Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Facilitating the development of controlled vocabularies for metabolomics technologies with text mining

Spasic, Irena, Schober, Daniel, Sansone, Susanna-Assunta, Rebholz-Schuhmann, Dietrich, Kell, Douglas B. and Paton, Norman W. 2008. Facilitating the development of controlled vocabularies for metabolomics technologies with text mining. BMC bioinformatics 9 (Supp 5) 10.1186/1471-2105-9-S5-S5

[img]
Preview
PDF
Download (1MB) | Preview

Abstract

BACKGROUND: Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. RESULTS: We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography) whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections) are the major source of technology-specific terms as opposed to paper abstracts. CONCLUSIONS: We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.

Item Type: Article
Status: Published
Schools: Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Uncontrolled Keywords: Mcisb; Spasic
Publisher: Biomed Central
ISSN: 1471-2105
Last Modified: 04 Jun 2017 01:56
URI: http://orca-mwe.cf.ac.uk/id/eprint/6213

Citation Data

Cited 27 times in Google Scholar. View in Google Scholar

Cited 20 times in Scopus. View in Scopus. Powered By Scopus® Data

Cited 13 times in Web of Science. View in Web of Science.

Actions (repository staff only)

Edit Item Edit Item

Full Text Downloads from ORCA for this publication

Top Downloads of this item by Country

Monthly Full Text Downloads of this item

More statistics for this item...