Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Information quality in proteomics

Stead, David A., Paton, Norman W., Missier, Paolo, Embury, Suzanne M., Hedeler, Cornelia, Jin, Binling, Brown, Alistair J. P. and Preece, Alun David 2008. Information quality in proteomics. Briefings in Bioinformatics 9 (2) , pp. 174-188. 10.1093/bib/bbn004

Full text not available from this repository.

Abstract

Proteomics, the study of the protein complement of a biological system, is generating increasing quantities of data from rapidly developing technologies employed in a variety of different experimental workflows. Experimental processes, e.g. for comparative 2D gel studies or LC-MS/MS analyses of complex protein mixtures, involve a number of steps: from experimental design, through wet and dry lab operations, to publication of data in repositories and finally to data annotation and maintenance. The presence of inaccuracies throughout the processing pipeline, however, results in data that can be untrustworthy, thus offsetting the benefits of high-throughput technology. While researchers and practitioners are generally aware of some of the information quality issues associated with public proteomics data, there are few accepted criteria and guidelines for dealing with them. In this article, we highlight factors that impact on the quality of experimental data and review current approaches to information quality management in proteomics. Data quality issues are considered throughout the lifecycle of a proteomics experiment, from experiment design and technique selection, through data analysis, to archiving and sharing.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Uncontrolled Keywords: information quality ; proteomics ; standards ; quality assessment ; information management
Publisher: Oxford University Press
ISSN: 1467-5463
Last Modified: 15 Nov 2013 09:26
URI: http://orca-mwe.cf.ac.uk/id/eprint/6885

Citation Data

Cited 22 times in Google Scholar. View in Google Scholar

Cited 18 times in Scopus. View in Scopus. Powered By Scopus® Data

Cited 16 times in Web of Science. View in Web of Science.

Actions (repository staff only)

Edit Item Edit Item