Abstract
This paper presents a meta-algorithm for the computation of preferred labellings, based on the general recursive schema for argumentation semantics called SCC-Recursiveness. The idea is to recursively decompose a framework so as to compute semantics labellings on restricted sub-frameworks, in order to reduce the computational effort. The meta-algorithm can be instantiated with a specific “base algorithm”, applied to the base case of the recursion, which can be obtained by generalizing existing algorithms in order to compute labellings in restricted sub-frameworks. We devise for this purpose a generalization of a SAT-based algorithm, and provide an empirical investigation to show the significant improvement of performances obtained by exploiting the SCC-recursive schema.

Introduction
Dung’s theory of abstract argumentation (Dung 1995) is a unifying framework able to encompass a large variety of specific formalisms in the areas of nonmonotonic reasoning, logic programming and computational argumentation. It is based on the notion of argumentation framework (AF), consisting of a set of arguments and an attack relation between them. Different argumentation semantics introduce in a declarative way the criteria to determine which arguments emerge as justified from the conflict, by identifying a number of extensions, i.e. sets of arguments that can “survive the conflict together”. In (Dung 1995) four “traditional” semantics were introduced, namely complete, grounded, stable, and preferred semantics. For an introduction on alternative semantics, see (Baroni, Caminada, and Giacomin 2011).

The main computational problems in abstract argumentation include decision and construction problems, and turn out to be computationally intractable for most of argumentation semantics (Dunne and Wooldridge 2009). In this paper we focus on the extension enumeration problem, i.e. constructing all extensions prescribed for a given AF: its solution provides complete information concerning the justification status of arguments and subsumes the solutions to the other problems.

On the practical side, few results are available on the development of efficient algorithms for abstract argumentation and their empirical assessment. In particular, in (Cerutti et al. 2013; 2014) a SAT-based approach has been proposed to solve the extension enumeration problem for preferred semantics. Preferred semantics represents the main contribution in Dung’s theory, as it allows multiple extensions (differently from grounded semantics), the existence of extensions is always guaranteed (differently from stable semantics), and no extension is a proper subset of another extension (differently from complete semantics). The proposed approach basically performs a search in the space of complete extensions to enumerate the maximal ones, exploiting a SAT solver to identify the relevant search states. In (Cerutti et al. 2014) it has been shown to be competitive w.r.t. other state-of-the-art systems including ASPARTIX (Egly, Alice Gaggl, and Woltran 2010), ASPARTIX-META (Dvořák et al. 2011) and the system presented in (Nofal, Dunne, and Atkinson 2012). A limitation of this approach is that it is always applied to the AF as a whole, without dividing the enumeration problem into a number of simpler sub-problems.

In this paper, we aim at showing (i) an approach for dividing the problem of enumerating the preferred extensions into sub-problems, and (ii) that such an approach reduces the overall computational effort. In particular, we rely on the SCC-recursive schema, first introduced in (Baroni, Giacomin, and Guida 2005), which is a semantics definition schema where extensions are defined at the level of the
Background

An argumentation framework (Dung 1995) consists of a set of arguments\(^1\) and a binary attack relation between them.

Definition 1. An argumentation framework \(\langle A, R \rangle\) is a pair \(\Gamma = \langle A, R \rangle\) where \(A\) is a set of arguments and \(R \subseteq A \times A\). We say that \(b\) attacks \(a\) iff \((b, a) \in R\), also denoted as \(b \rightarrow a\). The set of attackers of an argument \(a\) will be denoted as \(a^- \triangleq \{ b : b \rightarrow a \}\). We also extend these notations to sets of arguments, i.e., given \(E \subseteq A\), \(E^- \triangleq \{ a \mid \exists b \in E, b \rightarrow a \}\) and \(E^+ \triangleq \{ a \mid \exists b \in E, a \rightarrow b \}\).

An argument \(a\) without attackers, i.e. such that \(a^- = \emptyset\), is said initial. Moreover, each argumentation framework has an associated directed graph where the vertices are the arguments, and the edges are the attacks.

The basic properties of conflict-freeness, acceptability, and admissibility of a set of arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF \(\Gamma = \langle A, R \rangle\):

- a set \(S \subseteq A\) is a conflict-free set of \(\Gamma\) if \(\nexists a, b \in S\) s.t. \(a \rightarrow b\);
- an argument \(a \in A\) is acceptable with respect to a set \(S \subseteq A\) of \(\Gamma\) if \(\forall b \in A\) s.t. \(b \rightarrow a\), \(\exists e \in S\) s.t. \(e \rightarrow b\);
- a set \(S \subseteq A\) is a complete set of \(\Gamma\) and every element of \(S\) is acceptable with respect to \(S\) of \(\Gamma\).

An argument semantics \(\sigma\) prescribes for any AF \(\Gamma\) a set of extensions, denoted as \(\mathcal{E}_\sigma(\Gamma)\), namely a set of sets of arguments satisfying the conditions dictated by \(\sigma\). Here we need to recall the definitions of complete (denoted as \(C0\)), grounded (denoted as \(GR\)) and preferred (denoted as \(PR\)) semantics only.

Definition 3. Given an AF \(\Gamma = \langle A, R \rangle\):

- a set \(S \subseteq A\) is a complete extension of \(\Gamma\), i.e. \(S \in \mathcal{E}_{C0}(\Gamma)\), iff \(S\) is admissible and \(\forall a \in A\) s.t. \(a\) is acceptable w.r.t. \(S, a \in S\);
- a set \(S \subseteq A\) is the grounded extension of \(\Gamma\), i.e. \(S \in \mathcal{E}_{GR}(\Gamma)\), iff \(S\) is the minimal (w.r.t. set inclusion) complete extension of \(\Gamma\). Its existence and uniqueness have been proved in (Dung, Mancarella, and Toni 2006);
- a set \(S \subseteq A\) is a preferred extension of \(\Gamma\), i.e. \(S \in \mathcal{E}_{PR}(\Gamma)\). iff \(S\) is a maximal (w.r.t. set inclusion) complete extension of \(\Gamma\).

It can be noted that each extension \(S\) implicitly defines a three-valued labelling of arguments: an argument \(a\) is labelled in iff \(a \in S\); is labelled out iff \(\exists b \in S\) s.t. \(b \rightarrow a\); is labelled undec if neither of the above conditions holds. In the light of this correspondence, argumentation semantics can be equivalently defined in terms of labellings rather than of extensions (Caminada 2006; Baroni, Caminada, and Giacomin 2011). For technical reasons, we introduce the notion of labelling both for argumentation frameworks and for arbitrary sets of arguments.

Definition 4. Given a set of arguments \(S\), a labelling of \(S\) is a total function \(\text{Lab} : S \rightarrow \{\text{in}, \text{out}, \text{undec}\}\). The set of all labellings of \(S\) is denoted as \(\mathcal{L}_S\). Given an AF \(\Gamma = \langle A, R \rangle\), a labelling of \(\Gamma\) is a labelling of \(A\). The set of all labellings of \(\Gamma\) is denoted as \(\mathcal{L}(\Gamma)\).

In particular, complete labellings can be defined as follows.

Definition 5. Let \(\Gamma = \langle A, R \rangle\) be an argumentation framework. A labelling \(\text{Lab} \in \mathcal{L}(\Gamma)\) is a complete labelling of \(\Gamma\) iff it satisfies the following conditions for any \(a \in A\):

- \(\text{Lab}(a) = \text{in} \iff \forall b \in a^- \text{Lab}(b) = \text{out}\);
- \(\text{Lab}(a) = \text{out} \iff \exists b \in a^- : \text{Lab}(b) = \text{in}\).

The grounded and preferred labelling can then be defined on the basis of complete labellings.

Definition 6. Let \(\Gamma = \langle A, R \rangle\) be an argumentation framework. A labelling \(\text{Lab} \in \mathcal{L}(\Gamma)\) is the grounded labelling of \(\Gamma\) if it is the complete labelling of \(\Gamma\) minimizing the set of arguments labelled \(\text{in}\), and it is a preferred labelling of \(\Gamma\) if it is a complete labelling of \(\Gamma\) maximizing the set of arguments labelled \(\text{in}\).

In order to show the connection between extensions and labellings, let us recall the definition of the function \(\text{Ext2Lab}\), returning the labelling corresponding to a conflict-free set of arguments \(S\).

Definition 7. Given an AF \(\Gamma = \langle A, R \rangle\) and a conflict-free set \(S \subseteq A\), the corresponding labelling \(\text{Ext2Lab}(S)\) is defined as \(\text{Ext2Lab}(S) \equiv \text{Lab}, \text{where}\):

- \(\text{Lab}(a) = \text{in} \iff a \in S\)
- \(\text{Lab}(a) = \text{out} \iff \exists b \in S\) s.t. \(b \rightarrow a\)
- \(\text{Lab}(a) = \text{undec} \iff a \notin S \land \nexists b \in S\) s.t. \(b \rightarrow a\)

(Caminada 2006) shows that there is a bijective correspondence between the complete, grounded, preferred extensions and the complete, grounded, preferred labellings, respectively.

Proposition 1. Given an AF \(\Gamma = \langle A, R \rangle\), \(\text{Lab}\) is a complete (grounded, preferred) labelling of \(\Gamma\) if and only if there is a complete (grounded, preferred) extension \(S\) of \(\Gamma\) such that \(\text{Lab} \equiv \text{Ext2Lab}(S)\).
The set of complete labellings of Γ is denoted as $L_{\text{CC}}(\Gamma)$, the set of preferred labellings as $L_{\text{PR}}(\Gamma)$, while $L_{\text{GR}}(\Gamma)$ denotes the set including the grounded labelling.

SCC-Recursiveness Revisited

In (Baroni and Giacomini 2004) it has been recognised that each argumentation framework can be partitioned into a set of sub-frameworks in such a way that most common argumentation semantics (originally defined at the global level) can be equivalently defined at the level of these sub-frameworks. In particular, an extension-based semantics definition schema has been introduced, called SCC (strongly connected component)-recursiveness, based on the graph-theoretical notion of SCCs i.e. the equivalence classes induced by the path equivalence (i.e. mutual reachability) relation between the nodes of the associated graph of an argumentation framework (given the direct correspondence between each AF and its associated graph, in the following we will equivalently refer to both of them as AF).

Definition 8. Given an AF $\Gamma = (\mathcal{A}, \mathcal{R})$, the binary relation of path-equivalence between nodes, denoted as $PE_\Gamma \subseteq \mathcal{A} \times \mathcal{A}$, is defined as follows:

- $\forall a \in \mathcal{A}, \langle a, a \rangle \in PE_\Gamma$;
- $\forall a, b \in \mathcal{A}, a \neq b, \langle a, b \rangle \in PE_\Gamma$ if there is a path from a to b and vice versa.

Two main features of the SCC-recursive schema are worth remarking.

First, the SCC-recursive schema exploits the partial order of SCCs induced by the attack relation and can be regarded as a constructive procedure to incrementally build extensions following such partial order. At the beginning, the extensions of the frameworks restricted to the initial SCCs (i.e. those not receiving attacks from others) are computed and combined together. Then each SCC which is attacked only from initial SCCs is considered, and for each extension E already obtained, the extensions of such a SCC are locally computed and merged with E. The process is then applied to all SCCs following their partial order, until no remaining SCCs are left to process.

A second feature is that the schema, as the name suggests, is recursive. In particular, for every SCC considered in the above procedure, the local computation is performed as follows. First, all arguments attacked by the extension selected in the previous SCCs are suppressed. Then, the procedure is recursively applied to the remaining part of the SCC. The base of the recursion is reached when there is one SCC only: in this case, a base function BF is called. Such a function receives as input an argumentation framework $\Gamma = (\mathcal{A}, \mathcal{R})$ and a set $C \subseteq \mathcal{A}$: Γ is a sub-framework of the original AF $\Gamma' = (\mathcal{A}', \mathcal{R}')$, and C contains the arguments that are “externally accepted” (i.e. their attackers in $\mathcal{A}' \setminus \mathcal{A}$ are attacked by the part of the extension constructed so far).

The following definitions introduce the SCC-recursive schema in its original extension-based form (Baroni, Giacomini, and Guida 2005).

First, let us recall the definition of restriction of an AF Γ to a set of arguments I, in symbol $\Gamma_{\downarrow I}$.

Definition 9. Given an argumentation framework $\Gamma = (\mathcal{A}, \mathcal{R})$ and a set $I \subseteq \mathcal{A}$, the restriction of Γ to I is defined as $\Gamma_{\downarrow I} \equiv (\mathcal{A} \cap I, \mathcal{R} \cap (I \times I))$.

Then, Definition 10 introduces the function $GF(\Gamma, C)$ which recursively computes the semantics extensions on the basis of the SCCs of Γ. Let us denote as SCC_Γ the set including the SCCs of an argumentation framework Γ.

Definition 10. A given argumentation semantics σ is SCC-recursive if for any argumentation framework $\Gamma = (\mathcal{A}, \mathcal{R})$, $E_\sigma(\Gamma) = GF(\Gamma, A) \subseteq 2^\mathcal{A}$. For any $\sigma = (\mathcal{A}, \mathcal{R})$ and for any set $C \subseteq \mathcal{A}$, $E \in GF(\Gamma, C)$ if and only if:

- $E \in BF_\sigma(\Gamma, C)$ if $|SCC_\Gamma| = 1$;
- $\forall S \in SCC_\Gamma (E \cap S) \in GF(\Gamma \setminus (E \setminus S)^+), U_T(S, E) \cap C$ otherwise

where

- $BF_\sigma(\Gamma, C)$ is a function, called base function, that, given an argumentation framework $\Gamma = (\mathcal{A}, \mathcal{R})$ such that $|SCC_\Gamma| = 1$ and a set $C \subseteq \mathcal{A}$, gives a subset of $2^\mathcal{A}$
- $U_T(S, E) = \{a \in S'(E \setminus S)^+ \mid \forall b \in (a \setminus S), b \in E^+\}$

As shown below, this schema is based on the notions of admissible set, complete, grounded, preferred extension of an AF in a set of arguments.

Definition 11. Given an AF $\Gamma = (\mathcal{A}, \mathcal{R})$ and a set $C \subseteq \mathcal{A}$, a set $E \subseteq \mathcal{A}$ is:

- an admissible set of Γ in C if and only if E is an admissible set of Γ and $E \subseteq C$
- a complete extension of Γ in C if and only if E is an admissible set of Γ in C, and every argument $\alpha \in C$ which is acceptable with respect to E belongs to E
- the grounded extension of Γ in C if and only if it is the least (with respect to set inclusion) complete extension of Γ in C
- a preferred extension of Γ in C if and only if it is a maximal (with respect to set inclusion) complete extension of Γ in C.

The existence and uniqueness of the grounded extension in C, as well as the existence of at least a preferred extension in C, have been proved in (Baroni, Giacomini, and Guida 2005). The set of admissible sets in C is denoted as $E_{\text{AD}}(\Gamma, C)$, the set of complete extensions in C as $E_{\text{CC}}(\Gamma, C)$, the set of preferred extensions in C as $E_{\text{PR}}(\Gamma, C)$, while $E_{\text{GR}}(\Gamma, C)$ denotes the set including the grounded extension in C.

(Baroni, Giacomini, and Guida 2005) proves that $GF(\Gamma, C)$, as defined in Def. 10, returns $E_\sigma(\Gamma, C)$ (with $\sigma \in \{\text{O}, \text{GR}, \text{PR}\}$), provided that $BF_\sigma(\Gamma, C)$ returns the complete, grounded, and preferred extensions in C, respectively. The correctness of the schema then follows from the fact that, according to Definition 11, $E_\sigma(\Gamma, A) = E_\sigma(\Gamma)$.

A Parametric Meta-Algorithm to Enumerate Preferred Labellings

In this section, we develop a “meta-algorithm” based on the SCC-recursive schema for the computation of preferred labellings. We use the term meta-algorithm since it is parametric w.r.t. an algorithm B-PR to compute the base function
Algorithm 1 Enumerating the preferred labellings of an AF

\textbf{PREF}(\Gamma)
1: Input: \(\Gamma = (\mathcal{A}, \mathcal{R}) \)
2: Output: \(E_p \in 2^{\mathcal{L}(\Gamma)} \)
3: return \(\text{R-PREF}(\Gamma, \mathcal{A}) \)

\(\mathcal{B}_{\text{P-R}} \), without committing on the way \(B-PR \) performs its computation.

The meta-algorithm consists of Algorithms 1 and 2. It represents an implementation of the SCC-recursive schema with two main improvements. First, the schema has been adapted to the labelling-based approach: the following definition introduces the labelling-based counterpart of the complete, grounded and preferred extension in \(C \).

Definition 12. Given an AF \(\Gamma = (\mathcal{A}, \mathcal{R}) \) and a set \(C \subseteq \mathcal{A} \), a labelling \(\text{Lab} \in \mathcal{L}(\Gamma) \) is a complete (grounded, preferred) labelling of \(\Gamma \) in \(C \) if there is a complete (grounded, preferred) extension \(S \) of \(\Gamma \) in \(C \) such that \(\text{Lab} = \text{Ext2Lab}(S) \).

The set of complete and preferred labellings of \(\Gamma \) in \(C \) are denoted as \(\mathcal{L}_{\text{CC}}(\Gamma, C) \) and \(\mathcal{L}_{\text{P-R}}(\Gamma, C) \), respectively, and the set including the grounded labelling of \(\Gamma \) in \(C \) is denoted as \(\mathcal{L}_{\text{GR}}(\Gamma, C) \).

Finally, a pre-processing step computing the grounded labelling \(\text{Lab}^* \) in \(C \) is performed. The labellings of the whole argumentation framework can then be obtained by extending \(\text{Lab}^* \), on the basis to the following result.

Proposition 2. Let \((\mathcal{A}, \mathcal{R}) \) be an argumentation framework and let \(C \subseteq \mathcal{A} \) a set of arguments. Considering the grounded labelling \(\text{Lab}^* \) of \(\Gamma \) in \(C \) and the set \(U \) including the \text{undec}-labelled arguments according to \(\text{Lab}^* \), it holds that \(\mathcal{L}_{\text{P-R}}(\Gamma, C) = \{ \text{Lab}^* \cup E \mid E \in \mathcal{L}_{\text{P-R}}(\Gamma_{\downarrow U}, C \cup U) \} \).

Sketch of proof. This extends the known result (Baroni, Caminada, and Giacomin 2011) that the grounded extension is a subset of the intersections of preferred extensions. \(\square \)

Let us turn to the description of the meta-algorithm. The function \(\text{PREF} \) (Algorithm 1) receives as input an argumentation framework \(\Gamma = (\mathcal{A}, \mathcal{R}) \) and returns the set of preferred labellings of \(\Gamma \). This is simply achieved by invoking (at line 3) \(\text{R-PREF}(\Gamma, \mathcal{A}) \), where the function \(\text{R-PREF} \) (\(G\mathcal{F} \) in Def. 10) receives as input an argumentation framework \(\Gamma = (\mathcal{A}, \mathcal{R}) \) and a set \(C \subseteq \mathcal{A} \), and computes the set \(\mathcal{L}_{\text{P-R}}(\Gamma, C) \), i.e. the set of preferred labellings of \(\Gamma \) in \(C \).

Algorithm 2 implements the function \(\text{R-PREF} \). First, a pre-processing step which computes the grounded labelling in \(C \) is executed at line 3 by means of the call \(\langle \text{Lab}, U \rangle = \text{GROUPED}(\Gamma, C) \).

The procedure \(\text{GROUPED} \) (Alg. 3) receives as input an argumentation framework \(\Gamma = (\mathcal{A}, \mathcal{R}) \) and a set \(C \subseteq \mathcal{A} \), and returns \(\text{Lab} \) and \(U \). \(\text{Lab} \) is the restriction of the grounded labelling to the arguments that are \text{in} or \text{out}-labelled; \(U \) is the set including the remaining (\text{undec}-labelled) arguments. The \(\text{GROUPED} \) procedure iteratively labels \(\text{in} \) each argument \(a \in C \) which either is initial, or receives attacks from arguments labelled \text{out} and then labels out each argument attacked by \(a \).

Algorithm 2 Enumerating the preferred labellings in a set \(C \) of an AF

\textbf{R-PREF}(\Gamma, C)
1: Input: \(\Gamma = (\mathcal{A}, \mathcal{R}), C \subseteq \mathcal{A} \)
2: Output: \(E_p \in 2^{\mathcal{L}(\Gamma)} \)
3: \(\langle \text{Lab}, U \rangle = \text{GROUPED}(\Gamma, C) \)
4: \(E_p := \{ \text{Lab} \} \)
5: \(\Gamma = \Gamma_{\downarrow U} \)
6: \((S_1, \ldots, S_n) := \text{SCCSSEQ}(\Gamma) \)
7: for \(i \in \{1, \ldots, n\} \) do
8: \(E_p := \emptyset \)
9: for \(\text{Lab} \in E_p \) do
10: \((O, I) := \text{BOUNDCOND}(\Gamma, S_i, \text{Lab}) \)
11: if \(I = \emptyset \) then
12: \(\text{Lab} = \text{Lab} \cup \{ (a, \text{out}) \mid a \in O \} \cup \{ (a, \text{undec}) \mid a \in S_i \setminus O \} \)
13: \(E_p = E_p \cup \{ \text{Lab} \} \)
14: else
15: if \(O = \emptyset \) then
16: \(E_s = \text{B-PR}(\Gamma_{\downarrow S_i}, I \cap C) \)
17: else
18: \(\text{Lab} = \text{Lab} \cup \{ (a, \text{out}) \mid a \in O \} \)
19: \(E_s = \text{R-PREF}(\Gamma_{\downarrow S_i \cup O}, I \cap C) \)
20: end if
21: \(E_p = E_p \cup \{ \text{Lab} \cap O_s \} \)
22: end if
23: end for
24: \(E_p := E_p \)
25: end for
26: return \(E_p \)

After the computation of \(\text{Lab} \) and \(U \), Alg. 2 initialises the variable \(E_p \) to \(\{ \text{Lab} \} \) at line 4. \(E_p \) stores the set of labellings that are incrementally constructed. Then the computation proceeds by considering the argumentation framework \(\Gamma_{\downarrow U} \) (line 5).

At line 6 the strongly connected components of the argumentation framework are identified. We assume that an algorithm is available, denoted as \(\text{SCCSSEQ} \), which receives as input an argumentation framework \(\Gamma \) and returns as output a sequence \((S_1, \ldots, S_n) \) including the strongly connected components of \(\Gamma \) in a topological order, i.e. if \(\exists a \in S_i, b \in S_j \) such that \(a \rightarrow b \) then \(i \leq j \). This can be done in linear time under the number of attacks (Cormen et al. 2009, p. 617).

The incremental construction of the preferred labellings is performed by the outer loop (lines 7-25), which iteratively selects the \(i \)-th SCC. At the beginning of the iteration, \(E_p \) includes the partial labellings constructed for \(S_1 \cup \ldots \cup S_{i-1} \). Then the inner loop is entered, which extends any labelling \(\text{Lab} \in E_p \) to \(S_i \) (lines 9-23) storing the labellings thus obtained in \(E_p' \) (initialised at line 8). At line 10 variable \(O \) is set to include arguments of \(S_i \) that are attacked by “outside” \text{in}-labelled arguments according to \(\text{Lab} \), and variable \(I \) is set to include arguments of \(S_i \) that are only attacked by “outside” \text{out}-labelled arguments. Formally, \(\text{BOUNDCOND}(\Gamma, S_i, \text{Lab}) \) returns \((O, I) \) where
A SAT-Based Approach for the Base Case

R-PREF (Alg. 2) relies on an external algorithm (B-PR) for enumerating the preferred labelings of \(\Gamma \) in a set of arguments \(C \). In order to empirically prove the improvements obtained using Alg. 2, in this section we discuss a specific implementation of B-PR generalizing the approach of (Cerutti et al. 2014).

The proposed algorithm performs a search in the space of complete extensions in \(C \), in order to maximise the set of in arguments (cf. Definitions 12 and 11). Each step of the search process requires to encode in a propositional formula the constraints corresponding to complete labelings of an AF in \(C \), with opportune modifications due to the search process. Then, a SAT solver checks whether the formula is satisfiable, i.e. there exists a truth assignment of the variables such that the formula evaluates to \(\top \), and if this is the case returns such an assignment.

As a first step to identify the encoding, here we provide the definition of complete labelling of \(\Gamma \) in \(C \) in a more algorithmic way than Definition 12.

Definition 13. Let \(\langle A, R \rangle \) be an argumentation framework and \(C \subseteq A \) be a set of arguments. A total function \(\text{Lab} : A \mapsto \{\text{in}, \text{out}, \text{undec}\} \) is a complete labelling of \(\Gamma \) in \(C \) if it satisfies the following conditions for any \(a \in C \):

\[
L^\text{in}: \text{Lab}(a) = \text{in} \iff \forall b \in a^\perp \text{Lab}(b) = \text{out};
\]

\[
L^\text{out}: \text{Lab}(a) = \text{out} \iff \exists b \in (a^\perp \cap C) : \text{Lab}(b) = \text{in};
\]

\[
L^\text{undec}: \text{Lab}(a) = \text{undec} \iff \forall b \in (a^\perp \cap C), \text{Lab}(b) \neq \text{in} \land \exists e \in a^\perp : \text{Lab}(e) = \text{undec};
\]

and the following conditions for any \(a \in (A \setminus C) \):

\[
L^\text{in}_{A\setminus C}: \text{Lab}(a) = \text{in} \iff \forall b \in (a^\perp \setminus C), \text{Lab}(b) = \text{out};
\]

\[
L^\text{undec}_{A\setminus C}: \text{Lab}(a) = \text{undec} \iff \forall b \in (a^\perp \setminus C), \text{Lab}(b) \neq \text{in} \land \exists e \in a^\perp : \text{Lab}(e) = \text{undec}.
\]

The following proposition shows that Definition 13 actually identifies the complete labelings in \(C \) as introduced in Definition 12.

Proposition 3. Given an an AF \(\Gamma = \langle A, R \rangle \) and a set \(C \subseteq A \), \(\text{Lab} \) satisfies the conditions of Definition 13 if and only if there is a complete extension \(S \) of \(\Gamma \) in \(C \) such that \(\text{Lab} = \text{Ext2Lab}(S) \).

Sketch of proof. The proof generalizes (Cerutti et al. 2014, Proposition 2), to take into account the parameter \(C \). \(\square \)

The Complete Labelling Formula of \(\Gamma \) in \(C \)

Given an AF \(\Gamma = \langle A, R \rangle \) and a set \(C \subseteq A \), we are interested in identifying a boolean formula in conjunctive normal form (as required by the SAT solver), called complete labelling formula of \(\Gamma \) in \(C \) and denoted as \(\Pi_{\Gamma,C} \), such that the satisfying assignments of the formula are in one-to-one correspondence with the complete labelings of \(\Gamma \) in \(C \).

To this purpose, we have to introduce some notation. Let \(\phi \) be a bijection \(\phi : \{1, \ldots, |A|\} \mapsto A \) (the inverse map will be denoted as \(\phi^{-1} \)): \(\phi \) is an indexing of \(A \). Argument \(\phi(i) \) will be sometimes referred to as argument \(i \) for brevity.

For each argument \(i \) we define three boolean variables, \(I_i, O_i, \)
and U_i, with the intended meaning that I_i is \top when argument i is labelled in, \bot otherwise (and analogously O_i and U_i correspond to labels out and undec). Formally, given $\Gamma = \langle A, R \rangle$ we define the corresponding set of variables as $V(\Gamma) = \bigcup_{i \in \phi^{-1}(A)} \{ I_i, O_i, U_i \}$.

The following definition expresses the constraints of Definition 5 in terms of the variables $V(\Gamma)$.

Definition 14. Given an AF $\Gamma = \langle A, R \rangle$ with $|A| = k$ and a set $C \subseteq A$, let $\phi : \{ 1, \ldots, k \} \mapsto A$ be an indexing of A. The ENC_{all} encoding defined on the variables in $V(\Gamma)$ is given by the conjunction of the formulae listed below:

\[
\bigwedge_{i \in \phi^{-1}(C)} \left((I_i \lor O_i \lor U_i) \land (\neg I_i \lor \neg O_i) \land \right. \\
(\neg I_i \lor \neg U_i) \land (\neg O_i \lor \neg U_i) \bigwedge_{j \in \phi^{-1}(C)} \left(I_i \lor \bigvee \left(\neg O_j \right) \right) \bigwedge_{i \in \phi^{-1}(C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \bigwedge_{i \in \phi^{-1}(C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \bigwedge_{i \in \phi^{-1}(C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \bigwedge_{i \in \phi^{-1}(C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \bigwedge_{i \in \phi^{-1}(C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right)
\]

Formulas (1) and (8) encode the fact that Lab is a total function. The other formulas are in direct correspondence with the conditions of Definition 13:

- formulas (2) and (3) encode $\mathcal{L}_{\mathcal{C}}^1$;
- formulas (4) and (5) encode $\mathcal{L}_{\mathcal{C}}^2$;
- formulas (6) and (7) encode $\mathcal{L}_{\mathcal{C}}^3$;
- formulas (9) and (10) encode $\mathcal{L}_{\mathcal{A}\setminus C}^2$;
- formulas (11) and (12) encode $\mathcal{L}_{\mathcal{A}\setminus C}^3$;

The following proposition shows that ENC_{all} is a complete labelling formula of Γ in C, i.e. every satisfying assignment of the ENC_{all} encoding corresponds to a complete extension in C, and vice versa. For ease of notation, if a variable is not assigned to \top then it is \bot.

Proposition 4. Let $\langle A, R \rangle$ be an argumentation framework and $C \subseteq A$ be a set of arguments. If Lab is a complete labelling of Γ in C, then the assignment $\Phi_{V(\Gamma)} \equiv \{ (I_i, \top) \mid \text{Lab}(\phi(i)) = \text{in} \} \cup \{ (O_i, \top) \mid \text{Lab}(\phi(i)) = \text{out} \} \cup \{ (U_i, \top) \mid \text{Lab}(\phi(i)) = \text{undec} \}$ satisfies the ENC_{all} encoding of Definition 14. Conversely, if $\Phi_{V(\Gamma)}$ is a satisfying assignment of the ENC_{all} encoding, then the labelling $\text{Lab} \equiv \{ (a, \text{in}) \mid \phi^{-1}(a) \in \Phi_{V(\Gamma)} \} \cup \{ (b, \text{out}) \mid O_{\phi^{-1}(b)} \in \Phi_{V(\Gamma)} \} \cup \{ (c, \text{undec}) \mid U_{\phi^{-1}(c)} \in \Phi_{V(\Gamma)} \}$ is a complete labelling of Γ in C.

Sketch of proof. The result derives from Proposition 3 by transforming logical implications in AND/OR.

Several syntactically different encodings can be devised which, while being logically equivalent, can significantly affect the performance of the overall process (Cerutti et al. 2014). The following proposition shows the 20 non redundant encodings (i.e. it is not possible to drop out some clauses so as to obtain a simpler logically equivalent encoding) equivalent to ENC_{all}.

Proposition 5. Let $\langle A, R \rangle$ be an argumentation framework and $C \subseteq A$ be a set of arguments. Referring to the formulæ listed in Definition 14, let us define the following formulæ (for the arguments in C):

\[
\begin{align*}
C_3^1 & : (1) \land (2) \land (3) \land (4) \land (5) \\
C_3^2 & : (1) \land (4) \land (5) \land (6) \land (7) \\
C_3^3 & : (1) \land (2) \land (3) \land (6) \land (7)
\end{align*}
\]

\[
\begin{align*}
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \\
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \\
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \\
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \\
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right) \\
\bigwedge_{i \in \phi^{-1}(A \setminus C)} \left(\bigwedge \left(\neg I_j \lor O_i \right) \right)
\end{align*}
\]
$C_2: (1) \land (3) \land (5) \land (7)$
$C_3: (1) \land (2) \land (4) \land (6)$

as well as the following ones (for the arguments in $A \setminus C$):
$NC_1^a: (8) \land (9) \land (10)$
$NC_1^b: (8) \land (11) \land (12)$
$NC_2: (8) \land (10) \land (12)$
$NC_3: (8) \land (9) \land (11)$

Any encoding of the form $C \land NC$, where $C \in \{C_1^a, C_1^b, C_2, C_3\}$ and $NC \in \{NC_1^a, NC_1^b, NC_2, NC_3\}$, is equivalent to ENC_{alt}, i.e. it has the same satisfying assignments of the variables in $V(\Gamma)$.

Sketch of proof. The proof exploits the fact that LAB is a total function and shows that the conditions in $C \land NC$ entail those included in ENC_{alt}. □

Corollary 1. Let (A, \mathcal{R}) be an argumentation framework and $C \subseteq A$ be a set of arguments. Any encoding of the form $C \land NC$ (see Proposition 5) is a complete labelling formula of Γ in C.

The SAT Basepref Algorithm

We are now able to describe the proposed procedure to implement B-PR. The procedure, called SAT_basepref, resorts to five external functions: SS, I-ARGS, O-ARGS, U-ARGS and LAB. SS is a SAT solver able to prove unsatisfiability too: it accepts as input a CNF formula and returns a variable assignment. Moreover, LAB returns the labelling corresponding to the input set of arguments labelled as dec, while LAB returns the labelling corresponding to the input variable assignment. Moreover, INC_C denotes the clause $\forall \text{arg} \in (\text{arg}) \in V(\Gamma)$.

The SAT_basepref procedure (Alg. 4) initialises, at line 3, the variable E_p which stores the generated labellings. Then cnf is initialized to $\Pi_{\Gamma,C} \land INC_C$: $\Pi_{\Gamma,C}$ is a complete labelling formula of Γ in C, e.g. one of the equivalent encodings shown in Proposition 5, while INC_C restricts the search process to a non-empty labelling (this is non restrictive due to the check of line 34). The search process is carried out by two nested repeat-until loops. Roughly, the inner loop (lines 8–24) resembles a depth-first search which, starting from a non-empty complete labelling in C, produces a sequence of complete labellings in C strictly ordered by set inclusion. When the sequence can no more be extended, its last element corresponds to a complete labelling in C maximizing the set of in-labelled arguments, namely to a preferred labelling. The outer loop (lines 3–33) drives the search: it ensures, through proper settings of the variables, that the inner loop is entered with different initial conditions, so that all preferred labellings in C are found.

The following theorem shows that Algorithm 4 is correct.

Theorem 2. Given an AF $\Gamma = (A, \mathcal{R})$ and a set $C \subseteq A$. Algorithm 4 returns $\mathcal{L}_{\text{pref}}(\Gamma, C)$.

Algorithm 4 Enumerating the preferred labellings in a set C of a AF

1: **Input:** $\Gamma = (A, \mathcal{R}), C \subseteq A$
2: **Output:** $E_p \in 2^{\mathcal{E}(\Gamma)}$
3: $E_p := \emptyset$
4: $cnf := \Pi_{\Gamma,C} \land INC_C$
5: **repeat**
6: $prefcand := \emptyset$
7: $cnf _ all := cnf$
8: **repeat**
9: $\text{lastcompfound} := SS(cnfdf)$
10: **if** $\text{lastcompfound} = \varepsilon$ **then**
11: $prefcand := \text{lastcompfound}$
12: **for** $a \in I$-ARGS(lastcompfound) **do**
13: $cnf _ all := cnf _ all \land \text{I}_{\phi^{-1}(a)}$
14: **end for**
15: **for** $a \in O$-ARGS(lastcompfound) **do**
16: $cnf _ all := cnf _ all \land \text{U}_{\phi^{-1}(a)}$
17: **end for**
18: $\text{remaining} := \bot$
19: **for** $a \in C \setminus I$-ARGS(lastcompfound) **do**
20: $\text{remaining} := \text{remaining} \lor \text{I}_{\phi^{-1}(a)}$
21: **end for**
22: $cnf := cnf _ all \land \text{remaining}$
23: **end if**
24: **until** ($\text{lastcompfound} = \varepsilon$)
25: **if** $\text{prefcand} = \emptyset$ **then**
26: $E_p := E_p \cup \{LAB(prefcand)\}$
27: $\text{oppsolution} := \perp$
28: **for** $a \in C \setminus I$-ARGS(prefcand) **do**
29: $\text{oppsolution} := \text{oppsolution} \lor \text{I}_{\phi^{-1}(a)}$
30: **end for**
31: $cnf := cnf \land \text{oppsolution}$
32: **end if**
33: **until** ($\text{prefcand} = \emptyset$)
34: **if** $E_p = \emptyset$ **then**
35: $E_p = \{(a, \text{undec}) \mid a \in A\}$
36: **end if**
37: **return** E_p

The Empirical Analysis

In this section, we present the results of a large experimental study examining the reduction of computational effort in enumerating preferred extensions due to the application of the proposed meta-algorithm (Alg. 1) instantiated with Alg. 4 as B-PR.

Experimental Setup

The experiments were performed on AMD Opteron™ 2.4 Ghz, 8Gb of RAM and Linux operating system. As in the International Planning Competition (IPC) (Jiménez et al. 2012), a limit of 15 minutes was imposed to compute the preferred labellings for each AF. No limit was imposed on the RAM usage, but a run fails at saturation of the available memory. Moreover, we adopted the IPC speed score,
also borrowed from the planning community, which is defined as follows. For each \(AF \), each system gets a score of \(1/(1 + \log_{10}(T/T^*)) \), where \(T \) is its execution time and \(T^* \) the best execution time among the compared systems, or a score of 0 if it fails in that case. Runtimes below 0.01 sec get by default the maximal score of 1.

In order to evaluate PREF, we compared it with the implementation of the approach discussed in (Cerutti et al. 2014), which has been proved to be competitive w.r.t. other state-of-the-art systems. In the following we refer to SCC-P as the prototype implementing the algorithm PREF with \(C_2 \) and \(NC_2 \), and SAT-P as the current version (rev. 128) of the software presented in (Cerutti et al. 2014) with \(C_2 \). We chose to compare SCC-P not with the implementation of Alg. 4 called as PREF(\(\Gamma, \mathcal{A} \)), but with SAT-P in order to give additional strength to this empirical evaluation. Both SCC-P and SAT-P are implemented in C++ and both adopt Glucose (Audemard and Simon 2009, 2012) as integrated SAT solver.

We designed three experiments aimed at addressing the following hypotheses:

1: on \(\Gamma \) s.t. \(|\text{SCC}_\Gamma| = 1 \), SCC-P performs worse than SAT-P;
2: there exists a value \(\chi \) such that on \(\Gamma \) where \(|\text{SCC}_\Gamma| > \chi \), SCC-P performs better that SAT-P;
3: on \(\Gamma \), s.t. \(|\text{SCC}_\Gamma| > \chi \), the greater \(|E_{\mathcal{PR}}(\Gamma)| \), the more SAT-P performs worse than SCC-P.

To check the first hypothesis, we conducted an experiment on 790 randomly generated \(AF \) \(s \) \((\Gamma) \), s.t. \(|\text{SCC}_\Gamma| = 1 \), varying \(\mathcal{A} \) between 25 and 250 with a step of 25.

Coming to the second hypothesis, we randomly generated 720 \(AF \) \(s \) varying \(|\text{SCC}_\Gamma| \) between 5 and 45 with a step of 5. The size of the SCCs is determined by normal distributions with means between 20 and 40 with a step of 5, and with a fixed standard deviation of 5. We similarly varied the probability of having attacks between arguments among SCCs.

Finally, we addressed the third hypothesis conducting an experiment on 2800 \(AF \) \(s \) randomly generated as before, such that \(50 \leq |\text{SCC}_\Gamma| \leq 80 \) with a step of 5.

In the following we rely on the Wilcoxon Signed-Rank Test (WSRT) in order to identify significant subset of data.

Experiments on \(\Gamma \) s.t. \(|\text{SCC}_\Gamma| = 1 \)

Figure 1 depicts the significant \((p < 0.05) \) IPC values (normalised to 100) for SCC-P and SAT-P when \(|\text{SCC}_\Gamma| = 1 \) varying \(|\mathcal{A}| \) and \(|E_{\mathcal{PR}}(\Gamma)| \). From this, we can observe that there is a significant statistical evidence supporting hypothesis I1. It is worth to mention that when \(|\text{SCC}_\Gamma| = 1 \), PREF (i) identifies the presence of a single SCC, (ii) calls the B-PR on the single computed SCC. Since B-PR is a variation (cf. Alg. 4) of the algorithm SAT-P, the great difference of performance shown in Fig. 1 suggests that refining the prototypical implementation we used in these experiments would lead to better results.

Experiments on \(\Gamma \) s.t. \(5 \leq |\text{SCC}_\Gamma| \leq 45 \)

Figure 2 summarises the results obtained in the experiment aimed at proving hypothesis I2, about the existence of a number \(\chi \) such that on \(\Gamma \) with \(|\text{SCC}_\Gamma| > \chi \), SCC-P performs better than SAT-P.

In particular, it turns out that:

- for \(|\text{SCC}_\Gamma| = 30 \), \(Md(\text{SCC-P}) = 6.43 \), \(Md(\text{SAT-P}) = 5.63 \), \(z = -2.87 \), \(p < 0.01 \);
- for \(|\text{SCC}_\Gamma| = 35 \), \(Md(\text{SCC-P}) = 8.81 \), \(Md(\text{SAT-P}) = 8.53 \), \(z = -0.35 \), \(p = 0.73 \);
- for \(|\text{SCC}_\Gamma| = 40 \), \(Md(\text{SCC-P}) = 10.49 \), \(Md(\text{SAT-P}) = 12.53 \), \(z = -3.56 \), \(p < 0.01 \);

where \(Md(\cdot) \) indicates the median of execution times.

In other terms, when \(|\text{SCC}_\Gamma| = 35 \), the performances of SCC-P and SAT-P are statistically indistinguishable \((p = 0.73 > 0.05) \). However, for \(|\text{SCC}_\Gamma| > 35 \), Fig. 2 shows that SCC-P performs significantly \((p < 0.05) \) better than SAT-P.

Experiments on \(\Gamma \) s.t. \(50 \leq |\text{SCC}_\Gamma| \leq 80 \)

Figure 3 depicts the medians of significant execution times of SCC-P and SAT-P varying the number of computed labelings. It illustrates a dependency of the execution times
on the number of computed preferred labellings. Given the linear regression of these data, it turns out that the execution times of SAT-P grows $\approx 2 \cdot |E_{PR}(\Gamma)|$, while SCC-P grows $\approx \frac{1}{3} \cdot |E_{PR}(\Gamma)|$, thus supporting hypothesis $I3$.

Moreover, the third experiment provides additional statistically significant ($p < 0.05$) evidence in support of hypothesis $I2$, as Figure 3 summarises. Roughly speaking, computing the increment of performance as the average of the difference of execution times normalised on the maximum time between SCC-P and SAT-P, we can conclude that there is a significant increment of performances up to 56%.

Conclusions

In this paper we devised and evaluated a general parametric algorithm in order to decompose the preferred extensions enumeration problem into restricted subframeworks. To this purpose, several research challenges have been tackled.

First, an efficient algorithmic implementation of the SCC-recursive schema, originally introduced in a declarative form, has been developed, also leading to a labelling-based formulation. Let us notice that, recently, an approach has been proposed in (Liao, Lei, and Dai 2013) which partially generalizes these proposals in order to integrate them into the SCC-recursive schema.

Second, the proposed algorithm borrows from (Baroni, Giacomin, and Guida 2005) the idea of decomposing the argumentation framework into its SCCs, i.e. computing the preferred labellings with a direct call to BPR or applying the SCC-recursive schema. Such choice can be based on an heuristic to estimate the number of SCCs and labellings, and can be easily implemented with an additional step after line 5 of Alg. 2.

Finally, an empirical investigation has been carried out to show a statistical evidence in favour of the reduction of computational effort by the exploitation of the SCC-recursive schema. In particular, as shown in the previous section, despite the fact that the current prototypical implementation needs further refinements (cf. the results of experiments on Γ s.t. $|\text{SCC}_T| = 1$), for Γ with $|\text{SCC}_T| > \chi = 35$ there is a statistical evidence showing how implementing the SCC-recursive schema reduces the computational effort of enumerating the preferred labellings. Moreover, as depicted in Fig. 3, the execution time of the SCC-recursive implementation is less sensible to the number of labellings, i.e. its execution time grows less than the non SCC-recursive implementation when the number of computed preferred labellings increases. This suggests to explore an hybrid approach where, at each recursion step, a choice is made on whether computing the preferred labellings with a direct call to BPR or applying the SCC-recursive schema.

Several other future works are envisaged. First, we want to strengthen the statistical evidence in favour of the SCC-recursive schema by exploiting and comparing different encodings of complete labellings derived from ENC_{all}, including the redundant ones. Moreover, Alg. 2 can be instantiated with a different BPR algorithm, e.g. generalizing the algorithms presented in (Egly, Alice Gaggl, and Woltran 2010; Nofal, Atkinson, and Dunne 2014; Dvořák et al. 2014) for computing labellings in sub-frameworks.

Finally, we intend to apply the devised meta-algorithm to stable and $CF2$ semantics, which directly fit the SCC-recursive schema (Baroni, Giacomin, and Guida 2005), as well as to semi-stable and ideal semantics by exploiting the relationship with preferred semantics.

Acknowledgements

The authors would like to acknowledge the use of the University of Huddersfield Queensgate Grid in carrying out this work. The authors also thank the anonymous reviewers for their helpful comments.

References

of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), 399–404.

