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Abstract While thorium dioxide is already used industrially in high temperature applications, 

more insight is needed about the behaviour of the material as part of a mixed-oxide (MOX) 

nuclear fuel, incorporating uranium. We have developed a new interatomic potential model, 

commensurate with a prominent existing UO2 potential, to conduct configurational analyses of 

uranium-doped ThO2 supercells. Using the GULP and Site Occupancy Disorder (SOD) 

computational codes, we have analysed the distribution of low concentrations of uranium in the 

bulk material, but have not observed the formation of uranium clusters or a single dominant 

configuration. 

1.  Introduction 

Although the majority of nuclear power reactors operating today use uranium and/or plutonium-based 

fuels such as low-enriched uranium (LEU) or mixed oxide fuels (MOX), alternative nuclear fuels are 

being considered as well.[1] Thorium compounds can be used to fuel nuclear reactors and they present 

an attractive alternative to the standard uranium and plutonium-MOX fuels.   As many countries around 

the world rethink their nuclear energy programs in the wake of the Fukushima event, interest in thorium 

energy is growing as a result.[2]   

While thorium is a fertile material, it is not fissile and therefore a sustained conversion to the 

fissile 233U isotope can only occur in the presence of a neutron source. Although plutonium and uranium 

may serve as the source, there are several advantages to blending thoria with urania that have been 

confirmed experimentally, including changes in the decay heat, melting point, and thermal conductivity 

of the material, in addition to a decrease in the release rate of fission gases despite an actual increase in 

the production of fission gases.[3] 

Since a small amount of a neutron source is required for application as a nuclear fuel, it is 

useful to study thorium dioxide (thoria) in the context of uranium-doping. Pure thoria is a ceramic 

material with a melting point of 3651 K, the highest of any known oxide.[4] Unlike uranium and 

plutonium oxides, ThO2 also represents the highest oxidation state of the material, which makes it 

exceptionally stable in the presence of oxygen or oxygenated water.  This corrosion resistance has 

positive implications for the use of thoria in nuclear fuels.[3]  

Thoria has the fluorite structure, space group Fm𝟑̅𝒎 (225), which is shared with the dioxides 

of, for example, cerium, plutonium, and uranium.  As ThO2 and UO2 are isostructural and blends of the 
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two materials are combined to form nuclear fuels, there is significant interest in thoria-urania solid 

solutions, both experimentally and theoretically. 

2. Methodology 

To investigate the distribution of uranium atoms in thoria, a 96-atom 2x2x2 thoria supercell was used 

as the base material. The oxygen-oxygen interaction is described by the potential published by Catlow, 

whereas initial values of A and ρ were taken from the Catlow U-O Buckingham potential.[5] Due to the 

similarities between urania and thoria, these values provided a good starting point for the derivation of 

a Th-O potential, which is described by a Buckingham equation: 

 

V = Aexp(-r/ρ)                                                                 (1) 

 

where A = 1281.775, ρ = 0.391 

 

We have next used this ThO2 potential along with the leading Catlow UO2 potential in the Site- 

Occupancy Disorder (SOD) code, version 0.26.[6] to obtain the distribution of uranium in a range of 

concentrations in the thoria lattice. The SOD code takes advantage of internal symmetry operators in 

the material to reduce the total number of possible configurations for a given substitution to only the 

number of independent configurations.  

 

For a uranium-substituted 2x2x2 supercell of Th(32-x)UxO64, where x ranges from 2-5, the number of 

these inequivalent configurations was determined with SOD, followed by energy minimizations under 

constant pressure using Gulp 3.4.[7,8] The resulting energies of each of the independent configurations 

was compared to pure thoria to determine the most energetically favourable distributions of uranium 

atoms in the system.  

 

Additionally, the SOD code was used to determine the Boltzmann probabilities of the non-equivalent 

configurations.[6,9] The probability Pm of each independent configuration, m, is calculated according to 

equation 2, where Gm is the vibrational free energy, Ωm represents the number of times the independent 

configuration occurs in the total configurational space, kb is Boltzmann’s constant, and Z is the partition 

function: 

                                   𝑃𝑚 =
1

𝑍
𝛺𝑚 exp (−

𝐺𝑚

𝑘𝑏𝑇
)                                                        (2)                                 

 

3. Results 

The SOD code identified five independent configurations in the Th(32-x)UxO64 supercell where x= 2, 

whereas there are 14 for x = 3. These systems represent concentrations of approximately 6% and 9% 

uranium, respectively, which is in line with real-world fuel applications of doped thoria. For each value 

of x, the energy differences between the lowest and highest configurations were less than 0.1 eV. As a 

result, the Boltzmann probability distributions illustrated in Figure 1 indicate that there is not one 

dominant configuration for x= 2 or x=3. In all cases, the lack of one dominant configuration indicates 

that the system is disordered. However, by comparing the probabilities and the configurational energies, 

it is noted that those configurations with the highest probability of occurring are among the lowest 

energy structures for every value of x.  

The key finding from these calculations is that the uranium atoms are distributed throughout the cell and 

do not form clusters in the lowest energy configurations. This indicates that any stabilisation effects of 

forming uranium clusters within the ThO2 matrix are overcome by the likely entropic effects of the less-

ordered structures where the U-U distances are maximised.  
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       Figure 1. Probability distribution of the independent configurations of Th30U2O64 and Th29U3O64 

 

4. Conclusions:  

We have developed a new interatomic potential that can be successfully used in conjunction with a 

leading UO2 potential to model uranium-doped ThO2. In this study we have applied the potential model 

to the study the distribution of uranium atoms in thoria supercells. We have shown that uranium atoms 

do not cluster in the bulk material but are instead distributed throughout the cell. 
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