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Abstract. We introduce an architecture for undertaking data process-
ing across multiple layers of a distributed computing infrastructure, com-
posed of edge devices (making use of Internet-of-Things (IoT) based pro-
tocols), intermediate gateway nodes and large scale data centres. In this
way, data processing that is intended to be carried out in the data centre
can be pushed to the edges of the network – enabling more efficient use of
data centre and in-network resources. We suggest the need for specialist
data analysis and management algorithms that are resource-aware, and
are able to split computation across these different layers. We propose a
coordination mechanism that is able to combine different types of data
processing capability, such as in-transit and in-situ. An application sce-
nario is used to illustrate the concepts, subsequently evaluated through
a multi-site deployment.
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1 Introduction

With increasing deployment of sensors to measure physical phenomenon, there
has been interest in recent years in standardising sensor device types, communi-
cation protocols and their data exchange formats. This has resulted in various
attempts to define interoperability specifications for Internet-of-Things (IoT)
– which according to NIST (as part of their “Cyber-Physical Systems” pro-
gramme), is “a global network infrastructure, linking physical and virtual objects
through the exploitation of data capture and communication capabilities” [7].
Recent efforts at the IEEE, such as P2413 [8], also attempt to define an archi-
tectural framework for IoT, indicating that “most current standardization ac-
tivities are confined to very specific verticals and represent islands of disjointed
and often redundant development” in the IoT area. The P2413 architectural
framework “will promote cross-domain interaction, aid system interoperability
and functional compatibility.”
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Understanding how data collected from IoT-based devices can be channelled
for analysis into a Cloud-based system remains an important research area. Al-
though significant work exists in offloading computation from mobile devices to
Cloud-based systems [15], better understanding how to divide data processing
across IoT-based devices (which can have on-board computational capability,
e.g. through the use of Arduino or Raspberry Pi-based deployments) and Cloud-
based infrastructure has received limited attention. Recent efforts in creating an
open source “IoTCloud” (providing sensors-as-a-service) [13] and middleware
oriented efforts in European Open IoT project [14] indicate significant interest
in this area from the academic community. In the same context, HTTP/REST-
based APIs, such as Xively (previously Pachube) [9], Open Sen.se [10], Think
Speak [11] and Pacific Control Gateways [12], indicate strong commercial inter-
est, in applications ranging from smart cities to intelligent homes.

We describe how IoT-based devices and Clouds can be integrated using a
multi-layered architecture. The basis of this comes from the observation that not
all data collected through IoT-based devices needs to be channeled to a Cloud
platform. Current practice is primarily to stream or batch-collect all data from
devices and carry out subsequent analysis via a Cloud platform. However, this
is often unnecessary (and may involve costly data transfers across networks with
varying characteristics, in terms of bandwidth, cost of access, availability and
latency) as only a subset of the data may actually contribute to the analysis being
performed. Similarly, partial data processing may be carried out directly on the
devices or through intermediate collection gateways (that are situated between
the devices and the Cloud platform). We therefore propose a coordination model
where the Cloud platform, intermediate gateway devices and IoT-based devices
need to work collectively to carry out data processing. Such coordination takes
account of constraints of the devices (e.g. limited network and battery power) and
optimisation criteria of Cloud platforms (e.g. improve throughput and reduce
execution time). Section 2 describes the overall systems architecture, and the
various layers involved from data collection to processing. Section 3 outlines
a coordination mechanism that enables the data processing to be split across
multiple layers, followed by an example scenario in section 4 and evaluation in
section 5. We conclude with a general discussion in section 6.

2 Approach and Architecture

The distributed system architecture presented in Figure 1 consists of three main
layers: (i) L3: data capture point, (ii) L2: gateway nodes (in practice, multi-
ple levels may exist) and (iii) L1: data centre/computing cluster. At L3 various
data capture devices, such as sensors, mobile phones (with human input) record
values based on an observed phenomena. These devices capture data with a
pre-defined frequency (often dictated by the rate of change of the phenomenon
being observed), depending on the capacity of the device to record/collect data
and also based on specific system requirements that need to be satisfied. L2
involves the use of multiple gateways, which may be realised in practice using
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network switches and routers, fronted by OpenFlow software (for instance) or
network processor-based hardware, which enables such network components to
be remotely managed. However, such gateways may also be computational de-
vices that aggregate data from a variety of L3 sensors. Finally, L1 contains more
complex computing clusters, where greater computational and storage capabil-
ity is made available to application users, enabling more complex, generally long
running, simulations to be carried out on the data.

Fig. 1: Conceptual (system) architecture

Devices at L2 can carry out various operations on the raw data collected
at L3 – such as performing stream operations (average, min, max, filtering,
aggregation etc) on a time/sample window of data, carrying out encryption of an
incoming data stream or a variety of other data encoding/transcoding operations
before forwarding this data for subsequent analysis to L1. Hence, devices at L2
retrieve data but can also perform some preliminary analysis. We envision a
distributed Cloud to be composed of devices at all of these levels, and with a
need to coordinate work across these levels to achieve particular data analysis
and performance targets. Each level also has its own objective function which
influences the types of operations carried out. For instance, L3 generally consists
of resource constrained devices (i.e. limited battery power, network range, etc)
which must carry out operations in the context of these constraints. Similarly, L2
consists of various network elements or computing nodes that need to be shared
across multiple concurrent data flows, requiring any analysis to be constrained
by the number of flows and time constraints in carrying out the filtering/pre-
analysis. Operations at L1 are based on pre-agreed targets between a client and a
data centre provider, such as throughput, response time, cost, etc. Understanding
how an application hosted on a Cloud at L1 can interact and coordinate with
L3 and L2 (either directly or via L2) is a key research challenge in such systems,
particularly for real time, streaming applications.

Distributing analysis of data across these different levels can improve the
overall system performance and reduce the load on L1 infrastructure and the
core network. We also observe that raw data collected at L3 may not necessarily
be needed (in its entirety) at L1 – and aggregate operations on the data (e.g. av-
erage, summation/fusion, etc) may be enough for the type of analysis required at
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L1. It is therefore not necessary to transfer all the collected data to the data cen-
tre (as often undertaken currently – even with the availability of recent systems
such as Amazon Kinesis [3], Google BigQuery or Apache Flink for streaming
data), wasting network bandwidth and buffer/ storage space at levels L2 and
L1. We identify the following classes of data analysis: In-situ analysis: is carried
out at L1, on a pre-agreed number of computing resources. This is the current
mode of operation with many Cloud systems – whereby data is aggregated at
a central site prior to analysis. In streaming systems (e.g. Amazon Kinesis),
data sharding is carried out prior to transfer of this to Amazon VM instances
hosted at a particular data centre. This approach can have major disadvantages
in terms of load and response time, as collection at a central server can be time
consuming (and sometimes not necessary). Data-drop analysis: After data val-
ues are collected by edge devices, and sent over the network, the actual data
analysis process starts when the data sets are dropped into a specific folder.
Data-drop analysis is the ability to trigger on-demand analysis making use of
elastic computing resources available at L1 (at the data centre). A key challenge
in this type of analysis is to predict the number of computing resources needed
(as data is dynamically made available) based on heuristics or prior execution
history. This type of analysis can suffer from the same QoS limitations as In-situ
analysis, as it still requires data to be shipped over the network from L3 to L1
infrastructure. In-transit data analysis: Identifies the type of distributed analy-
sis carried out at L3 and (more generally) L2. In-transit analysis makes use of
capability available in software defined networks to undertake partial analysis
while the data is in transit from source (L3) to the data processing engine (gen-
erally L1). This approach can significantly improve overall analysis time (and
limit use of resources at L1), as pre-analysis can help identify what needs to
be carried out at L1. In-transit analysis therefore makes more effective use of
computing capability available at L2.

3 Multi-Layered Coordination

A coordination mechanism should enable selection of the type of analysis (as
discussed in section 2) to be carried out at a particular level (sensor, gateway
or data centre). The coordination mechanism also needs to take account of ap-
plication specific constraints (hosted at the data centre). We consider an overall
quality of service metric – associated with an application – to be composed of
three individual layer metrics:

QoST = QoSL1
T

⊕
QoSL2

T

⊕
QoSL3

T (1)

where QoST represents the total quality of service that the system needs to sup-
port to meet application requirements,

⊕
represents the aggregation operator

(and may be min or max, depending on the QoS parameter being considered),
QoSL1

T represents the quality of service for the clouds/data centre layer, QoSL2
T

is the quality of service at the gateway layer and QoSL3
T , the quality of service
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at the sensors layer, respectively. Each QOSx
T is influenced by constraints within

that layer, for instance:

1. Sensor/device Level (L3): battery power, network coverage, on-board mem-
ory available, type of sensing (for a multi-purpose sensor) etc.

2. Gateway Level (L2): data storage, network bandwidth, operations supported
(influenced by window or sample size for incoming data), number of concur-
rent streams processed, sample rate, etc.

3. Cloud/data centre Level (L1): throughput, response time, execution time
per application, number of concurrent applications (for multi-tenancy), cost
of access etc.

The coordination mechanism is, given particular constraints, attempting to im-
prove QoST over a given time frame. Such a mechanism could be realised in
practice by using a controller at each layer in figure 1, which aims to learn
potential control actions. For instance:

– QoST – minimise response time for a particular application job running at L3,
which could be achieved by: (i) reduce the size of data transfered from L2 to
L1, (ii) reduce sampling interval at L3, (iii) increase number of VMs at L1.
The same outcome could be realised by: (i) pre-process data at L2 and L3;
(ii) increase number of VMs at L1.

– QoST – increase accuracy of analysis at a particular budget, which would lead
to: (i) identify number of VMs within budget constraints at L1; (ii) identify
data size needed from L2 to maximise VM utilisation at L1; (ii) vary sampling
rate at L3 based on network capability between L2, L3 and L1, L2, etc.

Each of these application requirements could therefore be expressed as a set of
min/max constraints, leading to potential control actions carried out to realise
the outcome.

4 Application Scenario

To demonstrate the use of our multi-layered approach, we consider a scenario
in the construction/built environments domain focusing on energy flow analy-
sis within a building using EnergyPlus [1]. Consider a user job to be defined
as: [input, obj, deadline], where input data is represented as [IDF,W, [param]],
where IDF represents the building model to be simulated, W represents the
weather file required for the simulation, [param] defines the parameter ranges as-
sociated with the IDF file that need to be optimised [param] = [ri → (xm, xn)].
We consider an optimisation objective : [outV arName,min/max], defining
the name of the output variable to be optimised outV arName and the tar-
get of the optimisation process min/max, min:minimising the outV arName or
max:maximising the outV arName.Deadline is a parameter defining the time
interval associated with the job submitted. We make use of CometCloud [2] as
our Cloud platform.
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A job contains a set of tasks N = {t1, t2, t3, ..., tn} mapped into tuples within
the CometCloud tuple-space. Each task ti is characterised by two parameters
ti → [ID, data] with the first parameter being a task identifier and data rep-
resents one set of results (given a particular parameter range). The simulation
output represents an optimum setpoint to be implemented within the build-
ing using suitable actuation mechanisms. We use sensor data from the SportE2

project pilot called FIDIA1 and EMTE2 – both public sports buildings in Rome,
Italy and Bilbao, Spain, respectively.

Fig. 2: Application Scenario

Based on the layers in figure 1, at layer 3, each sensor in our pilot can either
connect via a gateway or directly to an Automation Server (AS). Sensors are
generally battery powered meters which can measure: (i) indoor temperature and
air temperature inlet – via a Modbus IP protocol connected to the AS gateway;
(ii) water temperature using a regular I/O operation to the AS gateway; (iii)
indoor humidity – communicating to the AS gateway; (iv) supplied air flow rate
measured with a velocity sensor and using I/O operations to the AS gateway.
Additional details of the sensors can be found in [5].

4.1 Level 2: Building Management System & Automation Server

There are two distinct gateways: (i) Building (Energy) Management System
(BMS) and (ii) Automation Server (AS) – each acting as an autonomous sys-
tem. The BMS gateway is a server machine that controls the activities and
spaces within the building. In addition to controlling the building’s internal en-
vironment, BMS systems are sometimes linked to access control (turnstiles and
access doors controlling who is allowed access to the building) or other security
systems such as closed-circuit television (CCTV) and motion detectors. The AS

1 http://www.asfidia.it
2 http://www.emtesport.com/
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gateway is a hardware-based server that is factory programmed with Struxure-
Ware Building Operation software (for instance). In small installations, an AS
may act as a stand-alone server, mounted with its I/O modules. In medium and
large installations, functionality is distributed over multiple Automation Servers
(ASs) that communicate over TCP/IP. An AS can deliver data directly to an
analysis system or to other servers throughout the site. The AS can run multiple
control programs, manage local I/O, alarms, and users, handle scheduling and
logging, and communicate using a variety of protocols.

4.2 Level 1 : CometCloud Sites Level

At this level, we have a CometCloud-based federation of resources [4, 6], where
each site has access to a set of heterogeneous and dynamic resources, such as
public/private clouds, supercomputers, etc. Each site decides on the type com-
putation it runs, as well as the prices based on various decision functions that
include factors such as availability of resources, computational cost, etc. This
federation is dynamically created at runtime where sites can join or leave at
any given time. Notably, this requires a minimal configuration at each site that
amounts to specifying the available resources and access credentials. We consider
three sites in this scenario: at Cardiff , Rutgers, and Indiana Universities. Each
site provides the following resources: Cardiff: has a virtualized cluster-based in-
frastructure with 12 dedicated physical machines. Each machine has 12 CPU
cores at 3.2 GHz. Each virtual machine (VM) uses one core with 1GB of mem-
ory. The networking infrastructure is 1Gbps Ethernet with a measured latency of
0.706 ms on average. Rutgers: has a cluster-based infrastructure with 32 nodes.
Each node has 8 CPU cores at 2.6 GHz, 24 GB memory, and 1Gbps Ether-
net connection. The measured latency on the network is 0.227 ms on average.
FutureGrid: make use of an OpenStack cloud deployment at Indiana University.
We have used instances of type medium, where each instance has 2 cores and 4
GB of memory. The measured latency of the cloud virtual network is 0.706 ms
on average. Based on the use of CometCloud [2], each site has a master process
that receives task requests from other sites, and is able to forward requests to
other sites. Each site also has multiple worker processes that carry out actual
task executions on locally available resources. In this application scenario, each
worker is responsible for executing an EnergyPlus [1] simulation with a different
input parameter range.

5 Evaluation

In our experiments we use two different configurations – (a) Cloud level analysis
where the tasks are executed exclusively at the cloud level with two configura-
tions: (i) single cloud context where all the tasks have to be processed locally
(within the local site) and (ii) federated cloud context where the sites have the
option of outsourcing tasks to remote sites and (b) distributed Cloud analysis
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where the tasks are executed on a multi-cloud infrastructure – i.e. making use
of gateway nodes alongside the CometCloud deployment.

5.1 Distributed clouds analysis

In use case (b) above, information collected by sensors will be processed in-
transit in the Gateway layer (i.e. L2) to filter out various sensor information
(e.g. values out of range or certain combination of parameters that cannot lead
to reasonable results) and then create jobs to be sent to sites at L1. An example
of filtering at gateway layer is the average of the temperature values that are
recorded at various zones of a building(north, south, etc.). Often, although sig-
nificant to record these value across all the zones of a building for maintaining
the optimization accuracy, it is useful to use an average of these temperature val-
ues not only to reduce the total number of EnergyPlus simulations at cloud layer
but also to have a more comprehensive view of the overall building behaviours.
Through such pre-filtering, we are able to reduce the computational requirement
at L1. We explore the benefit of in-transit data analysis by comparing differences
between these two scenarios in terms of the total cost for each site to compute
all jobs, the overall time spent and number of jobs completed successfully.

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

Rutgers Cardiff FutureGrid

Ti
m

e 
(h

)

Not-Filtered
Filtered

(a) Execution time

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

Rutgers Cardiff FutureGrid

C
os

t (
$  

)

Not-Filtered
Filtered

(b) Execution Cost

Fig. 3: Summary of experimental results for use cases with filter and without
filter – 3a shows total execution time and 3b the total cost spent on computing
all jobs

We consider sensors in two geographically distributed buildings that are col-
lecting information about the status of the building and sending this information
to gateways (at L2). In order to better explore the behavior of in-transit data
analysis and task distribution, we emulate the execution of the tasks and use
a Poisson distribution to periodically generate sensor collected information ev-
ery 100 minutes. A job is generated after the gateway has received data from
sensors. One job will produce multiple EnergyPlus computation sub-tasks. All
three sites bid for computing those jobs based on their available resources and
the number of sub-tasks they can finish before the deadline. No single winner
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Fig. 4: Shows the number of rejected, fully & partially completed jobs

will get all the sub-tasks. Instead, these sub-tasks will be distributed to all bid-
der sites based on their estimation of job completion deadline. Each site will get
bidNum/allSitesTotalBidNum sub-tasks to compute. We allocate two local
and two external workers to each site. Once a site consumes a list of sub-tasks,
these tasks will be sent to workers to finish computation. No filtering: sensor
outputs include four types of parameters which then gives a combination of 16
EnergyPlus sub-tasks per job. Each EnergyPlus sub-task takes 30 minutes to
compute on all three sites. In Figure 4, we observe that due to resource limita-
tion, some jobs are rejected because these sub-tasks cannot be completed before
the deadline by these three sites. Among the accepted jobs, Not 100% Completed
jobs are those whose sub-tasks were not completed within the given deadline.
This may occur due to the availability of limited network bandwdith, scheduling
constraints, placing multiple bids without knowing results of previous auctions,
etc. Conversely, 100% Completed jobs have all sub-tasks completed on time.
With filtering: After analysis of sensor data, we can filter out the data received
from sensors, with the number of sub-tasks for each job being reduced to eight.

In order to better compare this use case with the previous one, in this ex-
periment we assume that jobs are generated following the same process as the
previous experiment. This means the total number of jobs are the same, only
the number of sub-tasks per job is smaller. Figure 4 shows the number of re-
jected jobs, reduced after filtering. From Figure 3a, the total execution time for
completing all jobs also decreases, along with reduction in total execution cost
in Figure 3b. This is mainly due to the number of sub-tasks per job, being re-
duced from 16 to 8 after filtering. This demonstrates the benefit of undertaking
in-transit analysis via L2.

6 Conclusions

We demonstrate the benefit of supporting multi-layered Clouds, whereby com-
putation can be distributed across multiple layers of a data capture and com-
putation infrastructure. Each layer offers specific capabilities and constraints,
and we discuss the need to support resource-aware computation to be combined
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across multiple layers. With increasing availability of devices that support stan-
dardised access protocols, as proposed in recent developments towards specifying
IoT standards, we discuss the benefit of combining these devices with resources
at federated data centres, enabling data analysis to be split across multiple lay-
ers based on a coordination mechanism. A building energy simulation scenario
is used to illustrate the concept. Edge devices can range in capability – from
sensing devices within limited battery power and on-board memory, to large
scale scientific instruments that have significant computational capability. The
current pratice of migrating all data to a centralised data centre for analysis may
be inefficient in how the network capacity and data centre capability is utlised.
In the experiments section we demonstrate that multi-cloud analysis and coor-
dination can reduce the total execution time with tasks and can greatly lead to
reducing the execution cost.
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