Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Investigating the mechanisms of telomeric mutation in human cells

Alotibi, Raniah Saleem 2015. Investigating the mechanisms of telomeric mutation in human cells. PhD Thesis, Cardiff University.
Item availability restricted.

[thumbnail of 2015ALOTIBIRiPhD.pdf]
Preview
PDF - Accepted Post-Print Version
Download (7MB) | Preview
[thumbnail of 2015AlotibiR_Thesis publication form.pdf] PDF - Supplemental Material
Restricted to Repository staff only

Download (136kB)

Abstract

Telomeres are nucleoprotein structures that contain non-coding (TTAGGG) tandem repeats and associated telomere binding proteins at the end of chromosomes. As a consequence of end-replication losses, telomeres undergo gradual erosion with ongoing cell division. It is hypothesised that in addition to the end-replication problem, mutational mechanisms may contribute to telomere erosion by generating large-scale telomeric deletion events. As short dysfunctional telomeres are capable of fusion to other chromosome ends, large-scale telomeric deletions can lead to genomic instability which in turn may drive tumour progression. The primary aim of this thesis was to investigate putative mutational mechanisms that could lead to large-scale telomeric deletion. The role of oxidative stress and it potential contribution to telomere dynamics was assessed. The induction of fragility and replication inhibition at telomeres was also examined. Furthermore, the role that G-quadruplex structure within telomere repeat sequences and the possible induction of replication fork stalling and resolution as single or double stranded breaks was also considered as a mutational mechanism that could lead to telomere deletion. High-resolution analysis of telomere dynamics using Single Telomere Length Analysis (STELA), following the induction of oxidative stress in IMR90 fibroblasts, revealed that oxidative damage does not appear to affect the rate of telomere erosion, or the frequency of large-scale telomeric deletion. The data are more consistent with the view that premature senescence does not arise as a consequence of accelerated telomere erosion, but instead more likely results from stochastic DNA damage across the rest of the genome. The analysis of telomere dynamics following the induction of chromosome fragility, showed that telomere length in Seckel cell (SCK) fibroblasts were significantly different from those of untreated cells following treatments with aphidicolin with an increase in stochastic telomeric deletion. Whilst in MRC5 fibroblasts, the induction of the telomere fragility impacted on the upper to lower allele ratio, with a loss of the longer telomere length distributions. The stabilisation of G-quadruplex structures using the G-quadruplex ligand (RHPS4), together with ATRX knockdown, showed that an absence of ATRX sensitised cells to the ligand, but that the stabilisation of G-quadruplexes, did not significantly affect the telomere dynamics as determined using STELA. Taken together, the data presented in this thesis are not consistent with a role for oxidative stress, or the formation of G-quadruplex structures, in generating large-scale telomeric deletion; however telomeric mutational events may occur following the induction of chromosome fragile sites, specifically in the context of an ATR deficiency.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Medicine
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
Date of First Compliant Deposit: 30 March 2016
Last Modified: 15 Oct 2016 04:36
URI: https://orca.cardiff.ac.uk/id/eprint/84320

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics