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Abstract

This paper is concerned with the numerical solution of high-dimensional Fokker-
Planck equations related to multi-dimensional diffusion with polynomial coefficients
or Pearson diffusions. Classification of multi-dimensional Pearson diffusion follows
from the classification of one-dimensional Pearson diffusion. There are six important
classes of Pearson diffusion - three of them possess an infinite system of moments
(Gaussian, Gamma, Beta) while the other three possess a finite number of moments
(inverted Gamma, Student and Fisher-Snedecor). Numerical approximations to the
solution of the Fokker-Planck equation are generated using the spectral method.
The use of an adaptive reduced basis technique facilitates a significant reduction in
the number of degrees of freedom required in the approximation through the de-
termination of an optimal basis using the singular value decomposition (SVD). The
basis functions are constructed dynamically so that the numerical approximation
is optimal in the current finite-dimensional subspace of the solution space. This is
achieved through basis enrichment and projection stages. Numerical results with dif-
ferent boundary conditions are presented to demonstrate the accuracy and efficiency
of the numerical scheme.

1 Introduction

The Pearson one-dimensional diffusions defined by linear drift and quadratic
squared diffusion coefficient and their ergodic distribution (Gaussian or Gamma
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or Beta or inverted Gamma or Student or Fisher-Snedecor) satisfies famous
Pearson equation (2). The latter three are known as heavy-tailed distributions.
It is interesting to note that all of these distributions arise in the theory of
classical orthogonal polynomials (with respect to these distributions) in which
the systems of orthogonal polynomials are infinite for the first three cases and
finite for the heavy-tailed distributions. Their applications can be found in
many areas of research such as physical and chemical sciences, engineering,
rheology, environmental sciences and financial mathematics.

One possible multidimensional generalization of this class of Pearson diffu-
sions is to consider the high-dimensional FPE with polynomial coefficients.
However we restrict our attention to the case when drift is a linear func-
tion and squared diffusion has a quadratic form. Applications of such type
of models with square diagonal diffusion matrix arise for example in financial
mathematics, see Shaw [?], Chen Scott [3]. The case becomes much more dif-
ficult when square diffusion matrix has full structure since according to the
theory instead of classical orthogonal polynomials we have to use their non-
commutative analogous, which are matrix-valued. This problem also links to
the polynomial solutions of the hypergeometric equations with matrix-valued
coefficients where even classification of these orthogonal polynomials is not a
trivial task, see Durn and Grnbaum [11],[12]. However bivariate diffusions with
non-diagonal matrix have been considered in Shreve [37] wherefore Ornstein-
Uhlenbeck (O-U) case the solution is given by using orthogonal transformation
which reduces the problem to diagonal case. In Cox-Ingersoll-Ross (CIR) and
other problems solutions are not available to the best of our knowledge. Thus,
developing numerical methods to these cases seems to be very important task.
In this work we only consider the case when square diffusion matrix has a
diagonal form for all the Pearson diffusions.

Transient numerical solutions of the one-dimensional FPEs related to Pearson
diffusions in the six cases mentioned above for different classifications of the
boundary conditions were presented in Leonenko and Phillips [24].

Various discrete time simulation methods have been developed over the years
for solutions of one and multi-dimensional stochastic differential equations re-
lated to Pearson diffusions. For the most part, investigations have concentrated
on solutions for the first three classes, i.e O-U, CIR and Jacobi processes (see
Birge and Linetsky [8]). However, analytical investigations and computations
for diffusions with so-called heavy-tailed ergodic distributions are more diffi-
cult to perform and in the multi-dimensional case have not been attempted.
The simulation of solutions of some stochastic differential equations can be
problematic due to systematic errors (for example resulting from the discreti-
sation in time) and numerical instabilities. For instance, the diffusion coef-
ficient function could be non-Lipschitz (its derivative becomes infinite as x
tends to 0). Another problem with the simulation of SDEs may be the lack
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of sufficient numerical stability of the chosen scheme. Also, for theoretically
strictly positive processes it is often not acceptable to use discrete time sim-
ulation methods that may generate negative values. This problem however,
can be solved, in some cases, by a transformation of the initial SDE, via the
Ito formula, to a process which lives on the entire real axis. In general, it is a
challenging task to obtain efficiently a reasonably accurate trajectory of the
square root process using simulation. This has been discussed in the literature
below using the balanced implicit method introduced by Milstein et al. [28],
the adaptive Milstein scheme [20] and the balanced Milstein method [1], for
example. Discretisation schemes dedicated to square root diffusions have also
been studied in recent years by Alfonsi [2], Kahl and Schurz [21] and Andersen
[6].

In this paper we consider multi-dimensional FPEs related to Pearson diffu-
sions which potentially have number of advantages. First of all the solution
of a FPE gives us the exact density, instead of just simulating the path of a
stochastic process. Second, we do not need to deal with the problem of neg-
ativity of the square root in the diffusion term, see discussion in Leonenko
and Phillips [24]. Third, application of spectral numerical techniques provide
us with accurate solutions which can be calculated very efficiently using a
relatively small number of discretisation points.

Needless to say the FPE (forward Kolmogorov equation) is one of the most
fundamental equations in physics and plays an important role in every area
of science. However, despite of this importance there remains many unre-
solved analytical and numerical problems. Analytical solutions of the FPEs
are available for only a few special cases. Numerical solutions are possibilities
but pose formidable challenges. Various numerical methods like the path inte-
gral method [29,22], Galerkin method, finite element method, finite difference
method and multi-scale finite element method have been developed to solve
the Fokker-Planck equation.

In this paper an adaptive reduced basis approximation to the FPE is con-
structed using an efficient separation of variables technique. The method was
introduced by Ammar et al. [4,5] in the context of the finite element method
and further were developed by Leonenko and Phillips [23] in the context of
high-order spectral approximations. This approach based on singular value
decomposition (SVD) and gives us efficient basis reduction since it provides
a mechanism for retaining only those basis functions that contain the most
representative information of the solution in the numerical approximation.
Therefore, the method allows us to reduce the number of degrees of freedom.
The novelty of this work is in the use of spectral approximations combined
with a dynamic construction of the basis to achieve optimal approximations
in a least squares sense of the multi-dimensional FPEs related to Pearson
diffusions.
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The paper is organized in the following way: after introduction in the second
section high-dimension FPE and eigenvalue problem is presented with the
classification . In the third section the adaptive reduced basis approximation
for two-dimension case is introduced which involves two stages (projection and
enrichment). In the forth section this approach is extended for d-dimension
case of the FPE. Fifth section is devoted to the numerical and comparison
results for each of the six cases followed by discussion section.

2 High-dimension Fokker-Planck representation

In this paper we investigate Pearson-like diffusions in high-dimensions using
the reduced basis method. Thus, we consider the following FPE:

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
a(x)p(x, t) +

1

2

d
∑

i=1

d
∑

j=1

∂2

∂xi∂xj
(σij(x)) p(x, t) (1)

where p(x, t) = p(x; x0, t) is the transition density of the corresponding d-
dimensional Markov process with the linear drift: a(x) = (a(x1), ..., a(xd))
and the quadratic square diffusion term: D = (σij(x))1≤i,j≤d =< Σx,x > is a
symmetric and non-negatively defined d× d matrix where σ(x) = 2d(x),

Pearson [33] classifies invariant densities m(·) of the one-dimensional eq. (1)
using the following differential equation

m′(x)

m(x)
=
a(x)− d′(x)

d(x)
=

(a1 − 2b2)x+ (a0 − b1)

b2x2 + b1x+ b0
=
q(x)

d(x)
x ∈ R, (2)

where q(x) and d(x) are linear and quadratic functions, respectively. It seems
appropriate to call this important class of processes, Pearson diffusions.

A classification of Pearson diffusions (Forman, Sørensen[14]) in terms of six
basic sub-families may be achieved using criteria based on the degree, deg(d),
of the polynomial d(x) appearing in the denominator of the Pearson equation
(2) and the sign of the leading coefficient b2. The discriminant ∆(d) in the
quadratic case is ∆(d) = b21 − 4b2b0.

The classification for the multi-dimensional case can be written as:

qi(xi)

di(xi)
=

a1,ixi + a0,i
b2,ix2i + b1,ixi + b0,i

, xi ∈ R, i = 1, ..., d. (3)

The classification below is for the one-dimensional case, but in our work we ex-
tend it to the corresponding d-dimensional FPE. Introducing classes of multi-
dimensional diffusions where each linear function qi in the numerator and
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quadratic function di in denominator belongs to the classification scheme of
one-dimensional Pearson diffusion for i = 1, . . . , d (see Forman and Sørensen
[14]).

The six cases can be described in the following way:

(1) Ornstein-Uhlenbeck: deg(d) = 0; invariant density is normal.
(2) CIR diffusion: deg(d) = 1; invariant density is gamma.
(3) Jacobi diffusion: b2 < 0; deg(d) = 2;∆(d) > 0; invariant density is beta.
(4) Fisher-Snedecor diffusion: b2 > 0; deg(d) = 2;∆(d) > 0; invariant density

is Fisher-Snedecor.
(5) Reciprocal gamma diffusion: b2 > 0; deg(d) = 2;∆(d) = 0; invariant

density is reciprocal gamma.
(6) Student diffusion: b2 > 0; deg(d) = 2;∆(d) < 0; invariant density is

Student.

In general, the solution of eq. (1) is a challenging problem. However, for a
diagonal matrix D (this means that the Brownian motions of the multidi-
mensional diffusions are independent) one can proceed further. For simplicity
we consider the situation where the eigenvalue problem has a pure discrete
spectrum.

Recall that the Itô stochastic differential equivalent equation is of the form

dXt = a(Xt)dt+
√

σ(Xt)dBt, t ≥ 0, (4)

where B = (B
(i)
t , i = 1, ..., d) is a d-dimensional Brownian motion and

µ(x) = (µ(xi), i = 1, . . . , d)

is a d× 1 Borel measurable vector and
√
σ = (

√

σij(x))1≤i,j,≤d is a d× d Borel
measurable positive definite matrix.

We assume that the coefficients of the diffusion satisfy the Lipschitz and
growth conditions:

(i) there exist constants C1 and C2 such that for all x and y

‖a(x)− a(y)‖+
∥

∥

∥

∥

√

σ(x)−
√

σ(ȳ)
∥

∥

∥

∥

≤ C1 ‖x− y‖ , (5)

and

‖a(x)‖+
∥

∥

∥

∥

√

σ(x)
∥

∥

∥

∥

≤ C2{1 + ‖x‖}, (6)

where ‖√σ(x)‖ =
√

∑d
i=1

∑d
j=1 σ

2
ij(x) and ‖a(x)‖ =

√

∑d
i=1 a

2
i (x).

Under these considerations, the SDE (4) has a unique strong solution. Note
that these conditions hold in most of the cases. Otherwise (for instance Jacobi
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diffusion) we have to use some other conditions, (see Gihman and Skorohod
[17]), or interpret solutions in a weak sense and ergodicity follows from the
Feller conditions under the assumption of the parameters chosen below, (see
Bibby et al.[7]).

Let us consider the infinitesimal generator

Gf =
1

2

d
∑

i,j=1

σij(xij)
∂2f

∂xi∂xj
+

d
∑

i=1

a(xi)
∂f

∂xi
,

on the set E = {f ∈ L1(Rd)∩C2
b (R

d) : Gf ∈ L1(Rd)}, where C2
b (R

d) denotes
the set of all twice differentiable bounded functions whose derivatives of order
≤ 2 are continuous and bounded.

Note that the infinitesimal generator of Xt is defined to act on suitable func-
tions f : R

d → R

Gf(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
. (7)

If v ∈ C2
b (R

d) then equation (1) has in any time interval [0, T ] a unique classical
solution which satisfies the initial condition p(x, 0) = v(x), and this solution
and its spatial derivatives up to order 2 are uniformly bounded on [0, T ]×R

d

[17,32] .

From the Gauss-Ostrogradski theorem it follows that the integral
∫

p(x, t)dx
is constant. Let P (t) be a Markov semigroup, that is P (t)v(x) = p(x, t) for
v ∈ C2

c (R
d) and t ≥ 0, since the operator P (t) is a construction on L1(Rd).

We have P (t)
(

C2
c (R

d)
)

⊂ C2
b (R

d), t ≥ 0.

According to Proposition 1.3.3. in Griffiths, Spano [18] the closure of the op-
erator G generates the semigroup {P (t)}t≥0. The adjoint operator {P ∗(t)}t≥0

forms a semigroup on L∞(Rd) given by the formula

P ∗(t)g(x) =
∫

Rd
g(y)P (t,x, dȳ), g ∈ L∞(Rd), (8)

where P (t,x, A) is the transition probability function of the diffusion process
Xt, i.e.

P (t,x, A) = P{Xt ∈ A} =
∫

A
p(x, t)dx. (9)

In the case where Brownian motions B
(i)
t , i = 1, . . . , d, are independent or

the matrix D is diagonal, we take Xt = (X
(i)
t , i = 1, . . . , d), where X

(i)
t is

a one-dimensional independent diffusion. The infinitesimal generator and its
eigenvalue spectral problem reduces to the eigenvalue problems of generators
Gi of each one-dimensional diffusion X

(i)
t , t ≥ 0, i = 1, . . . , d.
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The corresponding eigenvalue problem for a generator of multidimensional
diffusions G = (G1, . . . , Gd) has a hypergeometric form

Gif
(i)
ni

+ λ(i)ni
f (i)
ni

= 0, i = 1, ..., d, (10)

for a multi-index n = (n1, . . . , nd) ∈ Z
d
+. The eigenfunctions have a product

form: fn = fn1 × ... × fnd
and eigenvalues λ(i)n = λ(i)n1

+ . . . + λ(i)nd
, where for

i = 1, . . . , d, λ
(i)
0 < λ

(i)
1 < · · ·λ(i)l , lim

l→∞
λ
(i)
l = ∞.

Note that in this case the ergodic measure is formed of product of components:
µ = µ1 × · · · × µd, and we denote m(x) its Radon-Nikodym derivatives.

Then, the spectral representation of the transition density of the multidimen-
sional diffusion with the linear drift and quadratic square diffusion takes the
following form in the case of a pure discrete spectrum:

p(x; x0, t) = m(x)
∑

n∈Zd
+

e−λntfn(x)fn(x0), (11)

where p(x;x0, t) =
∂
∂x
P (Xt ≤ x|X0 = x0). Thus, for example, in the Hermite

case fn(x) = Hn1(x1) × · · · × Hnd
(xd) is a product of corresponding one-

dimensional orthogonal polynomials. Similar expressions can be written down
for Laguerre and Jacobi polynomials. The situation for heavy-tailed multidi-
mensional diffusions is very complicated due to the difficulties related to the
continuous part of the spectrum.

Note, that in this case the classification of the boundary points is similar
to the one-dimensional case (see Meerschaert [27], Leonenko Phillips [24]).
Classical results for the Feller classification can be found in Ito and McKean
[19] and for the oscillatory/non-oscillatory and Weyl’s limit-point/limit-circle
classifications in Fulton et al. [15].

3 Numerical approximation of the Fokker-Planck equation

In this section we present a spectral approximation to the solution of the
d-dimensional FPE (1) by expressing p(x, t) in terms of a reduced basis ap-
proximation. Thus, we consider the FPE (1) for the conditional density, p(x, t),
of the variable Xt = x|Xt0 = x0 of the corresponding homogeneous Markov
process with the state space, Ω, that is, for any initial x0, t0, with the initial
condition

p(x, t)|t=t0 = δ(x− x0). (12)
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However, using the definition of the conditional probability one can see that
it is also valid for p(x, t) with the initial condition

p(x, t)|t=t0 = p(x, t0) (13)

which is less singular than (12). In other words, the numerical solution is not
sensitive to the choice of initial condition and therefore we can choose the
initial condition to be any integrable function in Ω.

The domain Ω ⊂ R
d is transformed into the computational domain [−1, 1]d

using the mapping

xi,new =
2xi
L

− 1, xi,new ∈ [−1, 1], i = 1, . . . , d.

To simplify notation we drop the ‘new’ subscripts for x.

The weak formulation of the equation (1), after the time derivative has been
approximated using the backward Euler scheme, is

∫

Ω
p∗
(

p(x, tn+1)− pn(x, tn)

∆t

)

dΩ +
d
∑

i=1

∫

Ω
p∗

∂

∂xi
[ai(x)p(x, t

n+1)] dΩ

−1

2

d
∑

i=1

d
∑

j=1

∫

Ω
p∗

∂2

∂xi∂xj

[

σij(x)p(x, t
n+1)

]

dΩ=0.(14)

for all test functions p∗ in some appropriate function space. In equation (14),
∆t is the time step and tn = n∆t.

The approximation to the solution of this problem is sought in the form

p(x, tn+1) =
J
∑

j=1

αn+1
j g

1,(n+1)
j (x1)× . . .× g

d,(n+1)
j (xd), (15)

where the basis functions corresponding to each of the d independent variables
x = (x1, . . . , xd), have the form

g
l,(n+1)
j (xl) =

N−1
∑

k=1

glj,khk(xl), l = 1, . . . , d,

and glj,k = glj(ξk) are coefficients which are determined in the enrichment stage.
In the case of an approximation of degree N , the interpolating polynomials
hk are defined by

hk(ξ) = − (1− ξ2)L′
N(x)

N(N + 1)LN(ξk)(ξ − ξk)
(16)
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where LN(x) is the Legendre polynomial of degree N and ξk, 0 ≤ k ≤ N are
the Gauss-Lobatto Legendre (GLL) nodes. The polynomials hk(ξ) satisfy the
Kronecker delta property hk(ξj) = δkj. The entries of the Legendre collocation

differentiation matrix, D̂N , are given explicitly by

(D̂N)j,k = h′k(ξj) =







































LN (ξj)

LN (ξk)
1

ξj−ξk
j 6= k

− (N+1)N
4

j = k = 0

(N+1)N
4

j = k = N

0 otherwise.

(17)

The corresponding test function is:

p∗(x, tn+1) =
J
∑

j=1

α
n∗,(n+1)
j g

1,(n+1)
j (x1)× · · · × g

d,(n+1)
j (xd). (18)

For simplicity we drop the superscript n+ 1 on αj and gj(x) for j = 1, . . . , J .

As a result of the separation of variables (15), the integral of p over configura-
tion space Ωx can be expressed as the product of d one-dimensional integrals

∫

Ωx

p(x) dx =
∞
∑

j=0

αj

(

d
∏

l=1

∫ 1

−1
glj(xl)dxl

)

.

To evaluate each of the one-dimensional integrals we use the Gauss quadrature
rule

1
∫

−1

f(ξ)dξ ≃
N
∑

j=0

f(ξj)w
N
j , (19)

where ξj, 0 ≤ j ≤ N , are the GLL nodes and the weights, wN
j , are defined by

wN
j =

2

N(N + 1)(LN(xj))2
. (20)

The procedure for determining the numerical approximation comprises two
stages. We iteratively construct basis functions glj(xl), l = 1, . . . , d with an
optimal rank J [23]. In the projection stage, the values of αj, j = 1, . . . , J,
are computed. This is followed by an enrichment of the basis by calculating
additional basis functions glJ+1(xl), l = 1, . . . , d, in the enrichment stage. This
method proceeds in an iterative manner until convergence is obtained. Con-
vergence is obtained once the absolute value of αJ falls below some prescribed
tolerance [23].
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3.1 Projection Stage

The purpose of the projection stage is to compute the coefficients αj, j =
1, . . . , J, in the reduced basis representation for pN in (15). In this stage, the
basis functions glj(xl), j = 1, . . . , J , l = 1, . . . , d, are known. Thus, inserting
the approximation (15) into the weak formulation of the problem (14) and
simplifying the result yields the linear system

Mα = v, (21)

where M is the diagonal matrix with entries

Mi,i = 1 +∆t

{

d
∑

k=1

(gk
i )

TAgk
i

}

(22)

and the entries of the vector v are given by

vi =
J
∑

j=1

αn
j

d
∏

k=1

(gk
i )

TBg
k,n
i (23)

The N ×N matrices A and B are defined by

Am,n =−wnan(x)(D̂N)n,m +
1

2

N
∑

l=1

σll(x)wl(D̂N)l,m(D̂N)l,n, (24)

Bm,n =wmδm,n, (25)

respectively.

The basis functions {gd
k} are constructed to be B-orthonormal i.e.

gd
iBgd

j = δi,j

where δ is the Kronecker delta. Therefore, the matrix M is a diagonal matrix.

3.2 Enrichment Stage

In this stage, the basis functions g1j (x1), . . . , g
d
j (xd) and coefficients αj, j =

1, . . . , J, are known. The basis is enriched by adding an additional basis func-
tion r1(x1) . . . r

d(xd). The approximation is then written in the form

p(x, tn+1) =
J
∑

j=1

αjg
1
j (x1) . . . g

d
j (xd) + r1(x1) . . . r

d(xd). (26)
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The corresponding test function in this stage has the following representation

p∗(x, tn) = r1∗(x1) . . . r
d(xd) + · · ·+ r1(x1) . . . r

d∗(xd). (27)

The structure of r1(x1), . . . , r
d(xd) is the same as for g1(x1), . . . , g

d(xd), re-
spectively. Inserting (26) and (27) into (14) yields the nonlinear problem

v1(r
1, r2, . . . , rd) + Z(r1, r2, . . . , rd)





















r1

r2

...

rd





















= v2(r
1, r2, . . . , rd). (28)

This system is of dimension N×d and must be solved using a suitable iterative
scheme. The simplest scheme which also turns out to be robust is the so-called
alternating direction, fixed-point algorithm. Each iteration consists of d steps
that are repeated until convergence is reached and the fixed point has been
found.

We present this algorithm in the case when d = 2. In this case the 2N × 2N
matrix Z can be partitioned as follows

Z(r1, r2) =







A(r2)TBr2 Br1(r2)TA

Br2(r1)TA A(r1)TBr1





 .

and the vectors v1 and v2 are defined by

v1(r
1, r2) =

J
∑

j=1

αj







Ag1
j (r

2)TBg2
j +Bg1

j (r
2)TAg2

j

(r1)TAg1
jBg2

j + (r1)TBg1
jAgj





 ,

v2(r
1, r2) =

J
∑

j=1

α
(n)
j







g1,nj (x1)w(g
2,n
j (x2))

Twg2,nj (x2)

g2,nj (x2)w(g
1,n
j (x1))

Twg1,nj (x1)





 .

To solve the system (28) we use the efficient non-linear solver which we describe
below, i.e.

Instead of solving a nonlinear system of dimension 2N , we solve the associated
pair of linear systems of dimension N using an alternating direction iteration
procedure. To describe this, let us rewrite the system (28) as







v1(r
2)

v1(r
1)





+







Z11(r
2) Z12(r

1, r2)

Z21(r
1, r2) Z22(r

1)













r1

r2





 =







v2(r
2)

v2(r
1)





 . (29)

Then the iterative scheme comprises the following two steps:

11



(1) Suppose that we have an approximation to r2, solve the linear system

Z11(r
2)r1 = v2(r

2)− v1(r
2)− Z12(r

1, r2)r2, (30)

and normalise the solution

r1new =
r1

√

(r1)TBr1

(2) With the new approximation to r1, solve the linear system

Z22(r
1)r2 = v2(r

1)− v1(r
1)− Z21(r

1, r2)r1, (31)

then normalise r2

r2new =
r2

√

(r2)TBr2
.

After the iterative process (30)-(31) has converged, the new basis functions
g1J+1(x1) and g2J+1(x2) are constructed from r1(x1) and r2(x2), respectively,
to obtain orthonormal bases through the Gram-Schmidt orthogonalization
process:

g1J+1(x1)= r1(x1)−
J
∑

j=1

((r1)TBg1
j )g

1(x1),

g2J+1(x2)= r2(x2)−
J
∑

j=1

(r2)TBg2
j )g

2
j (x2).

The extension for general d follows in a straightforward fashion and the pro-
cedure involves the solution of d linear systems each of dimension N and
therefore is a much cheaper alternative to the solution of the full nonlinear
system. The solution of this system yields the values of r1(x1), . . . , r

d(xd), at
the GLL points and hence the new basis function is determined. Furthermore,
the normality of the configuration pdf requires that one of the integrals should
vanish i.e.

∫ L

0
rk(xk) dxk = 0, for one of k = 1, . . . , d.

The solution is normalized so that

rknew =
rk

√

(rk)TBrk
, k = 1, . . . , d.

12



4 Pearson diffusions

4.1 Ornstein-Uhlenbeck process

This diffusion is transient OU process (also known in the financial literature
as the Vasiček model in one dimension). In the high-dimensional case the FPE
has the form:

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
(ai − bixi)p(x, t) +

1

2

d
∑

i=1

d
∑

i=1

∂2

∂x2i
σ2
iip(x, t), (32)

defined on (−∞,∞)n and ai ∈ R, bi > 0, σii ∈ R
+, where i = 1, . . . , d with

eigenvalues λn = λ
(1)
n1 + · · ·+ λ

(d)
nd = n1b1 + · · ·+ ndbd.

The ergodic distribution for each of the components is Gaussian:

X
(i)
t ∼ N

(

ai
bi
,
σii
2bi

)

.

The boundary conditions D1
i = −∞ and D2

i = +∞, i = 1, . . . , d are natural
boundaries for all choices of parameters.

The corresponding eigenfunctions in this case are Hermite polynomials (see
[9], for example). And the transition probability density has the expansion

p(x1; x0, t) =
d
∏

i=1

1
√

πσ2
ii

bi

exp

(

− bi
σ2
ii

(

xi −
ai
bi

)2
)

×

∞
∑

n1=0

· · ·
∞
∑

nd=0

e−(n1b1+···+ndbd)t

2n1+···+ndn1!× · · · × nd!

d
∏

i=1

Hn (yi,0)
d
∏

i=1

Hn (yi,1) ,

where

yi,j =

√

bi
σ2
ii

(

xi,j −
ai
bi

)

, i = 1, . . . , d, j = 0, 1.

Also we can write the transient solution in terms of the Gaussian distribution
as follows:

p(x;x0, t) =
d
∏

i=1

1
√

πσ2
ii

bi
(1− e−2bit)

exp





−
(

xi − ai
bi
− (xi,0 − ai

bi
)e−bit

)2

σ2
ii

bi
(1− e−2bit)





 . (33)

In high-dimensional cases it is useful to compare the results through the ex-
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pectation of the time-dependent solution:

E(t) =
∫

Rd

(

d
∑

i=1

)

xip(x, t) dx =
d
∑

i=1

(

ai
bi

+ (xi,0 −
ai
bi
)e−bit

)

. (34)

In Fig. 1 (a) we plot the numerical solution of the 2-D FPE (32) when it con-
verges to the steady-state solution, obtained using a spectral approximation
with N = 80. The model parameters were chosen to be a1 = 3, a2 = 6, b1 = 2,
b2 = 3 and σ2

11 = 1, σ2
22 = 0.5, x0 = 2.6. The boundary conditions are natu-

ral. Two basis functions are sufficient to represent the solution, α0 = 11.9902,
α1 = 4.956× 10−5. The exact solution to the problem is shown in Fig. 1 (b).
Excellent agreement is obtained confirming that the spectral approximation is
able to provide an accurate representation of solutions to this equation. Fig. 1
(c) presents a comparison between numerical and analytical first moment (see
(34)).

Figure 1. Ornstein-Uhlenbeck process with a1 = 3, a2 = 6, b1 = 2, b2 = 3 and
σ2
11 = 1, σ2

22 = 0.5, x0 = 2.6. Boundary conditions are natural. (a) Numerical
approximation obtained using reduced basis approach. (b) Analytical solution. (c)
Comparison between numerical and analytical expectations.

In Fig. 2 we plot the comparison of the expectation for the 3-D FPE (32) with
natural boundary conditions for the spectral approximation with N = 80 and
the analytical solution (34) with x0 = 2.5. The model parameters were chosen
to be a1 = 3, a2 = 6, a3 = 7, b1 = 2, b2 = 3, b2 = 4 and σ2

11 = 1, σ2
22 = 0.5,

σ2
22 = 0.7, x0 = 2.7. To obtain a solution at steady state only two basis function

are sufficient to represent the solution with α0 = 34.9308, α1 = 1.7333× 10−9.

14



Figure 2. Comparison between the numerical and analytical expectations for the
Ornstein-Uhlenbeck process in 3-D with a1 = 3, a2 = 6, a3 = 7, b1 = 2, b2 = 3,
b2 = 4 and σ2

11 = 1, σ2
22 = 0.5, σ2

22 = 0.7, x0 = 2.7.

4.2 The square root/CIR process

In financial mathematics this process is known as the CIR process (see Birge
and Linetsky [8]). The FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
(ai − bixi)p(x, t) +

1

2

d
∑

i=1

∂2

∂x2i
σ2
iixip(x, t) (35)

with domain D = [0,∞)d . Then for each component, the ergodic distribution
is Gamma:

mi (xi) =
θβi+1
i

Γ (i + 1)
xi
ie

−θixi , xi > 0,

with

βi =
2ai
σ2
ii

− 1, θi =
2bi
σ2
ii

.

The boundary conditions are: D2
i = +∞ is a natural boundary for all choices

of parameters and

D1
i =



























exit, βi ≤ −1

regular, −1 < βi < 0

entrance 0 ≤ βi,

(36)

where i = 1, . . . , d.

The corresponding eigenfunctions are Laguerre polynomials, L(α)
n (x) [9] and

λn = n1 + · · ·+ n2.
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The eigenvalue expansion for the transition probability density is given by

p(x;x0, t) =
d
∏

i=1

mi(xi)
∞
∑

n1=0

· · ·
∞
∑

nd=0

e−(n1b1+···+ndbd)tn1!× · · · × nd!

(β1 + 1)n1
× · · · × (βd + 1)nd

d
∏

i=1

L(βi)
ni

(θixi,0)
d
∏

i=1

L(βi)
ni

(θixi) ,

(37)

In this case also we can compare the analytical and numerical expectations of
the time-dependent solutions using formula (34).

In Fig. 3 (a) we plot the numerical solution of the 2-D FPE (35) when it con-
verges to the steady-state solution, obtained using a spectral approximation
with N = 80. The model parameters were chosen to be a1 = 0.2, a2 = 0.3,
b1 = 2, b2 = 0.7 and σ2

11 = 0.2, σ2
22 = 0.4, x0 = 2. The boundary conditions

are entrance. Two basis functions are sufficient to represent the solution at
steady state with α0 = 30.15153, α1 = 1.111×10−3. The exact solution to the
problem is shown in Fig. 3 (b) with the same parameters. Fig. 3 (c) presents
a comparison between the numerical and analytical first moments (see (34)).

Figure 3. CIR process with a1 = 0.2, a2 = 0.3, b1 = 2, b2 = 0.7 and σ2
11 = 0.2,

σ2
22 = 0.4, x0 = 2.6. Boundary conditions are entrance . (a) Numerical approxima-

tion obtained using reduced basis approach. (b) Analytical solution. (c) Comparison
between numerical and analytical expectations.

In Fig. 4 we plot the comparison between the expectations of the numerical so-
lution in the case of the 4-D FPE (35) obtained using a spectral approximation
with N = 80 and the analytical expression (34). The model parameters were
chosen to be a1 = 2, a2 = 3, a3 = 4, a4 = 4.5, b1 = 2, b2 = 4, b3 = 5, b4 = 2
and σ2

11 = 0.2, σ2
22 = 0.4, σ2

33 = 0.7, σ2
44 = 1, x0 = 1.95. At steady state only

two basis functions are sufficient to represent the solution with α0 = 96.7243,
α1 = 4.7043× 10−7.
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Figure 4. Comparison between the numerical and analytical expectations for CIR
process in 4-D with a1 = 2, a2 = 3, a3 = 4, a4 = 4.5, b1 = 2, b2 = 4, b3 = 5, b4 = 2
and σ2

11 = 0.2, σ2
22 = 0.4, σ2

33 = 0.7, σ2
44 = 1, x0 = 1.95.

4.3 The Jacobi diffusion

In financial mathematics, the Jacobi diffusion is used for modelling exchange
rates in target zones [8].

In this case, the FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
(ai − bixi)p(x, t) +

1

2

d
∑

i=1

∂2

∂x2i
σ2
iixi(Ai − xi)p(x, t) (38)

with domain D = [0, Ai]
d, i = 1, . . . , d. The invariant density function for each

component has the form

mi (xi) =
xβi

i (Ai − xi)
γi

Aγi+βi+1
i B(γi+1,βi+1)

, xi ∈ [0, Ai] ,

where B(αi,βi) is the beta distribution

B(γ,iβi) =
Γ(γi)Γ(βi)

Γ(γi + βi)
, (39)

and

γi =
2bi
σ2
ii

− 2ai
σ2
iiAi

− 1, βi =
2ai
σ2
iiAi

− 1, γi > −1, βi > −1, i = 1, . . . , d.

The boundary behaviour for the Jacobi process is the same as for CIR process
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at the left boundary

D1
i =



























exit, βi ≤ −1

regular, −1 < βi < 0

entrance, 0 ≤ βi.

(40)

The corresponding eigenfunctions are Jacobi polynomials and the discrete
spectrum of the generator is

λn = λ
(1)
n1 + · · ·+ λ

(d)
nd ; λ

(i)
ni =

σ2
ii

2
ni

(

ni − 1 +
2bi
σ2
ii

)

.

The eigenvalue expansion of the transition probability density can written as

p(x̄1; x̄0, t) =
d
∏

i=1

mi(xi)
∞
∑

n1=0

· · ·
∞
∑

nd=0

e−(λ
(1)
n1+···+λ

(d)
nd

)t

p2ni

d
∏

i=1

P (γi,βi)
n (yi,0)

d
∏

i=1

P (γi,βi)
n (yi,1) ,

(41)
where

p2ni
=

(γi + 1)ni
(βi + 1)ni

(γi + βi + 2)ni−1 (2ni + γi + βi + 1)ni!
, i = 1, . . . , d,

yi,j =
(

2xi,j
Ai

− 1
)

, j = 0, 1 and (m)n =
Γ(m+ 1)

Γ(m− n+ 1)
.

Numerical results can be obtained in the same way as for the O-U and CIR
processes.

4.4 Fisher-Snedecor diffusion

The corresponding FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi

[

−θi(xi −
βi

βi − 2
)

]

p(x, t)+
1

2

d
∑

i=1

∂2

∂x2i

[

4θi
γi(βi − 2)

xi(γixi + βi)

]

p(x, t).

(42)
where γi > 0, and βi > 2 and i = 1, . . . , d.

The invariant distribution for each component is Fisher-Snedecor FS(γi, βi):

mi(xi) =
γ
γi/2
i β

βi/2
i

B(γi
2
, βi

2
)

x
γi
2
−1

i

(γixi + βi)
γi
2
+

βi
2

, xi > 0, i = 1, . . . , d, (43)
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and B(γi, βi) is the beta function, while γi and βi are some shape parameters.

The restriction βi > 2 on the value of the parameter βi ensures the existence
of the mean of the invariant distribution. Therefore, the quadratic polynomial
d(xi) = xi(γixi + βi) with the positive first coefficient (bi,2 > 0) and positive
discriminant ∆(di) > 0 characterizes Fisher-Snedecor diffusion in the class of
Pearson diffusions.

In this case, the negative infinitesimal generator (−G) has a finite set of simple
eigenvalues:

λn = λ
(1)
n1 + · · ·+λ(d)nd ; λ

(i)
ni

=
θi

βi − 2
ni(βi−2ni), 0 ≤ ni ≤

[

βi
4

]

, βi > 2. (44)

in [0,Λi]
d, and continuous part of the spectrum with cut off

Λi =
θiβ

2
i

8(βi − 2)
. (45)

The solution then can be written as

p(x; x0, t) =
d
∏

i=1

mi(xi)











[β14 ]
∑

n1=0

· · ·

[

βd
4

]

∑

nd=0

e−(λ
(1)
n1+···+λ

(d)
nd

)t
d
∏

i=1

Qni
(xi,0)

d
∏

i=1

Qni
(xi)

+
∫ ∞

Λ1

· · ·
∫ ∞

Λd

e−(λ(1)+···+λ(d))t
d
∏

i=1

ψi(xi,0,−λi)
d
∏

i=1

ψi(xi,−λi)dλ1 . . . dλd
]

, (46)

where Qni
, i = 1, ..., d, is a finite system of orthogonal polynomials [26] with

respect to (43) and ψi are some special functions related to the hypergeomet-
ric functions 2F1 and have a complicated form (see Meerschaert [27]). Thus,
numerical methods seem inescapable.

We present some results in high-dimensions using the expectation. In Fig. 5 (a)
we plot the numerical solution of the 2-D FPE (42) when it converges to the
steady-state solution, obtained using a spectral approximation with N = 80.
The model parameters were chosen to be γ1 = 1.8, γ2 = 5, β1 = 10, β2 = 7
and θ21 = 0.5, θ22 = 0.2. For the first dimension the boundary is natural and for
the second dimension it is regular. Two basis functions represent the solution
at the steady-state, α0 = 3.818013, α1 = 4.05 × 10−3. The exact solution to
the problem is shown in Fig. 5 (b) with the same parameters.

Fig. 6 shows the transient expectation calculated for the numerical solution of
the 4-D FPE (42). The following parameters are used here: γ1 = 1.8, γ2 = 5,
γ3 = 3, γ4 = 4, β1 = 10, β2 = 7, β3 = 15, β4 = 20 and θ21 = 0.5, θ22 = 0.2,
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Figure 5. Fisher-Snedecor process at steady-state in 2-D with α1 = 1.8, α2 = 5,
β1 = 10, β2 = 7 and θ21 = 0.5, θ22 = 0.2. (a) Numerical approximation obtained
using reduced basis approach. (b) Analytical solution.

θ23 = 1, θ24 = 0.7 and only two basis function are sufficient to represent the
solution with α0 = 8.88770, α1 = 9.5× 10−6.

Figure 6. Transient expectations for the Fisher-Snedecor process in 4-D with
γ1 = 1.8, γ2 = 5, γ3 = 3, γ4 = 4, β1 = 10, β2 = 7, β3 = 15, β4 = 20 and
θ21 = 0.5, θ22 = 0.2, θ23 = 1, θ24 = 0.7

4.5 Reciprocal gamma diffusion

The corresponding FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi

[

−θi(xi −
γi

βi − 1
)

]

p(x, t)+
1

2

d
∑

i=1

∂2

∂x2i

[

2θi
(βi − 1)

x2,i

]

p(x, t),

(47)
where γi > 0 and βi > 1 and i = 1, . . . , d. The restriction βi > 1 ensures
the existence of the mean of the invariant distribution. In the one-dimensional
case the equation in this form was first introduced by Shiryayev [36]. Peškir
[34] and Øksendal [32] observed that SDEs of this type are one of the most
popular short term interest rate models known as the Dothan model [10].

The invariant distribution of this diffusion for each component is reciprocal
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gamma with the probability density function

mi(xi) =
γβi

i

Γ(βi)
x−βi−1
i e

−
γi
xi , xi > 0, i = 1, . . . , d (48)

where γi > 0 and βi > 0 are shape parameters. Moreover, the tail of the
reciprocal gamma distribution with density (48) decreases like x

−(1+βi)
i and

this distribution is heavy-tailed.

Therefore, the quadratic polynomial d(x) = x2 with positive coefficient (b2 >
0) and zero discriminant ∆(d) = 0 characterizes the reciprocal gamma diffu-
sion in the class of Pearson diffusion.

In this case, the negative infinitesimal generator (−G) has a finite set of simple
eigenvalues

λn = λ
(1)
n1 + · · ·+ λ

(d)
nd ; λ

(i)
ni

= θini

(

βi
βi − 1

− ni

βi − 1

)

, 0 ≤ ni ≤
[

βi
2

]

, βi > 1,

(49)
in [0,Λi]

d, where

Λi =
θiβ

2
i

4(βi − 1)
, i = 1, . . . , d. (50)

The solution can be represented in the form (46), where the corresponding
polynomials that are orthogonal with respect to the density are the Bessel
polynomials (see [25,26]). The boundary classification for this case has been
described by Leonenko and Phillips [24]. For the derivation of the cutoff (50)
see Meerschaert [27].

In Fig. 7 (a) we plot the numerical solution of the 2-D FPE (47) when it con-
verges to the steady-state solution, obtained using a spectral approximation
with N = 80. The model parameters were chosen to be γ1 = 2, γ2 = 2, β1 = 5,
β2 = 5 and θ21 = 1, θ22 = 1. Two basis functions represent the steady-state
solution, α0 = 6.7450, α1 = 3.8 × 10−4. The exact solution to the problem is
shown in Fig.7 (b) with the same parameters.

Fig. 8 shows the transient expectation calculated for the numerical solution
of the 3-D FPE (47). The following parameters are used here: γ1 = 2, γ2 = 2,
γ3 = 3, β1 = 3, β2 = 5, β3 = 6, θ21 = 1, θ22 = 1, θ23 = 1.2, and two basis functions
are sufficient to represent the steady-state solution with α0 = 10.88397, α1 =
1.94× 10−3.
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Figure 7. Reciprocal gamma process at steady-state in 2-D with γ1 = 2, γ2 = 2,
β1 = 5, β2 = 5 and θ21 = 1, θ22 = 1. (a) Numerical approximation obtained using
reduced basis approach. (b) Analytical solution.

Figure 8. Transient expectations for reciprocal gamma process in 3-D with γ1 = 2,
γ2 = 2, γ3 = 3, β1 = 3, β2 = 5, β3 = 6, and θ21 = 1, θ22 = 1, θ23 = 1.2.

4.6 Student diffusion

4.6.1 Symmetric version

The corresponding FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
[−θi(xi − µi)] p(x, t)+

1

2

d
∑

i=1

∂2

∂x2i

[

2θiδ
2
i

(νi − 1)

(

1 +
(

xi − µi

δi

)2
)]

p(x, t),

(51)
where νi > 1, δi > 0, and µi ∈ R and i = 1, . . . , d. Student diffusion was first
studied by Wong, [38] in one dimension. This diffusion can also be observed as
special case of the so-called hypergeometric diffusion introduced by Linetsky
[25].

The invariant distribution of this diffusion is Student distribution for each
component with the parameter νi > 1 representing the degrees of freedom
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with the probability density function

mi(xi) =
Γ(νi+1

2
)

δi
√
πΓ(νi

2
)

(

1 +
(

xi − µi

δi

)2
)−

νi+1

2

, xi ∈ R, i = 1, . . . , d (52)

where δi > 0 is a scale parameter and µi ∈ R is a location parameter.

Moreover, the left and right tails of the Student distribution with density (52)
decrease like |xi|−(1+νi), and this distribution is heavy-tailed.

The quadratic polynomial in the one-dimensional case is d(x) = 1+((x−µ)/δ)2
with positive first coefficient b2 > 0 and negative discriminant (∆(d) < 0)
characterizes the Student diffusion in the class of Pearson diffusions.

In this case, the negative infinitesimal generator (−G) has a finite set of simple
eigenvalues

λn = λ
(1)
n1 + · · ·+ λ

(d)
nd ; λ

(i)
ni

=
θi

νi − 1
ni(νi − ni), 0 ≤ ni ≤

[

νi
2

]

, νi > 1 (53)

in [0,Λi]
d, and where

Λi =
θiν

2
i

4(νi − 1)
, νi > 1, i = 1, . . . , d. (54)

The solution can be represented in the form (52), where the corresponding
polynomials orthogonal with respect to the density are Romanovski polyno-
mials [25,27]. The boundary classification has been described in Leonenko and
Phillips [24].

In Fig. 9 (a) we plot the numerical solution of the 2-D FPE (51) when it con-
verges to the steady-state solution, obtained using a spectral approximation
with N = 80. The model parameters were chosen to be µ1 = 5, µ2 = 2, δ1 = 1,
δ2 = 2 and θ21 = 1, θ22 = 1.5, ν1 = 9, ν2 = 15. Two basis functions are sufficient
to represent the steady-state solution with α0 = 9.57888, α1 = 2.55×10−6. The
exact solution to the problem is shown in Fig. 9 (b) with the same parameters.
Transient expectation is shown in Fig. 9 (c) with the same parameters.

In Fig. 10 we plot the expectation of the numerical solution of the 3-D FPE
(51) with N = 80. The model parameters were chosen to be µ1 = 5, µ2 = 2,
µ3 = 4,δ1 = 1, δ2 = 2, δ3 = 1 and θ21 = 1, θ22 = 1.5, θ23 = 1, ν1 = 9,
ν2 = 15, ν3 = 16. Two basis functions represent the steady-state solution with
α0 = 2.7− 5, α1 = 4.9765− 14.
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Figure 9. Student process at steady-state in 2-D with µ1 = 5, µ2 = 2, δ1 = 1, δ2 = 2
and θ21 = 1, θ22 = 1.5, ν1 = 9, ν2 = 15. (a) Numerical approximation obtained using
reduced basis approach. (b) Analytical solution. (c) Transient expectation.

Figure 10. Transient expectation for Student process in 3-D with µ1 = 5, µ2 = 2,
µ3 = 4,δ1 = 1, δ2 = 2, δ3 = 1 and θ21 = 1, θ22 = 1.5, θ23 = 1, ν1 = 9, ν2 = 15, ν3 = 16.

4.6.2 Skew-Student diffusion

Let us consider a more general version of the Student diffusion from our clas-
sification table. The corresponding FPE is

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
[−θi(xi − µi)] p(x, t)+

1

2

d
∑

i=1

∂2

∂x2i

[

2θiai
(

δ2i (xi − µ′
i)
2
)]

p(x, t).

(55)

where µi, µ
′
i ∈ R and i = 1, . . . , d.
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The ergodic distribution for each of the component has the form

mi(xi) = c(µi, µ
′
i, ai, δi)

exp
(

µi−µ′

i

aiδi
· arctg

(

xi−µ′

i

δi

))

[

1 +
(

xi−µ′

i

δi

)2
]

1
2ai

+1
, (56)

for xi ∈ R, µi, µ
′
i ∈ R, ai > 0, θi > 0, δi > 0, where

c(µi, µ
′
i, ai, δi) =

Γ
(

1 + 1
2ai

)

δi
√
πΓ

(

1
2
+ 1

2ai

)

∞
∏

k=0





1 +





µi−µ′

i

2aiδi

νi +
1
2ai

+ k





2






−1

.

Note that in the symmetric case µi = µ′
i and νi+1

2
= 1

2ai
+1, i = 1, . . . , d. Thus,

the ergodic distribution exists for ai > 0. The boundaries are described similar
to Student diffusion with the only difference is being that the Romanovski
polynomials will depend on skewness.

The eigenvalues are represented below, see [25,27]:

λn = λ
(1)
n1 + · · ·+ λ

(d)
nd ; λ

(i)
ni

= θini [1− ai(ni − 1)] , 0 ≤ ni ≤
[

1 + ai
2ai

]

.

In Fig. 11 (a) we plot the numerical solution of the 2-D FPE (55) when it
converges to the steady-state solution, obtained using a spectral approxima-
tion with N = 80. The model parameters were chosen to be µ1 = 4, µ2 = 8,
µ′
1 = 9, µ′

2 = 14 , δ1 = 0.5, δ2 = 1 and θ1 = 4, θ2 = 2, a1 = 5, a2 = 2.
Two basis functions represent the steady-state solution with α0 = 1.7× 10−3,
α1 = 1.3737522× 10−16. The exact solution to the problem is shown in Fig.11
(b) with the same parameters. In Fig. 11 (c) the transient expectation is pre-
sented for the same parameters.

5 Discussion

In this paper six classes of high-dimensional Pearson diffusions have been con-
sidered. Numerical results have been presented that demonstrate the main
features of the method when solving the FPE for each class. Previous investi-
gations have been carried out on the multi-dimensional O-U, CIR, Jacobi pro-
cesses, but none have been considered for the other three cases for heavy-tailed
processes. One can see here the full potential of the reduced basis approach.
This method is based on a separated representation of the distribution function
and the use of an iterative scheme in which the basis is progressively enriched
until the residual drops below a prescribed tolerance. Spectral discretisation
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Figure 11. Non-symmetric Student process at the steady-state in 2-D with µ1 = 4,
µ2 = 8, µ′

1 = 9, µ′
2 = 14 , δ1 = 0.5, δ2 = 1 and θ1 = 4, θ2 = 2, a1 = 5, a2 = 2. (a)

Numerical approximation obtained using the reduced basis approach. (b) Analytical
solution. (c) Transient expectation.

of the basis functions is utilized and applied here for the multi-dimensional
case. The number of degrees of freedom required for the solution was signifi-
cantly reduced and as can be seen from the numerical examples presented in
Section 5, two basis functions are sufficient to represent the solution. Please
note, when using the scheme special attention should be paid to the domain in
which FPE is solved (the distribution for each dimension should be one over
the interval) and the boundary conditions.

In general, the solution of time-dependent multi-dimensional FPEs is a chal-
lenging problem. However, for a diagonal matrix in diffusion term (the Brown-
ian motions of the multidimensional diffusions are independent) we can obtain
reasonable results. In future we plan to consider multi-dimensional Pearson
diffusions in the case when the full matrix in the diffusion term is present.
This area of research is quite challenging and novel.
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