Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer

Wada, Ryuichi, Beames, Joseph and Orr-Ewing, Andrew J. 2007. Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer. Journal of Atmospheric Chemistry 58 (1) , pp. 69-87. 10.1007/s10874-007-9080-z

Full text not available from this repository.

Abstract

An open-path cavity ring-down spectroscopy (CRDS) instrument for measurement of atmospheric iodine monoxide (IO) radicals has been tested in the laboratory and subsequently deployed in Roscoff on the north-west coast of France as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) project in September 2006. In situ measurements are reported of local IO mixing ratios in the marine boundary layer. To obtain these mixing ratios, accurate absorption cross sections of IO are required at the selected wavelengths used for spectroscopic measurements. Absorption cross sections at the bandheads of the IO A2Π3/2–X2Π3/2 (3,0) and (2,0) vibronic bands were thus verified by a combination of spectral simulation methods, inter-comparison of prior determinations of cross-sections at high and low spectral resolution, and by measurement of rates of loss of IO by its self-reaction. The performance of the open-path CRDS instrument was tested by measuring concentrations of NO2 in ambient air, both within and outside the laboratory, with results that were in excellent agreement with a previously validated continuous wave CRDS apparatus for NO2 detection. During the RHaMBLe campaign, the open-path CRDS instrument was located within a few metres of the shoreline and operated at wavelengths close to 435 nm to detect the absorption of light by trace levels of IO. The IO mixing ratios were obtained on two days, peaked close to low tide, and were approximately 5–10 times higher than values calculated from column densities previously reported by long-path, differential optical absorption spectroscopy (DOAS) in coastal regions. The typical detection limit of the instrument was estimated to be 10 pptv of IO, with some fluctuation around this value depending on the conditions of wind and atmospheric aerosol particles, and the total accumulation time was 30 s for each data point. The observations of relatively high concentration of IO, compared to the values previously reported by DOAS, are consistent with the concurrent observations using a LIF (Laser induced Fluorescence) instrument (Whalley et al. in press). The first such measurements of localized IO by CRDS and LIF should contribute to an improved understanding of the chemistry of halogen compounds and the formation of iodine oxide aerosol particles in the marine boundary layer.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Publisher: Springer Verlag
ISSN: 0167-7764
Last Modified: 04 Jun 2017 08:06
URI: http://orca-mwe.cf.ac.uk/id/eprint/72869

Citation Data

Cited 55 times in Google Scholar. View in Google Scholar

Cited 44 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item