure 9 (b) and (c), a slight overestimation of the crack recovery can be observed. Nevertheless, as can be seen in Figure 9 (d), the proposed THC model confirms the experimental observation that the filling fraction of the crack diminishes with the maturity of the paste.

![Graphs showing normalized filling fractions over time](https://via.placeholder.com/150)

Figure 9 Example 2: Normalized filling fractions

5.3 Example 3

The experiments considered in this third example [50] used reinforced mortar prisms (mix designation M3, dimensions 160 X 40 X 40mm and two 2mm diameter reinforcing bars), which were cast and left in an air conditioned room (20 ± 1°C and relative humidity > 95%). At 28 days the specimens were first subjected to cracking in a three-point bend test and then were totally immersed in basins filled with tap water for 1, 4, 7, 21 and 42 days, as illustrated in Figure 7 (b). When removed from the basins, the surfaces of the specimens were dried...
with paper towels and exposed to the air for a few minutes. The change in crack width at the surface of each specimen was measured in nine locations using a stereo microscope equipped with a camera. The visual investigation at the crack surface revealed the formation of a white crystalline material reported to be $CaCO_3$ [50]. The measured surface crack widths were plotted as a function of the initial surface crack width and two areas, $A_{crack}(t_0)$ and $A_{crack}(t)$, were computed. The first represents the area under the curve connecting the initial measuring points, while the second corresponds to the area under the curve connecting the measuring points obtained after t days of water immersion. The crack self-healing ratio ($\gamma(t)$) for cracks ranging between 0 - 125µm and 125 - 250µm was defined by Van Tittelboom, et al. [50] to be:

$$\gamma(t) = 1 - \frac{A_{crack}(t)}{A_{crack}(t_0)} \quad (36)$$

The spatial discretisation in the vicinity of the crack is composed of 80 (16 X 5) bilinear finite elements as can be seen in Figure 7 (c). The crack widths considered are the mean values of the above mentioned ranges, that is 62.5µm and 187.5µm. Figure 10 provides the initial values of the TH variables considered.

![Figure 10](image)

Figure 10 Example 3: distribution of S_w and T before self-healing

The microstructural model STOICH_HC2 shows that 91% of the hydration reaction had occurred before the onset of self-healing and that 38.29 kg/m³ of unreacted clinker can still be found in the mix. Hence, for these experimental conditions, ω_0 is equal to 0.43. The time step selected for the Newton-Raphson procedure is the same used for numerical example 1.

The comparison of the current simulations with the experimental data is illustrated in Figure 11. The numerical results in the case of the 62.5µm crack closely match the laboratory data reported by Van Tittelboom et al. [50]. It is evident that in less than 14 days of curing, the precipitates have filled more than 95% of the crack. For the larger crack however, the healing capacity is visibly over estimated for day 3 (of curing) and underestimated for the 42nd day. In this case, the recovery reaches only approximately 70%.
The amount of material transported is sensitive to both the diffusion and advection model parameters, and thus we conclude that it is important to consider both mechanisms in such a model. In all three examples we have simulated self-healing from the amount of unhydrated cement in suspension at the start of the healing period. It has been assumed that the solid deposited in the cracks derives from the cement employed in the experiments simulated, although the individual nature of the compounds deposited is not distinguished in these simulations. Knowledge of the rate of crack filling is one of the essential components needed for a prediction of the coupled thermo-hygro-chemico-mechanical (THCM) response of an autogenous self-healing system. In addition, the mechanical properties of the deposited hydrated-cement, along with the bond properties of interface between the matrix and crack-filling material, are also required. These have not been obtained here but it is believed that the present model shows that a semi-phenomenological model, that considers dissolved clinker as a single reactive transport variable, can adequately represent some of the important aspects of a self-healing system.

6. Conclusions and closing remarks

In this paper a coupled thermo-hygro-chemical model was described for the simulation of autogenous healing in ordinary cementitious materials. Further hydration was modelled and a general reactive transport process was simulated in which the solute consisted of the four main clinker minerals. The proposed model traced in time the concentration of the dissolved material from the unhydrated cement. An equilibrium Freundlich type isotherm was chosen to enable the phase change and therefore the formation of the healing products in the cracks. The following conclusions can be drawn from the work:
- the model is most applicable to self-healing in relatively young cementitious materials;
- diffusion and advection both have a significant influence on the amount of material transported to a crack during early age self-healing;
- the porosity of the precipitate in the crack region is higher than the porosity of the hydrates found in the bulk material;
- the calculated filling fraction of cracks is in agreement with the quantitative results reported in the literature, which signifies that the proposed THC model behaves satisfactory when predicting autogenous healing;
- larger amounts of unhydrated cement leads to higher filling fractions, although the initial concentration of the solute in younger cement pastes is lower;
- the degree of autogenous crack healing increases with reducing crack width.

The requirement for model parameters to be calibrated to experimental data is a feature of this and other THC models. The issue of defining easily identifiable model parameters, determining their values and statistical characteristics, and reliably establishing the sensitivity of model simulations to these parameter values are some of the major challenges facing researchers on THCM models for self-healing materials.

7. Acknowledgements

We gratefully acknowledge support from LUSAS - developer and supplier of Finite Element Analysis (FEA) application software products - and also acknowledge the cooperation from the team working on the EPSRC M4L project for the provision of experimental data used for the model validation.
Annex A

Table A.1 Chemical reactions for the hydration of ordinary Portland cements

<table>
<thead>
<tr>
<th>Stage</th>
<th>Stoichiometry of the reaction</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_3A</td>
<td>$C_3A + 3CSH_2 + (z_1 - 6)H \rightarrow C_6A\bar{S}3H{z_1}$</td>
<td>[44,60]</td>
</tr>
<tr>
<td></td>
<td>$C_3A + C_6A\bar{S}3H{z_1} + (3z_2 - z_1)H \rightarrow 3C_4A\bar{S}H_{z_2}$</td>
<td>[44,60]</td>
</tr>
<tr>
<td></td>
<td>$C_3A + C_4A\bar{S}H_{z_2} + CH + (2z_3 - z_2)H \rightarrow 2C_3A(C\bar{S}, CH)H_{z_3}$</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>$C_3A + CH + (z_4 - 1)H \rightarrow C_4AH_{z_4}$</td>
<td>[44]</td>
</tr>
<tr>
<td>C_3S</td>
<td>$C_3S + (1.3 + y)H \rightarrow C_{1.7}SH_{1.3} + 1.3CH$</td>
<td>[62]</td>
</tr>
<tr>
<td>C_2S</td>
<td>$C_2S + (0.3 + y)H \rightarrow C_{1.3}SH_{1.3} + 0.3CH$</td>
<td>[62]</td>
</tr>
<tr>
<td>C_4AF</td>
<td>$0.75C_4AF + 3CSH_2 + (z_5 + 0.5z_6 - 6)H \rightarrow C_6(A, F)\bar{S}3H{z_5} + 0.5(F, A)_{z_6}$</td>
<td>[44,61]</td>
</tr>
<tr>
<td></td>
<td>$1.5C_4AF + C_6(A, F)\bar{S}3H{z_5} + (3z_7 + z_6 - z_5)H \rightarrow 3C_4(A, F)\bar{S}H_{z_7} + (F, A)_{z_6}$</td>
<td>[44,61]</td>
</tr>
<tr>
<td></td>
<td>$C_4AF + 2CH + (2z_8 - 2)H \rightarrow 2C_3(A, F)H_{z_8}$</td>
<td>[63]</td>
</tr>
</tbody>
</table>

Table A.2 Stoichiometric coefficients for the hydration reactions of Portland cement

<table>
<thead>
<tr>
<th>Relative humidity</th>
<th>y</th>
<th>z_1</th>
<th>z_2</th>
<th>z_3</th>
<th>z_4</th>
<th>z_5</th>
<th>z_6</th>
<th>z_7</th>
<th>z_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[60%,40%]</td>
<td>4</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>32</td>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>[40%,11%]</td>
<td>3.15</td>
<td>25.06</td>
<td>10.89</td>
<td>9.75</td>
<td>10.56</td>
<td>26</td>
<td>2.43</td>
<td>9.75</td>
<td>4.88</td>
</tr>
<tr>
<td>[11%,0%]</td>
<td>2.10</td>
<td>14.41</td>
<td>9.19</td>
<td>6.30</td>
<td>6.83</td>
<td>16.80</td>
<td>1.58</td>
<td>6.30</td>
<td>3.15</td>
</tr>
<tr>
<td>$\approx 0%$</td>
<td>1.30</td>
<td>7</td>
<td>8</td>
<td>4.40</td>
<td>4.23</td>
<td>10.40</td>
<td>0.98</td>
<td>3.90</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Table A.3 Kinetic parameters of cement mixes taken from [64] according to [30]

<table>
<thead>
<tr>
<th>Kinetic parameter</th>
<th>w/c</th>
<th>C_3S</th>
<th>C_2S</th>
<th>C_3A</th>
<th>C_4AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ^I_x</td>
<td>0.02</td>
<td>1*10^{-6}</td>
<td>0.04</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>t^I_x</td>
<td>0.5</td>
<td>856.8</td>
<td>0.2</td>
<td>7084.8</td>
<td>30816</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>914.4</td>
<td>0.2</td>
<td>7696.8</td>
<td>34848</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>972</td>
<td>0.3</td>
<td>8308.8</td>
<td>38880</td>
</tr>
<tr>
<td>κ_x</td>
<td>0.5</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>K_x</td>
<td>0.5</td>
<td>1.72</td>
<td>0.96</td>
<td>1.00</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.79</td>
<td>1.03</td>
<td>1.07</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>1.86</td>
<td>1.10</td>
<td>1.14</td>
<td>2.44</td>
</tr>
<tr>
<td>t^{NG}_x</td>
<td>0.5</td>
<td>3.66*10^4</td>
<td>4.67*10^4</td>
<td>3.59*10^4</td>
<td>7.95*10^3</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>4.17*10^4</td>
<td>6.02*10^4</td>
<td>4.54*10^4</td>
<td>9.38*10^3</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>4.72*10^4</td>
<td>7.58*10^4</td>
<td>5.64*10^4</td>
<td>1.09*10^4</td>
</tr>
<tr>
<td>D_x</td>
<td>6.94*10^{-20}</td>
<td>2.22*10^{-20}</td>
<td>11.11*10^{-20}</td>
<td>2.50*10^{-20}</td>
<td></td>
</tr>
<tr>
<td>t^{NG}_X</td>
<td>0.27</td>
<td>0.21</td>
<td>0.19</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>R_{ck}</td>
<td>251*10^{-6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 Constitutive laws for the TH behaviour of cementitious materials

\[P_{\text{cap}} = P_g - P_w \] \hspace{1cm} (B.1)

Kelvin’s law:

\[RH = \frac{p_v}{p_v^\text{sat}} = \exp\left(\frac{-P_{\text{cap}} M_w}{\rho_w RT}\right) \]

\[M_w = 18, \; R = 8314.5 \] \hspace{1cm} (B.2)

Dalton’s law:

\[p_g = p_v + p_{\text{da}}; \; p_w = p_v + p_{\text{da}} \] \hspace{1cm} (B.3)

Antoine’s law:

\[p_w^\text{sat} = b_1 \cdot 10^{\left(b_1 - \frac{b_2}{b_3 + (T-b_4)} \right)} \]

\[b_1 = 133.32, \; b_2 = 273, \; b_3 = 8.07, \; b_4 = 233.43, \] \hspace{1cm} (B.4)

Thiesen-Scheel-Diesselhorst equation

\[\rho_w = a_1 \cdot \left[\frac{(T + a_2)(T - a_3)^2}{a_4(T + a_5)} \right] \]

\[a_1 = 10^3, \; a_2 = 1.7, \; a_3 = 3.99, \; a_4 = 68.13 \] \hspace{1cm} (B.5)

Watson’s formula [66]:

\[\Delta H_v = \begin{cases} 2.672 \cdot 10^5 (T - T_{cr})^{0.38}, & \forall T < T_{cr} \\ 0, & \forall T \geq T_{cr} \end{cases} \]

\[T_{cr} = 647.3 \] \hspace{1cm} (B.6)

Darcy’s law:

\[J^A_w = \rho_w \left(\frac{k_w^{\text{int}} k_w^{\text{rel}}}{\mu_w} \right) \nabla (p_{\text{cap}} + \rho_w \overline{\pi}) \]

\[A_k = 0.005, \; A_T = 3, \] \hspace{1cm} (B.7)

Fick’s law [66]:

\[J^D_w = -\rho_w \left(\frac{D_w^{\text{cap}}}{RT} \right) \nabla \left(\frac{P_w}{P_g} \right) \]

\[f_s = 0.001, \; A_w = 1, \; B_s = 1.667, \] \hspace{1cm} (B.8)

Fourier’s law [35]:

\[J^F_w = -\rho_w \left(\frac{S_w^{\text{cap}}}{\mu_w} \right) \nabla T \]

\[\lambda_{\text{ref}}^A = 1.7, \; A_\lambda = 0.0005 \] \hspace{1cm} (B.9)

based on [69] and considering [70,71]:

\[P_{\text{cap}} = \frac{\eta_{\text{cap}}(T)}{\eta_{\text{cap}}(T_{\text{ult}})} \]

\[a = 0.1171 - 0.00001516 T \]

\[\eta_{\text{cap}}(T_{\text{ult}}) = 0.1171 - 0.00001516 T_0 \left(\frac{1}{S_w^{\text{cap}}} \right)^b - 1 \]; \; \frac{b-1}{m} \hspace{1cm} (B.10)

extended Darcy’s law:

\[J^A_w = \omega L^A_w \] \hspace{1cm} (B.11)

extended linear Fick’s law [43,52,72]:

\[J^D_w = -\rho_w \left(\frac{\beta_T}{w_s} \right) \delta_j + \frac{\nu_{j,w_s} w_s}{w_s} (\alpha_L - \beta_T) + \eta_{\text{cap}} S_w^{\text{cap}} D_{\text{mol}} \delta_j \nabla \omega \]

\[\delta_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \]

\[\alpha_L = 5 \times 10^{-3} \] \hspace{1cm} (B.12)
Expression of the integrands used to define equations (26), (27) and (28)

\[
C_{11} = \frac{\partial \rho_w}{\partial S_{w}^{\text{cap}}} + \frac{\partial \rho_v}{\partial S_{v}^{\text{cap}}} - \frac{\partial m_{\text{ds}}^{v}}{\partial S_{v}^{\text{cap}}} (C. 1)
\]

\[
K_{11} = -k_w \rho_w \frac{\partial p_{\text{cap}}}{\partial S_{w}^{\text{cap}}} + D_{v}^{\text{eff}} M_w \frac{\partial \rho_v}{\partial S_{v}^{\text{cap}}} (C. 2)
\]

\[
C_{12} = \frac{\partial ^2 \rho_w}{\partial T} + \frac{\partial \rho_v}{\partial T} (C. 3)
\]

\[
K_{12} = -k_w \rho_w \left(\frac{\partial p_{\text{cap}}}{\partial T} + \frac{\partial p_{\text{cap}}}{\partial \Gamma} \right) + D_{v}^{\text{eff}} M_w \frac{\partial \rho_v}{\partial T} (C. 4)
\]

\[
C_{13} = \frac{\partial ^2 \rho_w}{\partial \omega} + \frac{\partial \rho_v}{\partial \omega} (C. 5)
\]

\[
K_{13} = 0 (C. 6)
\]

\[
C_{21} = \left(- \frac{\partial \sigma_w}{\partial S_{w}^{\text{cap}}} + \frac{\partial m_{\text{ds}}^{v}}{\partial S_{v}^{\text{cap}}} \right) \Delta H_v (C. 7)
\]

\[
K_{21} = \frac{k_{\text{int}} k_{w}^{\text{rel}}}{\mu_w} \rho_w \frac{\partial p_{\text{cap}}}{\partial S_{w}^{\text{cap}}} \Delta H_v (C. 8)
\]

\[
C_{22} = \phi c_p \rho_v \frac{\partial \rho_v}{\partial T} \Delta H_v (C. 9)
\]

\[
K_{22} = \lambda_{\text{eff}}^{\text{ref}} \left[1 + \Lambda \chi \left(T - T_{\text{ref}} \right) \right] \left[1 + \epsilon \eta_{\text{tot}} P_{\text{tot}}^{\text{int}} \right] + \Delta H_v (C. 10)
\]

\[
C_{23} = 0 (C. 11)
\]

\[
K_{23} = 0 (C. 12)
\]

\[
C_{31} = \frac{\partial \rho_w}{\partial S_{w}^{\text{cap}}} + \alpha_p \omega \beta_p \eta_{\text{cap}} \rho_w (C. 13)
\]

\[
K_{31} = 0 (C. 14)
\]

\[
C_{32} = \frac{\partial \rho_v}{\partial \omega} \text{ (C. 15) } K_{32} = 0 \text{ (C. 16)}
\]

\[
C_{33} = \frac{\partial \rho_v}{\partial \omega} + \alpha_p S_{w}^{\text{cap}} \eta_{\text{cap}} \rho_w \beta_p \omega \beta_p^{-1} (C. 17)
\]

\[
K_{33} = \rho_w \left[\alpha_{T} \left| v_{w}^{\text{wa}} \delta_{ij} + v_{w}^{\text{wa}} \frac{v_{w}^{\text{wa}}}{v_{w}^{\text{wa}}} \left(\alpha_{L_{\text{g}}} - \alpha_{T} \right) \right| + \rho_{w} \eta_{\text{cap}} S_{w}^{\text{cap}} D_{\text{mol}} \delta_{ij} \right] (C. 18)
\]

\[
f_{g1} = \rho_w \frac{k_{w}^{\text{int}} k_{w}^{\text{rel}}}{\mu_w} \rho_w \bar{g} (C. 19)
\]

\[
f_{g1} = q_{w} + \delta_{w} \left(\rho_v - \rho_{v}^{\text{env}} \right) (C. 20)
\]

\[
f_{g2} = -\rho_w \frac{k_{w}^{\text{int}} k_{w}^{\text{rel}}}{\mu_w} \rho_w \Delta H_v \bar{g} (C. 21)
\]

\[
f_{g2} = q_{T} + \delta_{T} \left(T - T_{\text{env}} \right) (C. 22)
\]

\[
f_{g3} = \rho_{w} \frac{k_{w}^{\text{int}} k_{w}^{\text{rel}}}{\mu_w} \rho_w \bar{g} (C. 23)
\]

\[
f_{g3} = q_{w} + \delta_{w} \left(\omega - \omega_{\text{env}} \right) (C. 24)
\]

\[
F_{t1} = \left(\frac{\partial ^2 \rho_w}{\partial t} + \frac{\partial \rho_v}{\partial t} + w_{\text{tot}}^{\text{alt}} \right) \hat{t} - m_{w}^{\text{agg}} (C. 25)
\]

\[
F_{t2} = \left(\frac{\partial ^2 \rho_w}{\partial t} + w_{\text{tot}}^{\text{alt}} \right) \Delta H_v \hat{t} + \left(Q_{h} + m_{w}^{\text{agg}} \Delta H_v \right) (C. 26)
\]

\[
F_{t3} = \frac{\partial \rho_v}{\partial t} + \alpha_p S_{w}^{\text{cap}} \omega \beta_p \rho_w \frac{\partial \eta_{\text{cap}}}{\partial T} (C. 27)
\]
References

