Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity

Weber-Boyvat, Marion, Kentala, Henriikka, Lilja, Johanna, Vihervaara, Terhi, Hanninen, Raisa, Zhou, You ORCID: https://orcid.org/0000-0002-1743-1291, Peränen, Johan, Nyman, Tuula A., Ivaska, Johanna and Olkkonen, Vesa M. 2015. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Experimental Cell Research 331 (2) , pp. 278-291. 10.1016/j.yexcr.2014.10.019

Full text not available from this repository.

Abstract

ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3–VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and β1-integrin activity were enhanced by ORP3–VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3–VAPA complexes stimulate R-Ras signaling.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Systems Immunity Research Institute (SIURI)
Uncontrolled Keywords: FFAT motif; Integrin; ORP3; Phosphorylation; R-Ras; VAPA
Publisher: Elsevier
ISSN: 0014-4827
Date of Acceptance: 21 October 2014
Last Modified: 01 Nov 2022 10:02
URI: https://orca.cardiff.ac.uk/id/eprint/89944

Citation Data

Cited 57 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item