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Abstract 
The new consumption without ownership paradigm is leading towards a ǲrental economyǳ where people can now 
rent and use various services  from third-parties within a market of ǲsharedǳ resources. The elimination of ownership 

has increased the marginal utility of consumption and reduced the risks associated with permanent ownership. In the 

absence of ownership the consumption in the global marketplace has become more dynamic and has positively 

impacted various economic and social sectors.  The concept of ǲconsumption without ownershipǳ can also be used  in 

the area of cloud computing where the interaction between clients and providers generally involves the use of data 

storage and computational resources. Although a number of commercial providers are currently on the market, it is 

often beneficial for a user to consider capability from a number of different ones. This would prevent vendor lock-in 

and more economic choice for a user. Based on this observation, work on ǲSocial Cloudsǳ has involved using social 

relationships formed between individuals and institutions to establish Peer-2-Peer resource sharing networks, 

enabling market forces to determine how demand for resources can be met by a number of different (often 

individually owned) providers. In this paper we identify how trading and consumption within such a network could 

be enhanced by the dynamic emergence (or identification) of brokers – based on their social position in the network 

(based on connectivity metrics within a social network). We investigate how offering financial incentives to such 

brokers, once discovered, could help improve the number of trades that could take place with a network, thereby 

increasing consumption. A social score algorithm is described and simulated with PeerSim to validate our approach. 

We also compare the approach to a distributed dominating set algorithm – the closest approximation to our approach. 
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1. INTRODUCTION 
In recent years the mode of acquisition and use of resources 
has changed significantly, with consumers expecting to use 
a product from one vendor for a short amount of time, and 
renting rather than owning the product. Resources/products 
which fall within this remit have ranged from cars to 
movies, games and music recordings. Such a change in 
emphasis has been influenced by variability in markets 
affected by aspects such as seasonality and the temporary 
nature of exchange. Consumers are therefore motivated to 
participate in a leasing economy where products are used for 
a shorter period significantly preferring to rent than to 
purchase (Bendell, 2007), (Levenson, 2007). The ability to 
participate in such a sharing economy also provides greater 
choice for both the consumer and the provider, enabling a 
much greater flexibility in being able to switch between 
multiple market offerings, thereby also likely to increase 
consumption from consumers by not being restricted to 
products or price constraints from a single vendor. The 
absence of ownership also enables access to some existing 
services that may be inaccessible previously due to high cost 
of ownership (Living Planet, 2012). By engaging in such a 
non-ownership market, consumers can have access to 

greater and increased social status with less cost (Moore, 
2008), (Russell, 2007).  
Consumption without the cost of ownership has been 
identified by economists (Winsper, 2007), (Zukin, 2008) as 
a new paradigm in the emerging “sharing economy”. 
Increasing use of social networks, data 
mashing/aggregation, availability of software platforms  that 
facilitate such service/data aggregation and the availability 
of handheld devices providing easy access to such platforms 
enable users and providers of resources/services to discover 
each other and utilize trust relationships developed over 
time. Such trust relationships are often encoded in 
interaction patterns and behaviours that can be derived from 
(on-line) social networks. These relationships therefore 
provide the basis for evaluating people that one can trade 
with. Increasingly, there is also reluctance in making large 
capital purchases of equipment and hardware, making it 
more lucrative for users to monetize their time and assets.  
Trust and reputation play a central role in an economy based 
on the “consumption without ownership” model, therefore 
these pre-established relationships would be essential to 
encourage greater transactions between participants. 
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In a sharing market being proposed in this paradigm, market 
actors (users requesting services and providers offering 
them) can also act as micro-entrepreneurs or brokers. 
Enabling discovery of suitable providers able to meet 
particular, often specific and individual demand from 
consumers, becomes an essential tenet in such systems, 
especially with the ability to also associate some degree of 
confidence in the likelihood of the provider being able to 
meet their advertised capability. Consumers become 
independent contractors, working for themselves with 
control over their working time and working conditions. An 
example is the case of ride-sharing companies such as Lyft, 
Sidecar or UberX which own no cars themselves but they 
sign up instead ordinary car owners: when people need a 
ride, they can use mobile apps to find a driver nearby and 
ask to be picked up. Airbnb represents another example of 
over 300,000 listings from people making their apartments 
and homes available for short-term rent, similarly 
SnapGoods makes it possible for people to borrow 
consumer goods from other people in their neighbourhood 
or social network. A variety of examples exist today in other 
sectors (Benny, 1973), (Surowieski, 2013).   
 
As brokers play a key role in such a “consumption without 
ownership” paradigm, identifying where such brokers 
should be situated and how many are needed become 
important challenges. Such brokers should also enable trust 
relationships to be established between consumers and 
providers to allow concerns about liability and competence 
to be addressed. Ride sharing companies such as Sidecar, 
Lyft and Uber often need to also implement and conform to 
certain safety and driver regulations. We believe an 
equivalent capability is needed for other domains.  
 
As the demand for data and computational services 
increases, the benefits of Cloud computing become 
substantial. However, Cloud computing capabilities (as 
currently provisioned) can prove to be limited when 
accessed through a single provider. Due to vendor lock-in 
and specialist data models required from a single vendor, it 
is in a user’s interest to explore and interact with multiple 
possible Cloud providers. Extending capabilities of Clouds 
by using user owned and provisioned devices can address a 
number of challenges arising in the context of current Cloud 
deployments – such as data centre power efficiency, 
availability and outage management. We have investigated 
such “Social Clouds” in a number of contexts previously 
(Chard et al., 2011), (Petri et al., 2012). Social Clouds are 
developed using the observation that like any community, 
individual users of a social network are bound by finite 
capacity and limited capabilities. In many cases however, 
other members (friends) may have surplus capacity or 
capabilities that, if shared, could be used to meet the 
fluctuating demand. A social cloud makes use of trust 
relationships between users to enable mutually beneficial 
sharing. Social Clouds are defined in (Chard et al., 2011) as 

“a resource and service sharing framework utilizing 
relationships established between members of a social 
network.” The availability of storage resources and access 
latency are also significantly improved – as storage 
resources may be found in closer proximity to a user. The 
establishment of such Peer-to-Peer (P2P) community 
Clouds requires a robust mechanism for controlling 
interactions between end-users and their access to services. 
For instance, in the context of such a Cloud model, end-
users can contribute with their own resources in addition to 
making use of resources provided by others (at different 
times and for access to differing services) (Grivas et al., 
2010). There is also increasing interest in developing 
“distributed Cloud” platforms, which are able to orchestrate 
capability across multiple federated Cloud systems, see for 
instance work on such a Cloud orchestration system from 
Ericsson in the European UNIFY project (UNIFY, 2013). 
 
In previous work, we have also investigated incentive 
models for users to provide services to others (Chard et al., 
2011), (Punceva et al., 2012) – which can range from 
bartering of resources, improving the social standing of a 
participant within a community or obtaining a financial 
reward. We focus on the last of these incentives in this 
work. Often in such markets it is necessary for a client to 
discover suitable providers of interest. This is generally 
undertaken through the use of either a registry service 
(centralized) to the use of a discovery request being 
propagated across the network (a variety of approaches have 
been considered, ranging from flooding, controlled 
“gossiping” to multiple federated registries). We propose a 
decentralized approach whereby some sellers or buyers may 
become brokers (or “traders”) in order to improve their own 
revenue within a market place, based on their social 
connectivity within a network. We consider a number of 
graph theoretic measures (such as connectivity degree, 
centrality, etc) to identify how nodes within a social Cloud 
which were initially buyers or sellers could turn into brokers 
– to improve their own revenue and satisfy service requests 
within the market. We map our problem into a dominating 
set problem in graph theory and show how our results 
compare with a distributed implementation of this 
algorithm. 
 
In section II we identify the role of brokers within a P2P 
market – and how the number of brokers influences the 
interaction dynamics within the network. The main concepts 
of our approach are outlined in section III. In section IV we 
outline our overall methodology, with a description of the 
social score algorithm and the metrics (degree & centrality) 
used within the algorithm to identify nodes that could be 
potential brokers. A description is also provided of the 
PeerSim simulator we used to evaluate various scenarios. 
Results are presented in section V, with Conclusions and 
future work in section VI. 
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2. RELATED WORK 
Intermediaries or brokers bring together participants (users 
and providers) who have not directly interacted with each 
other. Brokers have been used extensively in service-based 
systems, primarily as an alternative to service “exchanges” 
and registry services. Such brokers may be managed by 
external third parties, who have an economic incentive to 
provide accurate matchmaking support (utilizing both the 
functional capability provided/required including other non-
functional attributes which have been acquired by a broker 
over time, such as failure rate, performance, cost, etc) 
between the capabilities of a provider and the demands of a 
user. Brokering solutions are now beginning to emerge in 
Cloud systems also – especially with the emergence of Web 
sites such as CloudHarmony (which can support 
performance benchmarking across over 100 different Cloud 
providers). With Social Clouds (as identified in section I), 
broker-based interaction becomes even more important, as 
providers can exist over shorter time frames and offer 
specialist capability (Sundareswaran, 2012), (Nair et al., 
2010).    

Sotiriadis et al. (Sotiriadis et al., 2013) propose a meta-
brokering decentralized approach to manage interactions 
between interconnected Clouds. The objective is to support 
Cloud interoperability and resource sharing. In this 
framework a broker acts on behalf of the user and generates 
requests for resources from the Cloud system, based on the 
contacted SLAs. The authors demonstrate that the meta-
broker model outperforms a standard broker when the 
system contains a high number of concurrent users and 
cloudlets submissions.  

Sundareswaran et al. (Sundareswaran et al., 2012) propose a 
broker-based architecture where brokers help end users 
select and rank Cloud service providers based on prior 
service requests, enabling users to negotiate SLA terms with 
providers. An efficient indexing structure called the CSP 
(Cloud Service Provider) index is used to manage the 
potentially large number of service providers, utilizing 
similarity between various properties of service providers. 
The CSP-index can subsequently be used for 
service/provider selection and service aggregation. 

STRATOS (Pawluk et al., 2012) is a broker service to 
facilitate multi-cloud, application topology platform 
construction and runtime modification in accordance with a 
deployer’s objectives. STRATOS allows an application 
deployer to specify what is important in terms of Key 

Performance Indicators, so that Cloud system offerings can 
be compared and ranked based on these indicators. The 
authors demonstrate how an application distributed across 
multiple Clouds can decrease the cost of deployment. Duy 
et al. (Duy et al., 2012) propose a benchmark-based 
approach to evaluate and compare cloud brokers. A 
benchmark called Cloud Broker Challenge (CBC) is 
employed to describe the cloud providers, cloud consumers, 
across 5 difficulty levels – inspired by the successes and 
impact of Semantic Web Service Challenge (a set of 
benchmark problems in mediating, discovering, and 
composing web services) . By introducing difficulty levels 
for Cloud brokering and associated scenarios, the authors try 
to abstract the fundamental properties of various Cloud 
providers to better understand how broker-based solutions 
could be applied across multiple providers simultaneously 
(Leskovec, 2010).  

Our approach complements these situations, in that we 
already assume that brokers play an important role within a 
Cloud-based resource sharing environment. Our key 
objective, instead, is to understand how many brokers 
should co-exist within a system to enable better interaction 
between users and providers, whilst at the same time 
ensuring that the number of brokers is limited. 

 

3. APPROACH 
A resource trading network has a particular relevance in 
Social Clouds – as some resource users & providers may 
have a more dominant position in the system, with greater 
access to social opportunities for intermediation. The 
question of where brokers should be placed within such a 
social network becomes significant – primarily to:  (i) 
increase the flow of ‘goods’ (i.e. facilitate resource 
exchange); (ii) increase social welfare within the 
community. Social welfare, in this case, measures the 
number of potential resource users who are able to find 
providers that match their requirements, within their 
budgets. We consider a marketplace where buyers and 
sellers can interact through an intermediate broker T. The 
broker receives commission for each transaction that it 
facilitates – the broker’s objectiveis therefore to increase the  
number of transactions they participate in and the 
commission per transaction that they receive. 
Our approach focuses on not having a pre-defined list of 
brokers – but understanding how the strategic position of a 
node within a network can lead it to be become a broker – 
which we refer to as “broker emergence”. Our approach 
makes use of two stages to achieve this: 

 1) Node selection – Select nodes with the highest social 
score (as described in section IV-A). 
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 2) Risk assessment – Evaluating the broker’s capacity 
of making profit and the associated (financial) risk to 
lose the investment. 

 
Broker emergence may be formulated as a dominating set 
problem. A dominating set for a graph G = (V, E) is a subset 
D of V such that every vertex not in D is joined to at least 
one member of D by some edge. The problem minimum 
Dominating Set (MDS) requires finding a dominating set of 
minimum size. Our goal is to find a set of nodes that will act 
as brokers among a network of socially connected nodes 
here every node is either a buyer or a seller. The selected set 
of brokers should satisfy the following condition: 
Market Accessibility: Every non-broker node should be 
connected to at least one broker. 
 
Our Market Accessibility condition ensures that every non-
broker node can participate in a transaction either as a buyer 
or as a seller. Therefore our problem can be formulated as 
finding a Minimum Dominating Set (MDS): given a graph 
G(V, E) that represents a social network where vertices 
represent users and edges represent friendship links, finding 
the set of broker nodes corresponds to finding the minimum 
dominating set. The dominating set problem is a classical 
NP-complete problem and several approximation algorithms 
exist for finding MDS. Kuhn et al. (Kuhn, 2005) propose a 
distributed approximation algorithm for finding a 
dominating set of minimum size which means every node 
uses only local information when executing the algorithm. 
This algorithm is particularly suitable for large-scale 
decentralised  networks and we use it here. 
As nodes can change their roles of buyers/sellers, a broker 
may be connected to buyers only or sellers only. We 
consider two alternatives to overcome this: (i) brokers will 
attempt to connect to other brokers (perturbing the original 
social structure); (ii) apply the (approximation) algorithm 
for finding a connected minimum dominating set instead of 
a minimum dominating set (which may not be connected). 
Such algorithm although not distributed is presented in  
Guha et al (Guha, 1998). It ensures that every broker node is 
connected to at least one other broker node. 
 

4. METHODOLOGY 
We consider a network with an associated set of peer-nodes 
P={p1, p2, p3,…,pn},   and a sub-set 
S={p1, p2, p3, ..., pm},  m < n, S ⊂ P , where S represents 
the set of non-leaf nodes from P . We use two algorithms 
for selecting broker nodes: social score algorithm and 
dominating set algorithm. 
 

A. Social Score Algorithm 
 

We apply the social score selection algorithm over the set 
of non-leaf nodes S. The selection process can be modeled 

as a function f (x) : S → T , where the result is a sub-
set of peer-nodes T with the highest social score which we 
consider as brokers. The selection protocol for brokers is 
built around the notion of social score.  

 
Figure 1. The selection 
 

 
We use social score as a metric to evaluate nodes and select 
brokers. Social score is calculated as an average of three 
metrics used to assess the connectivity of a node within a 
graph – a node that has greater potential to link other nodes 
with each other has a higher social score. The metrics we 
use are a node’s: (1) Degree Centrality, (2) Betweenness 
Centrality and (3) Eigenvector centrality. Within a graph 
G(V, E) where V is the set containing the number of 
vertices and E is the set containing the number of edges, we 
define the following metrics: 
 
Node’s degree centrality – is simply the number of links 
incident to the node: 

 deg(v) = DC(v)  

 
Node’s betweenness centrality – Betweenness centrality 
quantifies the number of times a node acts as a bridge along 
the shortest path between two other nodes and is calculated 
as the fraction of shortest paths between node pairs that pass 
through the node of interest:  

Vts
tsp

vtsp
vBC  ,)

),(

)/,(
()(

 

where p(s, t/v) is the number of shortest paths between 
users s and t that pass through node/user v, and p(s, t) is 
the number of all the shortest paths between the two users 
s and t. 
 
Node’s Eigenvector centrality – defines the influence of the 
node within a network – i.e. it measures how closely a node 
is connected to other well connected nodes. It assigns 
relative scores to all nodes in the network based on the 
concept that connections to high-scoring nodes contribute 
more to the score of the node in question than equal 
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connections to low-scoring nodes. Hence the objective is to 
make xi proportional to the centralities of its n neighbors, 
i.e.: 




 n
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λ is a constant. In vector notation this can be written as X = 
λ Ax, where λ is an eigenvalue of matrix A if there is a non-
zero vector x, such that Ax = λx. Thus, we classify nodes 
from the perspective of their social score which is calculated 
as: 
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Figure 1 illustrates the set of non-leaf nodes for which we 
calculate the social scores as a basis to support broker 
selection. Each selected node is given a certain amount of 
capital which can either be the same for all nodes, or in 
proportion to their social score. Algorithm 1 explains how 
brokers are selected based on the social score associated 
with nodes. The variable degree represents the number of 
current connections whereas capacity represents the 
maximum number of connections a node can support. This 
variable can be either specified in a configuration file or set 
as the maximum degree of the social graph: capacity = 
max(degree).  
 

Algorithm 1: Brokers Selection 

 
1: len:=node.capacity; 
2: pos:=0; 
3: set:=null; 
4: for i := 0 to networkSize by 1 do 
5: len := pos; max := maxRounds; found := false; 
6: while (!found) and (len>0) and (max>0) do 
7: max−− ; r[i] := selectNewNode(); rpeer := null; 
8: size:=getNodeDegree(r[i]); 
9: brokerObserver.calculateScore(r[i].getIndex()); 

10: if (r[i].isActive()) and (capacity < r[i].capacity) then 
11: rpeer := getNodeId(r[i]); 
12: markNode(rpeer,r[i]); 
13: addToSet(rpeer,r[i],set); 
14: found:=true; 
15: else 
16: if (degree ≤  r[i].degree) and (r[i].degree <  

rpeer.getTarget()) then 
17: markNode(rpeer,r[i]); 
18: addToSet(rpeer,r[i],set); 
19: found := true; 
20: end if 
21: end if 
22: end while 
23: if (rpeer := null) or (r[i].IsBroker()) or (r[i].Size ≥  

rpeer.getTarget()) or (r[i].isActive()) then 
24: removeNode(rpeer); 
25: end if 
26: end for 

 
We use a set variable for storing nodes and a marking 
mechanism markNode for identifying all those brokers over 
a set of simulation rounds maxRounds. The algorithm starts 

by excluding the leaf nodes and calculating the social score 
for each the non-leaf nodes. The brokers are then selected as 
the nodes with the highest social score out of all non-leaf 
nodes. 
Algorithm 1 attempts to identify a minimum number of 
brokers within the network. The algorithm uses a 
classification criteria based on the social score measure 
introduced above: nodes with higher social score are 
considered better candidates as brokers. The target set of 
brokers is composed by the minimum set of nodes with 
highest social score whose total capacity is sufficient to 
cover all the remaining nodes (sellers and buyers).  
 

B. Dominating Set Approximation: Distributed 
Algorithm 

The dominating set distributed algorithm is an 
approximation algorithm for solving the dominating set 
problem from (Kuhn, 2005).  The algorithm relies on a 
linear programming (LP) formulation of the problem and 
consists of two parts/algorithms: first algorithm calculates 
the fractional solution to the LP problem and the second 
algorithm does the rounding part. The algorithm runs in 
constant time and has a provable approximation ratio 
 

Algorithm 2: LPMDS Approximation 

1: x i :=  0; 

2:  calculateδ(i) ; 
3:  γ

(2 )(vi)  :=  δi +  1; δ(vi)  :=  δi +  1; 

4: for l:=k-11 to 0 by -1 do 
5:   ( ∗ δ(vi)  ≤  (∆ +  1)(l+1)/k, zi :=  0∗ ; 
6:   for m:=k-1 to 0 by -1 do 
7:      if (δ(vi)  ≥  γ2(vi) l/l+1)  then 
8: send ’active node’ to all neighbors; 
9:      end if 

10:      a(vi)  :=  |j ∈  Ni|vj is activenode | ; 
11:      if colori = gray then then 
12:         a(vi)  =  0; 
13:      end if 
14:      a(vi)  to all neighbors; 
15:      a(1 )(vi)  :=  maxj∈Nia(vi) ; 
16:      ∗a(vi) , a(1 )(vi)  ≤  (∆ +  1)m+1/k∗  
17:      if δ(vi)  ≥  γ(2 )(vi) l/l+1

 then 
18:         x i :=  maxxi, a(1 )(vi)

(−
 
m+1

 

)
; 

19:      end if 
20: send x i to all neighbors; 
21:      if 
22:         colori := gray ; 
23: send colori to all neighbors; 
24:         δ(vi)  :=  |j ∈  Ni|colorj = white |; 
25:      end if 
26:      ∗ zi ≤  (1 +  (∆ +  1)1/k)/γ(1 )(vi)(l/l+1)∗  
27: send δ(vi)  to all neighbors; 
28:      γ(1 )(vi)  :=  maxj∈Niδ(vj) ; 
29: send γ(1 )(vi)  to all neighbors; 
30:      γ(2 )(vi)  :=  maxj∈Niγ(1 )(vj)  
31:   end for 
32: end for 

 
. For an arbitrary possibly constant parameter k and 
maximum node degree ∆, the algorithm computes the 
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dominating set of expected size O (k∆2k log(∆)|DSOPT |) in 
O(k2) rounds. Where |DSOPT | represents the size of the 
optimal dominating set.The output of the algorithm is the 
vector x defined for all  
vi∈V which has values 0 or 1 and indicates whether a node 
is in the dominating set or not: if xi = 1 then node vi is in the 
dominating set and if xi = 0 the node is not in the 
dominating set. Initially each node independently runs the 
first part of the algorithm (Algorithm 3 from Kuhn et al. 
(Kuhn, 2005)) and as a result returns a fractional value 
between 0 and 1 for xi variables. In accordance with this 
approach we use the following notations. Initially all nodes 
are colored white. A node is colored gray if the sum of the 
weights of xj for vj ∈ Ni exceeds 1, i.e., as soon as node is 
covered. The degree of a node vi is denoted δi. The largest 
degree in the network graph is denoted ∆. The notation  

jNj i
   max)1(  is the maximum degree of all nodes in 

the closed neighborhood Ni of vi. Similarly 
)1()2( max jNj i

    is maximum degree of all nodes at 

distance at most two from vi. Note that it is assumed each 
node knows its 2-hop neighbors and these values therefore 
can be computed in at most two communication rounds. A 

dynamic degree of a node vi is denoted by   and represents 
the number of white odes in Ni, the neighborhood of vi. The 
output of the first part Algorithm 3 in (Kuhn, 2005)) are 
fractional values for xi and the second part (Algorithm 1 in 
(Kuhn, 2005)) does the rounding: it takes fractional xi 
values as input and rounds them to 0 or 1. 
 
C. Modeling trading process 
In our framework each trade is defined as a function f(t) : S   D where S represents a domain containing originating 
nodes and D the domain containing destination nodes. Each 
transaction f(t) brings an associated revenue for brokers and 
is scheduled to happen at a specific simulation cycle. Within 
the protocol we enable peer-nodes to change roles over time 
such that buyers and sellers can become brokers or brokers 
can become buyers or sellers. In order to validate our 
hypotheses, PeerSim (Jelasity et al., 2010) was chosen as a 
framework for simulating a number of different scenarios. 
The PeerSim simulator uses separate source files for 
programming different needed controllers of the simulation 
process. We therefore employ a number of different 
parameters and controllers for simulating the scenarios 
reported in section V. We use an initialization controller 
defining the various types of events that can happen during 
the simulation and which need to be scheduled during the 
simulation. Another controller is used for defining the 
network variation at each simulation cycle (e.g. how the 
network changes when adding new nodes to the network) 
for each round of trading. 
An additional controller is allocated as an observer that 
collects the results for each experiment. The configuration 
file also contains a number of simulation parameters:  

•cycles: defines the maximum number of simulation 
cycles for each experiment. 
•maxCapacity defines the maximum number of 
connections allowed for any given node. 
•minCpacity defines the minimum number of 
connections allowed for any given node. 
•minTrades defines the minimum number of trades 
scheduled to be run within the system as a whole. 
•maxTrade defines the maximum number of trades 
scheduled to be run within the system as a whole. 

To support a dynamic network formulation – whereby nodes 
may be added or removed from the network, we used an 
additional network dynamics module. 

•  control.c1 peersim.dynamics.DynamicNetwork 
•  control.c1.type vtype 
•  control.c1.maxsize vmax 
•  control.c1.add vadd 
•  control.c1.step vstep 
•  control.c1.from vfrom 
•  control.c1.until vuntil 

The DynamicNetwork is a module provided within PeerSim 
which enables us to define a simulation with a differing 
number of nodes at each simulation cycle. It includes 
various Java packages initializing a network or modifying it 
during simulation. The type parameter represents the type of 
the node to be added, the maxsize parameter represents the 
maximum number of nodes that one simulation process can 
use; the add parameter defines the number of nodes injected 
at each step; the step parameter defines the frequency in 
cycles for each injected node. The parameter from specifies 
the starting number of nodes to simulate while the until 
parameter defines the maximum limit on the number of 
nodes that the simulation can use.  
 
Table 1. Simulation data set from epinions.com 

Nodes  75879 
Edges  508837 
Nodes in largest WCC  75877 (1.000) 
Edges in largest WCC  508836 (1.000) 
Nodes in largest SCC  32223 (0.425) 
Edges in largest SCC  443506 (0.872) 
Average clustering 
coefficient  

0.2283 

Number of triangles  1624481 
Fraction of closed triangles 0.06568 
Diameter (longest shortest 
path) 

13 

90-percentile effective 
diameter  

5 

 
We use two different metrics to measure the status of the 
system:  

(i) Volume of trades: defining the total number of 
trades  f(t) taking place within the system;  
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(ii)  Average revenue: measures the average revenue 
per broker. In equation 5 n defines the number 
of trades within the system, m defines the 
number of brokers and val(f(ti)) represents the 
associated revenue of each trade.  




 n

i

itfval
m

AR
1

)))(((
1

 

 

5. SIMULATION AND RESULTS 
Our simulation makes use of social network data about 
epinions.com obtained from the Stanford Network Analysis 
Platform (SNAP) project (SNAP, 2012). 

 
Figure 5a. Brokers emergence 

 

 
Figure 5c.  Volume of trades with brokers 

We use this particular data set as it exposes trust 
relationships that are formed within a social network for 
product recommendation, exposing the Web of Trust 
between individuals.  
We also felt that this data set is representative of the types 
of buyer-seller-broker relationship that we could foresee 
within a Social Cloud – based on the referrals or 
recommendations made between people. Table I provides a 
description of the Epinions data set. 
 
 
 
 

 
 Figure 5b. Degree of brokers 
 

 

      
Figure 5d. Volume of traders with buyers and sellers  
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 Experiment 1: This experiment measures how the number 
of brokers evolves during the simulation in relation to the 
initial network configuration – containing only buyers and  
sellers. The number of nodes, number of edges, average 
network degree provided in table I are used to initially start 
the network in bi-partite (buyer, seller only) mode. Brokers 
are gradually selected based on the algorithm 1 presented in 
section IV-A. 

 
Figure 5e. Volumes of trades at broker degrees 

  

 
Figure 5g. Number of brokers: Social score vs. Dominating 
set problem 

From figure 5a it can be observed that the simulator needs 
around 6 simulation cycles to select brokers. During 
simulation, the process of broker selection works in parallel 
to the actual trading (i.e. trading starts when the first broker 
has been identified and continues during simulation). After 
6 simulation cycles the number of brokers within the system 
becomes stable – although trading within the network still 
continues to take place. 

 
Figure 5f. Average revenue per broker 

 
 

 
Figure 5h. Volume of trades: Social score vs. Dominating 
set algorithm 
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Experiment 2 – This experiment presents how the average 
number of nodes connected to brokers evolves during the 
simulation – with the initial setup provided in table I.   
The average numbers of nodes connected to brokers identify 
sellers and buyers within the network. 
 From figure 5b we observe that the number of nodes 
connected to brokers gradually increases within the first 6 
cycles of the simulation. Hence, as the number of brokers 
increases, the number of nodes (buyers/sellers) associated 
with a broker changes. This process of a change in node 
interactions (buyer/broker, seller/broker) is strongly related 
to the process of broker emergence.  
 
 Experiment 3 – Volume of trades when increasing the 
number of brokers. In this experiment we measure the 
volume of trades when increasing the number brokers 
within the network but keeping a fixed number of buyers 
and sellers. For running this experiment we extended the 
capacity of the network by adding new brokers to the 
simulation process. 
This is ensured by the dynamics controller presented in 
section IV-C with the specific parameter type specifying 
broker as the type of node to be added. From 5c it can be 
observed that an increase in the number of brokers by 25% 
has a direct impact on the volume of trades. When adding 
more brokers to the network, the routes between sellers and 
buyers increases significantly, thus an additional volume of 
trades is identified. In this experiment the initial setup and 
the associated number of brokers are specified by the social 
score calculated for each node. 
Experiment 4 – Volume of trades when increasing the 
number of buyers and sellers. In this experiment we 
measure the volume of trades when increasing the number 
of sellers and buyers within the network but keeping a fixed 
number of brokers.  
Experiments 3 and 4 are the only two simulations where we 
change the structure of the network during the simulation to 
better understand the impact of: (i) varying number of 
intermediaries (Exp. 3); (ii) a change in demand/ supply 
over time (Exp. 4). Whereas experiment 3 investigates how  
an increase in the number of brokers impacts the volume of 
trades, in this experiment we evaluate how the volume of 
trades change when expanding the number of buyers and 
sellers. As in the previous experiment, the increase of nodes 
is handled by employing the dynamics controller with the 
specific parameter type set to node. As illustrated in figure 
5d an increase of 25% in the number of buyers and sellers 
causes an increase in volume of trades. When more buyers 
and sellers are added, the number of possible trade options 
increases.  
However, even if the increase of buyers or sellers causes an 
increase in volume of trades, as the number of brokers and 
the associated capital are limited the impact on volume of 
trades is less significant than the increase in brokers 
presented in previous experiment. 
 

Experiment 5 – Volume of trades with regard to broker 
degrees. In this experiment we investigate how the volume 
of trades evolves with reference to a (broker) node degree. 
Brokers are selected according to their social score. 
However, each broker has an associated degree parameter 
specifying the number of current connections.  
In this experiment we analyze the relationship between the 
average broker degree and the volume of trades. Figure 5e 
presents various levels of trades with reference to the degree 
of a broker. It can be observed that the volume of trades 
increases for brokers with higher degrees such as 50 or 75 
connections. The impact on volumes of trades for those 
brokers with lower degrees is reduced as identified for 
degrees of 15 and 25. 
 
Experiment 6 – This is used to measure the average broker 
revenue with regard to broker degrees. In addition to 
measuring the volumes of trades we also try to quantify the  
 revenue for each broker. As it can be observed from figure 
5f, the average revenue for brokers is strongly related to 
their network degree. Whereas for brokers with degree of 15 
respectively 25 connections, the impact is low, for brokers 
with higher connectivity average revenue is significantly 
increased. A higher degree for a broker gives an increased 
number of options for performing trades thus leading to an 
increased revenue. 
 
Experiment 7 – The number of brokers compared to the 
number of nodes in the dominating set when comparing the 
Social Score Algorithm with The Dominating Set algorithm. 
 In this experiment we compare the performance of the 
Social Score Algorithm with Dominating Set Algorithm 
from the perspective of number of brokers respectively 
number of nodes in dominating set. As presented in figure 
5g, the dominating set has better performances than the 
social score algorithm. It can be observed that at cycle 5 the 
number of nodes in dominating set is with 11% lower than 
the number of brokers whereas at cycle 30 the difference is 
around 12.5%. The performance differences are determined  
 by two important particularities: (i) graph properties and (ii) 
evaluation metrics. 
 
Experiment 8 – Volume of trades when comparing the 
Social Score Algorithm with The Dominating Set 
Algorithm. In this experiment we evaluate the social score 
algorithm and the dominating set algorithm from the 
perspective of the volume of trades they generate. Figure 5h 
shows that the social score algorithm generates a higher 
volume of trades than the dominating set algorithm. This 
happens because the social score algorithm considers a 
number of different network metrics for selecting the 
brokers applied on a predefined social graph whereas the 
dominating set algorithm seeks to optimize the dominating 
set for an ad-hoc network. 
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Figure 5i. Volume of trades:  Social Score vs. Incentivising 
peers approach 
 

 
Figure 5k. Average revenue per broker when increasing 
demand 

Experiment 9 – Volume of trades when comparing the 
Social Score Algorithm with the approach when we 
incentivize peer-nodes to become brokers. For running this 
experiment we assign an incentive to each peer-node in 
order to become a broker. Hence, a peer-node i can decide 
to become a broker because according to its subjective 
decision function f(x), the broker role enables it to 
maximize its revenue. Figure 5i shows that the social score  
algorithm generates a higher volume of trades than the 
incentivising approach. 

 
Figure 5j. Volume of trades when increasing demand 

 
This happens because the social score algorithm considers a 
number of different network metrics for selecting the 
brokers applied on a predefined social graph whereas in the 
incentive approach some of the brokers can derive from 
peer-nodes with poor network attributes such as low 
connectivity, low centrality degree, etc. It can be also 
observed that in the incentive approach the volume of trades 
starts to decay after a certain simulation cycle. 
This happens because the brokers derived from peers with 
low connectivity are unable to generate a constant volume 
of trades within the system. 
 
Experiment 10 – Volume of trades when increasing the 
demand. In this experiment we measure the volume of 
trades when increasing demand within the system but 
keeping a fixed number of buyers and sellers.  In previous 
experiments we used a fixed demand identifying a process 
where one broker can intermediate a single trade between a 
buyer and a seller. Here, we consider that between each 
buyer and each seller more than one broker-intermediated 
trade can take place. Figure 5j illustrates a comparison 
between the base case where there is a regular demand and 
the cases where we increase the demand by 25% and 50%, 
respectively. We observe that the highest differential 
increase in volume of trades is identified when increasing 
demand by 25%.  
This differential increase is determined by the capacity 
parameter associated with every broker. In this experiment, 
we assume that one broker has a configured capacity of 
trades that can be intermediated. When increasing the 
demand by 25% there is still enough capacity for brokers to 
intermediate trades whereas when increasing the demand by 
50% the brokers, due to limited capacity, cannot 
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intermediate all the trades. The request for resources 
increases when the demand is increased, hence brokers will 
intermediate more trades generating an increase in volume 
of trades.  
 
Experiment 11 – Average revenue per broker with an 
increase in demand. In this experiment we investigate how 
demand impacts the average revenue per broker. As outlined 
in experiment 10, an increase in demand leads to an increase 
in trade volume, and is affected by the degree of the broker 
(Figure 5k). When a broker has a degree of 25, it can be 
observed that the impact of demand on average revenue is 
limited. When using a broker degree of 50 it can be 
observed that the demand correspondingly impacts average 
revenue. This difference between various levels of demand 
in terms of average revenue is determined by the broker 
degree. Although the demand is increased, in some cases a 
broker can support only a specific number of trades in 
relation to the configured capacity, thus the impact is often 
limited in practice. 
 

6. CONCLUSION 
Consumption without ownership represents an emerging 
economical approach with applicability in many contexts. 
Enhancing consumption with a broker based market 
intermediation is a process commonly used in various 
market scenarios to enable better interaction between buyers 
and sellers. This concept has found applicability in P2P 
markets with extension to Social Clouds where a number of 
sellers and buyers are able to use and provide resources – 
driven primarily by economic incentives and their reputation 
in the market. We investigate a specific mechanism of 
broker emergence – whereby nodes in a Social Cloud can 
change role from buyers or sellers to brokers – in order to 
improve their revenue. We identify the associated benefits 
for supporting such broker emergence within a P2P 
environment. We also describe how the identification of 
such brokers can lead to an improved social welfare within a 
community.  
 
A number of scenarios are simulated in PeerSim, by 
employing a heuristic social score algorithm for determining 
the number of brokers within the network and the associated 
generated volume of trades. We investigate how the 
algorithm performs when adding more brokers respectively 
buyers/sellers by measuring the volume of trades and the 
average revenue. In addition we compare the social score 
algorithm with a distributed dominating set algorithm. 
Broker emergence provides a useful alternative to the pre-
identification of “brokers” within a Cloud system – and 
could lead to a dynamic environment which adapts the 
number and types of brokers available over time (as the 
system connectivity and trade volumes (based on 
supply/demand) change. 

 

7. REFERENCES 
 
Stelios Sotiriadis, Nik Bessis, Nick Antonopoulos, Decentralized meta-
brokers for inter-cloud: Modeling brokering coordinators for interoperable 
resource management, 9th International Conference on Fuzzy Systems and 
Knowledge Discovery, pp. 2462-2468, Chongqing, China,2012. 
 
Sundareswaran, S., Squicciarini, A., Lin, D., ”A Brokerage- Based 
Approach for Cloud Service Selection,” 2012 IEEE 5th International 
Conference on Cloud Computing (CLOUD) , pp.558-565, 24-29 June 
2012. 
 
Pawluk P., Simmons B., Smit, M. Litoiu M., Mankovski S.; ”Introducing 
STRATOS: A Cloud Broker Service,” Cloud Computing (CLOUD), 2012 
IEEE 5th International Conference on Cloud Computing (CLOUD) , vol., 
no., pp.891-898, 24-29 June 2012. 
 
Ngan Le Duy, S. Tsai Flora, Keong Chan Chee, Kanagasabai Rajaraman; , 
”Towards a Common Benchmark Framework for Cloud Brokers,” 2012 
IEEE 18th International Conference on Parallel and Distributed Systems 
(ICPADS), vol., no., pp.750- 754, 17-19 Dec. 2012 
 
Fabian Kuhn and Roger Wattenhofer, Constant-Time Distributed 
Domianting Set Approximation, Springer Journal for Distributed 
Computing, Volume 17, Number 4, May 2005. 
 
S. Guha and S. Kuhler, Approximation Algorithm for Connected 
Dominating Sets, Algorithmica, Volume 20, Number 4, 1998. 
 
SNAP, http://snap.stanford.edu/index.html, Last accessed: October 2012. 
 
J. Leskovec, D. Huttenlocher, J. Kleinberg: Signed Networks in Social 
Media. 28th ACM Conference on Human Factors in Computing Systems 
(CHI), 2010. 
 
M´ark Jelasity, Alberto Montresor, Gian Paolo Jesi and Spyros Voulgaris. 
“The Peersim Simulator”. Downloadable at: http: //peersim.sf.net,  2010. 
 
Chard, K. Bubendorfer, S. Caton and O. Rana, “Social Cloud Computing: 
A Vision for Socially Motivated Resource Sharing”, IEEE Transactions on 
Services Computing, 2011. IEEE Computer Society Press. 
 
Ioan Petri, Omer F. Rana, Yacine Rezgui & Gheorghe Cosmin Silaghi, 
“Trust Modelling and analysis in peer-to-peer Clouds”, International 
Journal of Cloud Computing, No. 2/3, 2012. Inderscience. 
 
Magdalena Punceva, Ivan Rodero, Manish Parashar, Omer F. Rana & Ioan 
Petri, “Incentivising Resource Sharing in Social Clouds”. 21st IEEE 
International Workshop on Enabling Technologies: Infrastructure for 
Collaborative Enterprises, WETICE 2012, Toulouse, France, June 25-27, 
IEEE Computer Society Press, 2012, pp 185-190. 
 
Living Planet Report 2012,  
http://www.wwf.org.uk/what_we_do/about_us/living_planet_report_2012/ 
 
Berry, L. L., & Maricle, K. E., Consumption without ownership: What it 
means for business. Management Review, 62(9), 44,  1973.. 
 
James Surowieski, Uber Alles, The New Yorker, Financial Page, 2013. 
 
Grivas, S.G.; Kumar, T.U.; Wache, H., "Cloud Broker: Bringing 
Intelligence into the Cloud, IEEE 3rd International Conference on," Cloud 
Computing (CLOUD), vol., no., pp.544,545, 5-10 July 2010 
 
Nair, S.K.; Porwal, S.; Dimitrakos, T.; Ferrer, A.J.; Tordsson, J.; Sharif, T.; 
Sheridan, C.; Rajarajan, M.; Khan, A.U., "Towards Secure Cloud Bursting, 
Brokerage and Aggregation," IEEE 8th European Conference on Web 
Services (ECOWS), vol., no., pp.189,196, 1-3 Dec. 2010 
 

http://www.wwf.org.uk/what_we_do/about_us/living_planet_report_2012/


International Journal of Cloud Computing (ISSN 2326-7550)           Vol. X, No. Y, Month Year 12 

Belk, Russell W.., “Why Not Share Rather Than Own?,” The ANNALS of 
the American Academy of Political and Social Science, 611, 126 – 140, 
2007. 
 
Bendell, Jem and Anthony Kleanthous, “Deeper Luxury: Quality and Style 
When the World Matters,”  2007, 
 ttp://www.wwf.org.uk/deeperluxury/_downloads/DeeperluxuryReport.pdf 
 
Levenson, Eugenia, “The Fractional Life: With jewelry, yachts, and 
vineyards available by the slice, even the superrich are learning to share,”, 
2007, 
http://money.cnn.com/magazines/fortune/fortune_archive/2007/03/05/8401
282/index.htm 
 
Moore, Amy and Michael Taylor, “Why buy when you can rent? A brief 
investigation of difference in acquisition mode based on duration,” Applied 
Economics Letters, pp. 1-3, 2008 
 
Trendwatching.com, “Transumers: Consumers Driven by Experiences”, 
2006,  http://www.trendwatching.com/trends/transumers.htm 
 
Winsper, Jeff, “The 6 P’s of Luxury Marketing: The Advanced Model for 
Measuring Consumer’s Buying Behavior for Luxury Brands,” , 2007, 
http://www.winsper.com/6Ps/  
 
Zukin, Sharon and Jennifer Smith Maguire, “Consumers and 
Consumption,” Annual Review of Sociology, 30, 173 – 197, 2008. 
 
European FP7 UNIFY Project – “Unifying Cloud and Carrier Networks”. 
Available at: http://www.fp7-unify.eu/. Last accessed: December 20, 2013.  
 

http://www.trendwatching.com/trends/transumers.htm
http://www.winsper.com/6Ps/
http://www.fp7-unify.eu/


International Journal of Cloud Computing (ISSN 2326-7550)           Vol. X, No. Y, Month Year 13 

 

 

 

 

 

Authors 
 

Ioan Petri holds a PhD in 
'Cybernetics and Statistics' from 
Babes-Bolyai University. He has 
worked in industry, as a software 
developer at Cybercom Plenware 
and then as a research assistant 
on several research projects. 
Starting with 2009, he 
collaborated with the School of 
Computer Science & Informatics, 

Cardiff University  as an internship researcher in Distributed 
and Parallel Computing. Currently he is working in School 
of Engineering as an associate researcher in Computational 
Engineering. His research interests are cloud computing, 
peer-to-peer economics and distributed systems. 
 
 

Omer F. Rana is a 
Professor of Performance 
Engineering in School of 
Computer Science & 
Informatics at Cardiff 
University and Deputy 
Director of the Welsh e-
Science Centre. He holds a 
Ph.D. in ‘‘Neural 

Computing and Parallel Architectures’’ from Imperial 
College (University of London). He has worked in industry, 
as a software developer at Marshall BioTechnology Limited 
and then as an advisor to Grid Technology Partners. His 
research interests extend to three main areas within 
computer science: problem solving environments, high 
performance agent systems and novel algorithms for data 
analysis and management. 
  
 

Magdalena Punceva is a Senior 
Scientists at the Institute for 
Computer and Communication 
Systems (ISIC), HE-Arc, HES-
SO, Switzerland. She holds a 
PhD in peer-to-peer networks 
and distributed information 
systems from the Swiss Federal 
Institute of Technology in 
Lausanne (EPFL). She has 
worked as a Postdoctoral 

Researcher at CERN and spent a 
year as a Fulbright Visiting Reaserch Scholar at Rutgers 
University, New Jersey, US. Her research interests are in the 
area of large-scale networks and algorithms including social 
networks, cloud computing and distributed systems. 
 

 
George Theodorakopoulos is a 
Lecturer at the School of 
Computer Science & 
Informatics, Cardiff University, 
since 2012. From 2007 to 2011, 
he was a Senior Researcher at 
the Ecole Polytechnique 
Federale de Lausanne (EPFL), 
Switzerland. He is a coauthor 

(with John Baras) of the book Path 
Problems in Networks (Morgan & Claypool, 2010). He 
received his Ph.D. (2007) in electrical and computer 
engineering from  the University of Maryland, College Park, 
MD, USA. His research   interests are in privacy, security 
and trust in networks. 
 

 
 
Professor Yacine Rezgui is a 
Professor in School of 
Engineering at Cardiff 
University and a BRE (Building 
Research Establishment) Chair 
in 'Building Systems and 
Informatics'. He is a qualified 
architect with an MSc (Diplôme 
d’Etudes Approfondies) in 
“Building Sciences” (obtained 

from Université Jussieu - Paris 6) 
and a PhD in Computer Science applied to the construction 
industry, obtained from ENPC (Ecole Nationale des Ponts et 
Chaussées). 
He has then worked as a researcher for CSTB (Centre 
Scientifique et Technique du Bâtiment) and was involved in 
a number of national and EU research projects in the field of 
document engineering (DOCCIME), product modelling and 
Computer Integrated Construction (ATLAS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


