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Abstract 

Intermittent demand items account collectively for considerable proportions of the total stock value of any 

organization. Forecasting the relevant inventory requirements constitutes a very difficult task and most work in 

this area is based on Croston’s estimator that relies upon exponentially smoothed demand sizes and inter-demand 

intervals. This method has been shown to be biased and a number of variants have been introduced in the 

literature, including the recently proposed TSB method that updates the demand probability instead of the demand 

interval and in doing so reacts faster to decreasing demand. The TSB has been shown theoretically to be unbiased 

(for all points in time), but its empirical performance has not been investigated yet and this constitutes one of the 

objectives of our work. More generally, we explore the empirical performance of forecasting methods used in an

intermittent demand context, paying particular attention to the effects and implications of the smoothing constant 

values employed for updating purposes. We do so by means of experimentation on large empirical datasets from 

the military sector and automotive industry. The results enable insights to be gained into the sensitivity of the 

various methods’ forecasting and stock control performance to the smoothing constant values used. The paper 

concludes with an agenda for further research. 
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1. Introduction 

Intermittent demand for a product or spare part appears sporadically, with some time periods showing no 

demand at all. When demand occurs, the demand size may be constant or variable, perhaps highly so. 

Intermittent demand items are usually amongst the slower movers in any organisational setting. 

However, despite the comparatively low contribution to the total turnover, these slow moving Stock 

Keeping Units (SKUs) may constitute up to 60% of the total stock value (Johnston et al. 2003; Quintana 

and Leung 2007). In addition, spare parts that have become ubiquitous in modern societies, are almost 

invariably ‘intermittently moving’. This is true both for engineering spares and service parts kept at the 

wholesaling and retailing level. Consequently, the stock-bases in the military context, process industries, 

aerospace, automotive and IT sectors are dominated by such items. 

Most work on intermittent demand forecasting is based on Croston’s influential article (Croston 1972) 

which for many years was neglected but in the last 15 years has seen 163 citations (Publish or Perish, 

PoP accessed May 26, 2014 - see also Fildes et al. 2008). The method was claimed to be unbiased but 

despite its theoretical superiority modest benefits were recorded in the literature when it was compared 

with simpler forecasting techniques, such as Simple Exponential Smoothing, SES (Willemain et al.

1994). Some empirical evidence even suggested losses in performance (Sani and Kingsman 1997). An 

earlier paper (Syntetos and Boylan 2001) showed Croston’s method to be biased and since then some 

modifications to his method have been put forward in the academic literature. 

Syntetos (2001) proposed an exactly unbiased modification of Croston’s method. This procedure was 

further evaluated on real data (Teunter and Sani 2009) and it was found to perform very well. Syntetos 

and Boylan (2005) put forward an approximately unbiased procedure that nevertheless is characterised 
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by a smaller parametric estimation error (variance of the estimates) than that associated with the 

previous method. This estimator is known in the literature as the SBA method (after Syntetos-Boylan 

Approximation). SBA has been independently assessed on 18,750 SKUs from the Royal Air Force (RAF, 

UK) and found to outperform Croston’s estimator (Eaves and Kingsman 2004). Independent evidence in 

support of this method’s utility has also been provided by Gutierrez et al. (2007) and Petropoulos et al.

(2008). Teunter and Duncan (2008) discussed the application of the zero forecast method in an 

intermittent demand context (the forecasts of the demand are always equal to zero) (see also Chatfield 

and Hayya 2007). Although such an estimator makes little sense in a stock control context, it may 

indeed be used as a forecasting benchmark. Similarly, the Naïve forecast may also be used for 

benchmarking purposes; in this case the last actual demand (zero or not) becomes the forecast for the 

next time period. A review of developments on intermittent demand forecasting is given by Boylan and 

Syntetos (2010).

Teunter et al. (2011) recently suggested a new intuitively appealing forecasting procedure (called TSB 

after Teunter, Syntetos and Babai) that links naturally to the issue of inventory obsolescence. The 

performance of this method was assessed through an extensive simulation study on theoretically 

generated data and it was shown to compare very well to the other methods discussed in the literature. 

However, this method has never been evaluated on real data and this constitutes one of the objectives of 

this paper.   

The purpose of this paper is two-fold: first, we empirically evaluate the performance of intermittent 

demand estimates (along the lines discussed by Syntetos and Boylan, 2005), considering also the TSB 

method that has never been tested before on real data. Second, we analyse the effect of the smoothing 
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constants on the performance of different estimation procedures by means of an empirical sensitivity 

analysis. Note that separate smoothing constants are used for the sizes and intervals in the Croston-type 

approaches; therefore we provide in this paper the statistical properties of the estimators in this general 

case which has never been presented before in the literature dealing with intermittent demand.  

The remainder of our paper is structured as follows. In the next section, we present the forecasting 

methods considered for the purposes of our work, followed by a summary of arguments on the 

smoothing constants that should be employed for forecasting purposes in Section 3. In Section 4 the 

statistical properties of the methods are discussed and linked to the issue of smoothing constants. Section 

5 provides details related to the empirical investigation and the results of our study. The conclusions of 

our work are discussed in Section 6 along with suggestions for further research. 

2. Forecasting methods 

First we provide the notation used in our work followed by the description of the various estimation 

procedures considered. 

2.1 Notation

The following notation is used in the remainder of this paper:

tY : Demand for an item in period t

'

tY : Estimate of mean demand per period made in period t for period t +1 

tz : Demand size in period t, when demand occurs, with a mean   and variance  2

'

tz : Estimate of mean demand size in period t 
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tp : Indicator of demand occurrence in period t, 


 

otherwise    

) (i.e.  at time occurrs demand if    

0

01 t
t

Yt
p

'

tp : Estimate of the probability of demand occurrence in period t

tT : Actual demand interval in period t 

'

tT : Estimate of mean demand interval in period t 

 , β: smoothing parameters ( 1,0   )  

2.2 Estimators

Four Croston's type estimators are considered in our work, namely: Croston's method (Croston 1972), 

the SBA method (Syntetos and Boylan 2005), the SY method (after Syntetos, 2001) and the TSB 

method (after Teunter, Syntetos and Babai, 2011). We also consider the Simple Exponential Smoothing 

(SES) method, the zero forecast method and the Naïve method, the latter two serving as benchmarks. 

We remark that these methods can be applied for any (intermittent) demand process, both stationary and 

non-stationary, as will be discussed in Section 3.

 Croston’s method

Croston’s estimator relies upon separate exponentially smoothed estimates of the interval between 

consecutive demands and the size of demands. The estimates are updated only in periods with positive 

demand. We remark that Croston originally suggested using the same value for both smoothing 

constants, but others (e.g. Schultz, 1987) later argued that using different values can be beneficial. We 

consider the more general variant.
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 The SBA method  

SBA relies upon the employment of a correction factor to the estimates produced by Croston’s method 

to reduce the bias associated with those estimates.

:0 If tY
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1
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 The SY method 

The SY estimator also relies upon the employment of a correction factor to the estimates produced by 

Croston’s method.
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 The TSB method 

The TSB estimator uses separate exponentially smoothed estimates of the demand probability and the 

demand size. The estimate of the probability of occurrence is updated every time period. The estimate of 

the demand size is updated only at the end of periods with positive demand. 
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Please note that, although the TSB method is unbiased when all points in time are considered, it does 

suffer from a statistical bias for issue points only. 
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 SES method 

)( '
1

'
1

'   tttt YYYY  for all t

 Zero forecast 

0' tY  for all t

 Naïve Forecast 

1
'  tt YY  for all t

Please note that the Naïve method may be seen as a special case of the TSB method and of the SES 

method with the smoothing constant(s) set to 1. 

3. Smoothing constants 

Croston’s method and its variants were originally proposed for a model that assumes stationarity, both 

for the demand sizes and demand intervals. However, forecasts are produced through the employment of 

SES procedures, implying a non-stationary demand process. This renders the model and method 

inconsistent. Shenstone and Hyndman (2005) examined the models that may be underlying Croston's 

estimator. In their paper they commented on the wide prediction intervals that arise for non-stationary 

models and recommended that stationary models should be reconsidered. However, they concluded, 

“...the possible models underlying Croston’s and related methods must be non-stationary and defined on 

a continuous sample space. For Croston’s original method, the sample space for the underlying model 

included negative values. This is inconsistent with reality that demand is always non-negative, 

Shenstone and Hyndman (op. cit), pp. 389-390”.
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This does not mean that Croston’s method and its variants are not useful. Such methods do constitute the 

current state of the art in intermittent demand parametric forecasting. In addition, three arguments may 

be put forward to demonstrate that the inconsistency between Croston’s model and the employment of 

SES estimates is not very restrictive (at least within the context of our research): a practical, a statistical 

and a methodological argument. 

 A practical argument 

By using the SES estimator the forecast is always alert for any changes in the situation, which would 

reveal them-selves through the forecast error (Johnston and Boylan 1994). This is exactly the feature 

required if we are to forecast a constant mean model which is valid locally rather than globally. Unless 

we can be absolutely sure that the Stationary Mean Model (SMM) has applied in the past and will 

continue to apply in the future, it is ‘safer’ to use the weighted mean (SES) rather than the ordinary 

mean. 

 A statistical argument 

By using SES we account for any small undetected changes in level. The changes cannot be detected 

because of the very nature of the data (few demand occurrences). To strengthen our point: unless we 

have long demand histories of, say, 10 years, we cannot detect a Steady State Model (SSM – that implies 

SES). That is, we cannot tell that the mean changes over time because we can hardly observe that mean. 

Use of SES ensures that any real changes in the underlying demand level that cannot be practically 

detected (and theoretically be accounted for) because of the scarcity of data, will be reflected in the 

demand estimates.  



9

 A methodological argument 

Theoretical results have previously been generated (Syntetos, 2001), assuming that SES methods are 

used in conjunction with the stationary mean model assumption. The results were tested on stationary 

theoretically generated data showing a very robust behaviour in the sense that SES performs well for a 

variety of models, not just the one for which it is theoretically optimal. Teunter et al. (2011) also tested

the Croston method and its variants on theoretically generated non-stationary data, and their results 

suggest that the TSB method is fairly robust against non-stationarity, whereas the performance of the 

other methods is more affected, especially for decreasing demand. In this paper, the various methods are 

tested on real intermittent demand data that may or may not be stationary. The empirical results will 

allow us to gain insight as to what extent the model-estimator inconsistency is reflected in real world 

situations.

Next we discuss the (ranges of) values for the smoothing constants that have been suggested in the 

literature, where we remark that most authors set   . Burgin and Wild (1967) found that 2.0  is 

suitable for most weekly data but they implicitly recommended lower   values for slow movers. 

Croston (1972), and later Gutierrez et al. (2007) and Petropoulos et al. (2008), recommended the use of 

  values in the range 0.05 - 0.2, when demand is intermittent. Croston also demonstrated, numerically, 

that for deterministic demands of size  , occurring every p  (constant) review intervals, the SES 

forecast error reduces with the smoothing constant value. Finally, he suggested that higher values of  , 

in the range of 0.2 - 0.3, may be found necessary only if there is a high proportion of items that is known 

to be non-stationary. Sani (1995) and Johnston and Boylan (1996) reported results on a comparative 

studies for 15.0 , whereas Willemain et al. (1994) set 1.0 . Since one of our goals is to assess the 
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effect of the smoothing constants on the performance of forecasting methods by using data that is 

thought to be non-stationary (see sub-section 5.1), we consider the ‘wide’ range of 0.05 - 0.3 in this study. 

4. Linking performance to the smoothing constants for stationary demand

4.1 Forecasting methods’ properties

In Table 1, the statistical properties (expected estimate and variance of estimates) of the estimators for 

all points in time discussed in Section 2 are presented in detail, under the assumption of independent 

stationary demand processes for the demand size (following any theoretical distribution) and the demand 

probability (following a Bernoulli distribution, resulting in geometrically distributed demand intervals). 

See also Syntetos, (2001), Syntetos and Boylan (2010) and Teunter et al. (2011). 

 

INSERT TABLE 1 ABOUT HERE 

4.2 Effect of the smoothing constants 

Considering the results presented in Table 1, it is easy to see that the Croston's method is positively 

biased and the percentage bias increases with the smoothing constant, whereas, the SY and the TSB 

estimators are exactly unbiased (the latter for all points in time only). The SBA estimate is slightly 

negatively biased and the absolute value of the percentage bias increases with the smoothing constant. 

The absolute bias can easily be shown to be generally lower than that of the Croston method. 

Moreover, a comparison of the Croston's and SBA variances shows that the variance of the SBA 

estimates is lower than that related to Croston since the former is obtained by multiplying the latter by 

the square of a coefficient smaller than 1. SBA is also associated with a variance smaller than that 
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characterising the SY method. The variance of the Naïve method is equal to the variance of the demand, 

so if the demand is lumpy, the Naïve is expected to provide a poor performance as a benchmark, but if 

demand is associated with a low variability of the sizes, the variance of the Naïve estimates should be 

low as well. 

Let us denote the   of the Croston and TSB methods by 
C  and 

T , respectively, for just this paragraph. 

A comparison of the TSB and Croston variances for the same value of   shows that they are equal 

if    CCTT p   22 . Since smoothing constants are usually not set larger than 0.3 (see Section 3) 

this condition is almost equivalent to CT p  , which has the following intuitive explanation. The 

TSB method updates the demand probability p/1  times as often as the Croston method (that updates its 

inverse, the demand interval). By setting CT p  , the total effect of p/1  updates is 

approximately
CT p  / . In other words, the TSB method then updates the demand probability at 

approximately the same speed as the Croston method. For this reason, we expect the optimized 
T  to 

generally be smaller than the optimized 
C , especially for SKUs with very infrequent demand. 

Please bear in mind that the above discussion on optimizing the values for the smoothing constants is 

theoretical as, in practice, we are unsure whether the demand process is stationary. Indeed, this is the 

rationale for constantly updating forecasts using exponential smoothing, as discussed before. In the next 

section, we therefore continue with an empirical investigation. 

5. Empirical investigation 

5.1 Empirical data 

Two datasets are used. Dataset 1 consists of the individual demand histories of 3,000 SKUs covering 24 

consecutive months from the automotive industry. Dataset 2 consists of the individual monthly demand 
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histories of 5,000 SKUs over 7 years (84 monthly demand observations, from Jan. 1996 to Dec. 2002 

inclusive) from the Royal Air Force (RAF). Descriptive statistics (across all SKUs) for both datasets are 

given in Tables 2 and 3.  

INSERT TABLES 2 AND 3 ABOUT HERE 

Note from Tables 2 and 3 that the level of intermittency and lumpiness are quite different among the two 

datasets. The automotive industry dataset consists of low demand items with low degree of intermittence. 

The maximum of the mean demand intervals is equal to 2 with a 75
th percentile equal to 1.4 and the 

maximum mean demand size is equal to 193. Dataset 2 consists of items with a very high degree of 

lumpiness. The maximum of the mean demand intervals is equal to 24 with a 75
th percentile equal to 11. 

The minimum mean demand size is 1 and the maximum mean demand size is equal to 668. 

We have also identified (and separately analysed) those SKUs in both datasets that are associated with a 

decreasing demand pattern. This was achieved as follows: in the case of dataset 1, the entire demand 

history was divided in 3 equal non-overlapping blocks of 8 periods and the mean demand was recorded 

over every such block. The SKUs related to a strict decrease of the mean from the older time block to 

the most recent were selected. The same procedure was used for dataset 2, in which case, 4 blocks were 

used (each consisting of 21 periods). Teunter et al. (2011) argued and showed using simulation that the 

TSB performs particularly well for such SKUs (with a high inventory obsolescence risk), an assertion 

that will be tested empirically using the resulting 469 SKUs for dataset 1 and 190 SKUs for dataset 2. 
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5.2 Accuracy measuring and simulation details

We assess the forecasting performance of the different estimators through three accuracy measures, 

namely: the Mean Error (ME), the Mean Square Error (MSE) and the Mean Absolute Scaled Error 

(MASE). These accuracy measures are defined respectively as follows: 

  n

t
tt YY

n
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1

' )(
1 ,         n

t
tt YY

n
MSE

1

2' )(
1 ,       
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where n1 is the length of the in-sample demand history and n is the length of the out-of-sample demand 

history. Following their calculation on a specific series all accuracy measures are then arithmetically 

averaged across series (SKUs).

The ME provides a way to determine whether specific methods consistently underestimate or 

overestimate the level of demand, i.e. to indicate whether the estimation procedures under concern are 

biased, and if so in which direction. The MSE calculation is similar to the statistical measure of the 

variance of forecast errors but not quite the same since theoretically bias is also taken into account 

(should it exist). The MASE was proposed by Hyndman and Koehler (2006) as a generally applicable 

scale-free measurement of forecast accuracy where the scaling of the errors is based on the in-sample

Mean Absolute Error from the naïve forecast method.

To evaluate the performance of the methods, we split the demand history available for each SKU into 

two parts. The 1
st
 part (i.e. within-sample) is used in order to initialize the estimates of the level and 

variance of demand. (For that purpose, 13 and 36 periods are considered for datasets 1 and 2 

respectively). The 2
nd

 part (out-of-sample) is used for the out-of-sample generation of results and 
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evaluation of performance. The Croston, SBA and SY initial estimates are calculated at the end of the 

initialisation part by considering the average demand sizes and intervals. If no demand occurs in the 

initialisation part, the inter-demand interval estimate is set to 13 or 36 (for dataset 1 or dataset 2, 

respectively), whereas the demand size is assigned an initial estimate of 1. The TSB estimate is 

initialised by using the same procedure described above for the other Croston type approaches, with the 

only difference that the demand occurrence probability is initialised with its average value over the 

initialisation part. The SES estimate is initialised at the end of the initialisation part by considering the 

average demand per period over that part. For all methods, the first MSE estimate at the end of the 

initialisation part is computed as the square error between the initial estimate of the demand level and 

the actual demand. 

In order to generate results, we vary the smoothing constants from 0.05 to 0.30 in steps of 0.05. For the 

demand probability smoothing constant of TSB, we additionally consider values from 0.01 to 0.04 in 

steps of 0.01. This is in line with what has been suggested in the literature, as discussed in Sections 3 and 

4. 

5.3 Empirical results on forecast accuracy

We first present results for the complete datasets. In Tables 4 and 5, we show the average performance 

for all considered performance measures, when the smoothing constants are selected on the basis of 

providing the smallest MSE averaged across all SKUs. Later, we will discuss optimization of smoothing 

constants at the individual SKU level. We remark that selecting values for smoothing constants based on 

MASE instead of MSE produces similar results, which are therefore not presented separately. 

INSERT TABLES 4 - 5 ABOUT HERE 
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The results for dataset 1 are generally in line with what has been suggested in the literature and 

discussed in Sections 3 and 4. The Croston method is considerably positively biased, SBA has a smaller 

negative bias, and the theoretically unbiased estimators (SES, SY, TSB, Naïve) have even lower 

absolute bias. The Zero Forecast obviously has the largest (negative) bias. All four Croston-type 

approaches show similar performance with respect to MSE and MASE. As expected, the Naïve and Zero 

Forecast methods perform much worse for both these measures.   

The results for dataset 2 are more surprising. The Naïve method is the one with the bias closest to zero, 

although it still performs worst with respect to both MSE and MASE. The Zero Forecast has the best 

MASE performance and a reasonable MSE performance, but it is of course very heavily biased.  

The optimal values of the smoothing constants are also quite stable over the Croston, SY and SBA 

methods for each dataset. As expected, TSB has a relatively small optimal smoothing constant for the 

demand probability, since it is updated in every period. Overall, smoothing constants are larger for 

dataset 2, indicating that the demand is less stationary. 

Before discussing results for the selection of SKUs with decreasing mean demand, we first consider 

optimization of smoothing constants at the SKU level. As it turns out, doing so leads to much worse 

performance than optimization across SKUs. This becomes clear from comparing the results for dataset 

2 in Table 6 to those in Table 5. (The results for dataset 1 also worsen considerably.) 

INSERT TABLE 6 ABOUT HERE 
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Apparently, there simply is not enough data available at the SKU level for these intermittent demand 

items to optimize the smoothing constants on an individual SKU basis. In what remains, we will 

therefore restrict to optimization across SKUs. Tables 7 and 8 present those results for the SKUs with 

decreasing demand. (See Section 5.1 for the selection procedure.) 

INSERT TABLES 7 AND 8 ABOUT HERE 

The results are generally in line with those reported for the complete datasets. Somewhat surprisingly, 

the TSB method does not perform considerably better than Croston or other variants, despite the fact 

that it can adjust quicker to the decreasing demand by lowering the demand period in periods without 

demand. Indeed, SBA is the clear winner for dataset 1 when it comes to the MSE.  

Please note that, the difference between the empirical findings of this work and those by Teunter et al. 

(2011) may be partly attributed to the empirical nature of the data that do not necessarily reflect all the 

assumptions (i.e. demand stationarity, distributions of the demand sizes and demand occurrence, etc.)

upon which the TSB method was developed and evaluated in the study by Teunter et al. (2011). 

5.4 Empirical results on inventory control

As discussed in Section 1, most of the comparative forecasting studies for intermittent demand focus 

solely on forecast accuracy rather than inventory control implications. In particular, the TSB has never 

before been evaluated in an inventory control context, although its proposal was partially motivated by 

the ability to adapt to changing and in particular decreasing demand, thereby possibly preventing 

obsolescence. 
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Our empirical setup is as follows. We consider a base stock inventory control strategy which is suitable 

for slow moving, intermittent demand items (Axsäter 2006). Let us denote the lead time by L periods. 

The order of events in a period is as follows: observe demand, receive an order (placed L periods ago), 

place a new order. It is well known from the inventory control literature (Axsäter 2006) that the base 

stock level should include the expected demand and safety stock for L+1 periods (given this order of 

events). Therefore, we calculate the base stock level at the end of each period as: 

    '' 11 tt MSELkYL  , where '

tMSE  is the updated mean square error (where we use a smoothing 

constant of 0.25) and k can be interpreted as the safety stock factor. By varying the safety factor, we 

obtain solutions that differ in holding and backordering volumes. It also allows us to draw efficiency 

curves of holding versus backordering, which can then be compared across the different forecasting 

methods. This enables us to make fair comparisons despite the fact that the different forecasting methods 

do not result in exactly the same service performance (for the same value of the safety factor). The 

efficiency curves obtained for the complete datasets 1 and 2 are reported in Figures 1 and 2, respectively. 

The results obtained after the selection of SKUs with decreasing mean demand are given in Figure 3 and 

Figure 4. Please note that Naive and the Zero forecast stock control results are much less good, and 

excluded from Figures 1-4 to allow for a clearer graphical comparison of the other methods. 

INSERT FIGURES 1, 2, 3 AND 4 ABOUT HERE 

Figure 1 shows that the SES and all Croston-type approaches provide similar inventory performance as 

their efficiency curves almost overlap. This is in line with the results of Section 5.3, showing not much 
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difference between the ME and MSE results for dataset 1. It is hence difficult to spot the outperformance 

of any forecasting method.  

However, Figure 2 shows that Croston’s method clearly outperforms all other methods. Apparently, 

despite the considerable bias of this method that exists both theoretically (see Section 4) and empirically 

(Section 5.3), the Croston method achieves a better inventory holding-backlog efficiency. 

Figure 4 shows that, even for the SKUs with decreasing demand from dataset 2, Croston’s method still 

outperforms the other methods. This is again in line with the results from Section 5.3, but it remains a 

surprising outcome that may be attributed to the very high degree of lumpiness associated with dataset 2. 

Returning to dataset 1, Figure 3 shows that for the SKUs with decreasing demand from this dataset, the 

TSB method provides the best inventory performance. So, these results are in line with those from the 

simulation experiment on generated data conducted by Teunter et al. (2011), whereas dataset 2 leads to 

different empirical results. 

6. Conclusions and extensions 

Most of the work on intermittent demand forecasting in the last fifteen years has been based on 

Croston’s method. Many modifications have been proposed in the academic literature to improve its 

performance and especially to reduce the bias of this method. The original method and variants all use 

smoothing constants to update the estimates. A number of authors have recommended (ranges of) values 

for the smoothing constants (under certain conditions). However, empirical justification has been limited. 
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In this paper, we analysed the performance of intermittent demand estimation methods by considering 

the bias (ME) of the mean, the variance of the estimates – as measured through the MSE, and a scale-

free measure provided by the MASE. First, for fixed smoothing constants and under the assumption of 

stationary demand, exact expressions for the first two moments of all estimators were given and 

compared, leading to a theoretical discussion of the methods’ properties. Then, an empirical 

investigation on two real-life datasets was performed including a sensitivity analysis of the error 

measures with respect to the smoothing constants.  

The two datasets that we used lead to different results. Those for dataset 1 (with relatively fast moving 

SKUs) are most in line with our theoretical expectations and simulation findings as reported in Teunter 

et al. (2011). Considering all SKUs of that dataset, Croston has the largest positive bias, SBA a smaller 

negative bias, and TSB and SY have even smaller biases. The different Croston-type methods show very 

similar MASE, MSE and therefore also inventory performances. For SKUs from dataset 1 with a 

negative trend in demand, TSB does show a superior inventory performance, although the other methods 

do not lag far behind. 

The results for dataset 2 paint a very different picture. Croston is still the most biased, but has the best 

inventory performance. Even for only SKUs with decreasing demand from that dataset, Croston 

outperforms TSB and all other methods. This could relate to a high degree of non-stationarity of that 

dataset, rendering theoretical results based on the assumption of stationary demand less indicative. 

 The relatively high optimal (across SKUs) values of the smoothing constants for dataset 2 do seem to 

indicate a higher degree of non-stationarity. Croston and all considered variants have an optimal value 
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for   of 0.1 and 0.15 for datasets 1 and 2, respectively. The optimal value for   increases from at most 

0.1 to at least 0.2 for Croston, SBA and SY. The TSB method does show a small decrease from 0.05 to 

0.02. We remark that small values for the demand probability smoothing constant of TSB are expected 

for dataset 2 due the very infrequent demand for most SKUs. Another interesting finding on optimizing 

smoothing constants is that doing so at the individual SKU level, rather than across all SKUs, 

considerably deteriorates performance for both datasets. 

There are many opportunities for further research. If nothing else, this research has shown that there is a 

need for more empirical testing of forecasting methods for intermittent demand, as the two datasets that 

we considered lead to different and sometimes opposite findings. In such further empirical studies, 

inventory performance should be considered alongside forecasting accuracy, as our results have shown 

that the two do not always go hand-in-hand. 

One particularly interesting aspect to be studied in relation to comparative forecasting performance is 

that of the levels of intermittency, lumpiness and non-stationarity. This should offer insights into what 

method to select when, and what values to use for the smoothing constants. 

Another important research avenue is to consider demand (dis)aggregation. For both datasets that we 

considered, optimizing smoothing constants at the individual SKU level performs much worse than 

across SKU. However, there may be a way in between by aggregating sets of SKUs based on e.g. their 

description and/ or demand process characteristics. Future research can address the amount of data (i.e. 

number of observations per SKU or set of SKUs) needed for optimization of smoothing constants, again 

in relation to the intermittency, lumpiness and non-stationarity of the data. 
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Table 1. Statistical properties of intermittent demand estimators under stationary demand 
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3,000 SKUs
Demand Intervals Demand Sizes Demand per period

Mean St. Deviation Mean St. Deviation Mean St. Deviation

Min 1.043 0.209 1.000 0.000 0.542 0.504

25%ile 1.095 0.301 2.050 1.137 1.458 1.319

Median 1.263 0.523 2.886 1.761 2.333 1.922

75%ile 1.412 0.733 5.000 3.357 4.167 3.502

Max 2.000 1.595 193.750 101.415 129.167 122.746

Table 2. Descriptive statistics – dataset 1 

5,000 SKUs
Demand Intervals Demand Sizes Demand per period

Mean St Deviation Mean St Deviation Mean St Deviation

Min 3.824 0.000 1 0.408 0.036 0.187

25%ile 7.273 5.431 1.556 2.964 0.155 0.538

Median 9.000 6.930 3.833 7.203 0.369 1.452

75%ile 11.571 8.630 11.333 14.328 1.155 4.434

Max 24 16.460 668.000 1138.408 65.083 275.706

Table 3. Descriptive statistics – dataset 2 

Table 4. Minimum (across SKUs) MSE results – dataset 1 

Estimator   ME MSE MASE

SES 0.05 -0.118 233.804 1.510

SY 0.15 0.3 0.190 231.267 1.424

SBA 0.15 0.3 0.156 230.961 1.413

Croston 0.15 0.2 0.414 232.906 1.492

TSB 0.15 0.02 -0.178 232.202 1.402

Naïve 0.001 449.615 1.642

Zero -1.344 238.172 0.872

Table 5. Minimum (across SKUs) MSE results – dataset 2 

Estimator   ME MSE MASE

SES 0.05 -0.066 74.970 0.891

SY 0.1 0.05 0.099 75.144 0.892

SBA 0.1 0.1 -0.107 74.923 0.883

Croston 0.1 0.05 0.116 75.137 0.893

TSB 0.1 0.05 -0.064 75.033 0.889

Naïve 0.054 136 1.127

Zero -4.422 146.219 1.229
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Table 6. Minimum (per SKU) MSE results – dataset 2 

Table 7. Minimum (across SKUs) MSE results for SKUs with decreasing demand – dataset 1 

Table 8. Minimum (across SKUs) MSE results for SKUs with decreasing demand – dataset 2 

Estimator   ME MSE MASE

SES 0.061 0.024 265.975 2.075

SY 0.181 0.162 0.178 265.059 1.959

SBA 0.181 0.163 0.153 264.333 1.949

Croston 0.177 0.152 0.318 266.924 2.012

TSB 0.181 0.041 -0.063 262.057 1.841

Estimator   ME MSE MASE

SES 0.25 -0.903 35.151 0.669

SY 0.3 0.15 1.031 34.980 0.679

SBA 0.2 0.3 0.541 31.271 0.637

Croston 0.3 0.15 1.074 35.113 0.683

TSB 0.05 0.15 -0.951 34.825 0.902

Estimator   ME MSE MASE

SES 0.05 -1.269 60.566 0.457

SY 0.3 0.3 1.556 62.033 0.491

SBA 0.3 0.3 1.500 61.323 0.484

Croston 0.3 0.3 1.931 67.248 0.539

TSB 0.3 0.05 -1.345 61.310 1.479
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List of Figures 

Figure 1. Stock control efficiency curves – dataset 1 

Figure 2. Stock control efficiency curves – dataset 2 
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Figure 3. Stock control efficiency curves for SKUs with decreasing demand – dataset 1 

Figure 4. Stock control efficiency curves for SKUs with decreasing demand – dataset 2


