Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems

Pearce, Julian A., Kempton, P. D., Nowell, G. M. and Noble, S. R. 1999. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology 40 (11) , pp. 1579-1611. 10.1093/petroj/40.11.1579

Full text not available from this repository.

Abstract

This paper develops methods for using the integrated study of Hf-Nd element and isotope covariations to define the nature and provenance of the mantle and subduction inputs to subduction systems. In particular, it can be demonstrated that (1) Hf-Nd isotope space permits discrimination between mantle of Pacific and Indian provenance, (2) displacements from mantle arrays on Hf-Nd isotope and trace element projections can be related to the magnitude, source and composition of the subduction input, and (3) Hf-Nd isotope and trace element covariations can be used to interpret high field strength element (HFSE) anomalies [specifically, Hf anomalies on extended rare earth element (REE) patterns] in subduction-related magmas. These methods are tested using published volcanic arc data coupled with new data from the many components of the Izu-Bonin-Mariana (IBM) subduction system, namely the pre-subduction marginal basins, the Eocene to Recent volcanic arcs, and the crust, volcanogenic sediments and pelagic sediments of the subducting Pacific plate. The results of the IBM study show that the mantle that fed the IBM system was always of Indian provenance and that Pacific volcanogenic sediments make the most significant, though variable, contribution to the subduction component. Modelling demonstrates that the Nd/Hf ratio of the subduction component probably lay between 40 and infinity and thus was probably the main cause of the negative HFSE anomalies that characterize much of the Recent arc. This result may further indicate that the subducting sediment lost elements to the mantle wedge mostly by dehydration rather than fusion. In contrast, the data also show that the positive Hf anomalies that characterize much of the Protoarc cannot be attributed directly to subduction. One option consistent with Hf-Nd systematics is that the positive Hf anomalies in the Protoarc boninites were caused by fusion of mafic veins in their shallow mantle sources. Comparison with published data on other arcs shows significant inter-arc variations. For example, the subduction components in near-continent arcs (Banda, Lesser Antilles) appear to have lower Nd/Hf ratios more consistent with sediment fusion, and at least one arc (Tonga-Fiji) carries evidence of temporal variations in mantle provenance.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Ocean Sciences
Subjects: Q Science > QE Geology
Uncontrolled Keywords: Hf isotopes, mantle domains, arc-basin systems, Western Pacific, HFSE anomalies
ISSN: 14602415
Last Modified: 04 Jun 2017 02:05
URI: http://orca-mwe.cf.ac.uk/id/eprint/8579

Citation Data

Cited 253 times in Google Scholar. View in Google Scholar

Cited 338 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item