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Human cytomegalovirus suppresses Fas
expression and function
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Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by
downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1
(TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling
events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-
infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell
surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards
through the late phase of productive infection, and was dependent on de novo virus-encoded
gene expression but not virus DNA replication. Significant levels of the fully glycosylated
(endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the
infection within intracellular membranous structures. HCMV infection provided cells with a high
level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with
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HCMYV strains AD169, FIX, Merlin and TB40.

Human cytomegalovirus (HCMYV), the prototype member
of the subfamily Betaherpesviridae, is ubiquitous in human
populations worldwide. HCMV establishes a lifelong per-
sistent infection that is normally controlled by continuous
host immune surveillance. Although the vast majority of
infections in the immunocompetent host appear to be
benign, HCMV is a major cause of severe morbidity and
mortality following congenital transmission, and in immuno-
compromised individuals. Studies using murine and rhesus
cytomegaloviruses have shown that efficient infection,
superinfection and long-term persistence in vivo are
dependent on effective viral immune-evasion functions
(Babi¢ et al., 2011; Friuh et al, 2013; Vidal et al., 2013).
HCMV also possesses an impressive array of immuno-
modulatory functions that are instrumental in avoiding T
cells, natural killer (NK) cells, the interferon response and
apoptosis.

HCMV UL36 (vICA) and MCMV m36 are positional
homologues (no overt amino acid sequence homology)
that suppress death receptor (DR)-mediated apoptosis by
inhibiting caspase-8 activation and promoting virulence in
vivo, respectively (Ebermann et al., 2012; Skaletskaya et al.,
2001). In HCMV, cellular DRs are also targeted directly
during infection. The laboratory strain AD169 down-
regulates TNFR1 from the cell surface (Baillie et al., 2003)
more efficiently than low-passage strains (Montag et al.,
2006). This inconsistency was explained when UL138 was
found to stimulate surface expression of TNFRI; strain
AD169 has suffered a deletion of the 15 kb region UL/D’,
which encompasses UL138 (Le et al, 2011; Montag et al.,

2011). HCMV thus appears to encode functions capable of
acting post-transcriptionally to suppress and ‘potentiate’
TNFR1 expression. We recently demonstrated that HCMV
also regulates expression of a second DR: TNF-related
apoptosis-inducing ligand (TRAIL) receptor (Smith et al.,
2013). Although HCMYV infection stimulates expression of
TRAIL receptor 2 (TR2) in fibroblasts, gpUL141 binds TR2
directly to sequester the DR in the endoplasmic reticulum,
thereby protecting HCMV-infected cells against both
soluble TRAIL and TRAIL-dependent NK cell-mediated
killing (Nemcovicova et al., 2013; Smith et al., 2013).

Fas is another member of the tumour necrosis factor re-
ceptor superfamily (TNFRSF), recognized as playing a
major role in controlling viral infections (Itoh et al., 1991;
Trauth et al., 1989; Yonehara et al, 1989). While Fas is
expressed on most cell types, its cognate ligand (FasL) is
restricted to activated T, NK and dendritic cells (Nagata,
1999; Nagata & Golstein, 1995). The upregulation of FasL
and TRAIL on HCMV-infected dendritic cells promotes
direct killing of activated T lymphocytes, an action that
may preferentially delete HCMV-specific T cells (Raftery et
al., 2001). Moreover, the activation of FasL on HCMV-
infected retinal pigment epithelial cells may subvert
neutrophil function in HCMV retinitis (Chiou et al.,
2001; Cinatl et al., 2000). Although HCMV may exploit
FasL to dampen immune responses, FasL has the potential
to kill HCMV-infected cells. FasL acts by inducing a
conformational change in Fas, leading to recruitment of
FADD and procaspase-8, and assembly of the death-
inducing signalling complex (DISC) (Kischkel et al., 1995;
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Fig. 1. Modulation of Fas cell surface expression in cells infected with HCMV. (a) HFFF-hTERTs were infected with HCMV
strain Merlin (m.o.i. 10) or mock-infected, and analysed at indicated time points by flow cytometry for cell surface Fas expression
[mAb142 (R&D Systems), n>3). (b) HFFFs were infected with HCMV strain Merlin (m.o.i. 10, 72 h) in the presence (i) or
absence (ii) of 100 uM ganciclovir and analysed by flow cytometry for cell surface Fas expression (n=3). (¢) HFFF-hTERTs
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were incubated with supernatants (sn) of strain Merlin-infected cells (m.o.i. 10, 72 h p.i.) from which virions had been removed
using a 0.1 pm filter, or were infected with HCMV strain Merlin (m.o.i. 10, 72 h) or an equivalent y-irradiated preparation (2500
Gy) and analysed by flow cytometry for cell surface Fas expression (n=3). (d) HFFF-hTERTs were infected with HCMV strains
Merlin, AD169, FIX or TB40 (m.o.i. 10, 72 h) and analysed by flow cytometry for cell surface Fas expression (n > 3). Control IgG
staining is denoted by black and grey lines for mock-infected and HCMV-infected cells, respectively.

Scott et al., 2009). Caspase-8 released from DISC induces
cleavage of downstream substrates including effector
caspases 3 and 7, resulting in proteolysis of critical cellular
components and culminating in apoptosis (Barnhart et al.,
2003; Salvesen & Dixit, 1997). While UL36 inhibits
caspase-8, the fate of Fas during HCMV infection is
unclear (Chaudhuri et al, 1999).

Human foetal foreskin fibroblasts (HFFE-hTERTs) (McSharry
et al., 2001) were therefore infected with HCMV strain
Merlin and cell surface expression of Fas tracked over the
course of infection. Fas was unaffected by HCMV infection
until 24 h p.i.; the cell surface downregulation detected at
this time point persisted through the late phase of infection
(48 and 72 h) (Fig. la). Consistent with Fas downregulation
occurring with early kinetics, cells treated with the viral
DNA replication inhibitor ganciclovir showed comparable
levels of Fas downregulation, demonstrating that viral DNA
replication is not required for this function (72 h p.i., Fig.
1b). Latent carriage of HCMV has been shown to protect
CD34" progenitor cells from FasL-mediated apoptosis
through increased cIL10 secretion (Poole et al, 2011).
However, transfer of supernatants from Merlin-infected
cells did not result in substantial downregulation of Fas at
the cell surface, indicating that this function is not carried
out by a soluble factor (Fig. 1c¢). In addition, virus
inactivated by y-irradiation did not modulate Fas expres-
sion, thus suggesting the function is attributable to a de novo

expressed virus-encoded function rather than input virions
(Fig. 1c). MHC class-I was included as an infection control;
downregulation of classical MHC class-I expression is
achieved by four HCMV genes (US2, US3, US6, US11) that
are expressed with immediate early and early kinetics (Ahn
et al., 1996; Hengel et al., 1996; Hesse et al., 2013; Lehner &
Cresswell, 1996; Park et al., 2002). Downregulation of Fas
and MHC class-1 exhibit similar kinetics (Fig. 1).

Since HCMV exhibits an exceptionally high level of inter-
strain sequence variation (Dolan et al., 2004), we were
interested in determining whether Fas regulation is a
conserved function. The level of Fas downregulation was
similar in cells infected with HCMYV strains Merlin, AD169,
FIX and TB40 (Fig. 1d). Comparable results were also
obtained using HFFF cells and primary dermal fibroblasts
(data not shown). Variation in the efficiency of MHC class-
I downregulation is attributable to the fact that strains FIX
(AUS2, AUS3 and AUS6) and TB40 (AUS3 and AUS6) are
derived from BAC clones, and were deleted in the US
segment to facilitate genome manipulation (Murphy et al.,
2003; Sinzger et al., 2008).

The sensitivity of HCMV-infected cells to Fas-mediated
apoptosis was ascertained by measuring the activation of
effector caspases 3 and 7. Cells were infected with HCMV
strains Merlin or AD169 or mock-infected and treated with
FasL or a cross-linking Fas mAb, soluble TR2 or an IgM
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Fig. 2. HCMV infection renders cells less sensitive to Fas-mediated apoptosis. HFFFs were infected with strain Merlin or
AD169 (m.o.i. 10), or mock-infected. At 4 (a) or 60 (b) h p.i., cells were treated with cycloheximide (Sigma) at 10 pg ml™
concentration and FasL (IBA-Lifesciences), Fas mAb (Beckman-Coulter), sTRAIL-R2 (control for Fas ligand) or IgM isotype
control at 500 ng mlI™". Apoptosis was then measured at the indicated time points as caspase 3/7 activation using the
Caspase-Glo 3/7 kit (Promega,). Results are presented as mean relative light units (RLU) + S (n=4). P-values were calculated

using a one-way ANOVA test and a Bonferroni post test.
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Fig. 3. Analysis of Fas expression in HCMV-infected cells. (a) HFFF cells were infected with strain Merlin (m.o.i. 10) or mock-
infected, and Fas mRNA levels were analysed at indicated times by qRT-PCR: total cell RNA was extracted (Qiagen) followed
by RT-PCR using random hexamer primers (Amersham Biosciences). Resulting cDNA was analysed by qPCR using primers
specific to Fas or GAPDH and SYBR green dye (applied Biosciences). Relative quantity (RQ) values were calculated by the
comparative Ct method. Fas RQ values are shown normalized to GAPDH and relative to the ‘24 h p.i". mock sample (= SE,
n=3). P-values were calculated using a one-way ANOVA test and a Bonferroni post test. (b) HFFF-hTERT cells were infected
with strains Merlin, AD169, FIX or TB40 (m.o.i. 10, 72 h), or mock-infected. Total cell lysates were analysed by Western
blot (ERP5700, Abcam, n>3). (c) Cell lysates equivalent to (b) were treated with EndoH (New England Biolabs) or PNGaseF
(New England Biolabs) and analysed by Western blot (n>3). (d) HFFF-hTERT cells were infected with strains Merlin or AD169
(m.o.i. 10, 72 h), or mock-infected, and Fas expression was visualized by immunofluorescence [mAb142 (R&D Systems), n >3,
shown in red in top panels]. In the lower panels, outlines of cells were visualized with phalloidin-AF488 (phall; Invitrogen) and

overlaid with Fas staining. Scale bars, 10 pm.

control antibody. Caspase 3/7 activity was then measured
at 16 and 72 h p.i. by its capacity to cleave a luminogenic
substrate in the presence of a recombinant luciferase (Fig.
2). At 16 h p.., prior to Fas downregulation at the cell
surface, there was no significant difference in caspase 3/7
activity between mock-infected and HCMV-infected cells
in any of the treatment groups (Fig. 2a). However, at 72 h
p.i., cells infected with strains Merlin or AD169 became less
sensitive to Fas signalling induced by either FasL or Fas
mAbD (Fig. 2b). In addition, there was no significant differ-
ence in the level of protection imparted to cells by strains
Merlin and AD169. This is interesting, since the AD169
variant that was used in this experiment carries a single
amino acid substitution in the UL36 gene that abolishes the
anti-apoptotic function of vICA (Skaletskaya et al., 2001).
HCMV infection therefore renders cells less sensitive to
Fas-mediated apoptosis. This function correlates with Fas
downregulation from the surface of infected cells, and can
occur independently of VICA function.

Fas mRNA levels, as assessed by quantitative reverse trans-
criptase PCR (qRT-PCR), were not significantly affected
by HCMV infection at 24, 48 or 72 h p.i. (Fig. 3a). Never-
theless, levels of Fas in total cell lysates appeared
moderately reduced following infection with HCMV
strains Merlin, AD169, Fix or TB40 (Fig. 3b). HCMV is
known to suppress the cell surface expression of specific
proteins (e.g. CD112, CD155, MHC-I, MICB, TR2, ULBP2),
often by sequestering them within the cell (Cosman et al.,
2001; Jones et al, 1996; Nemcovicova et al, 2013;
Prod’homme et al., 2010; Smith et al., 2013; Tomasec et al.,
2005). N-linked glycoproteins acquire resistance to endogly-
cosidase-H (EndoH) during maturation in the Golgi
apparatus. Fas was clearly heavily glycosylated, as evidenced
by its sensitivity to peptide N-glycosidase-F (PNGaseF),
and was resistant to EndoH treatment + HCMYV infection
(Fig. 3c). Consequently, HCMV does not appear to
retain newly synthesized Fas in pre-Golgi compartments.
Immunofluorescence showed Fas to illuminate the surface
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of uninfected fibroblasts, in addition to a diffuse cytoplas-
mic staining pattern (Fig. 3d). In cells infected with HCMV,
Fas appeared largely excluded from the plasma membrane;
rather, the protein localized to extended membranous
perinuclear structures (Fig. 3d).

Fas joins an impressive list of immunomodulatory proteins
that HCMV downregulates from the cell surface by post-
translational regulation; others include MHC class-1, MICA,
MICB, ULBP2, CD155, CDI112, TR1, TR2 and TNFR1
(Baillie et al, 2003; Dunn et al., 2003; Nemcovicova et al.,
2013; Prod’homme et al., 2010; Smith et al., 2013; Stern-
Ginossar et al., 2007; Tomasec et al., 2005). While MHC
class-I, CD112 and MICA (C. Fielding, unpublished) are
targeted for efficient proteolytic degradation, CD155,
TNFR1, TR2 and Fas are maintained at significant levels
within infected cells.

HCMYV infection induces resistance to Fas-mediated apo-
ptosis, yet the extent to which this can be attributed to
cell surface suppression of Fas will ultimately require the
identification of the HCMV gene(s) responsible. Despite
systematic screening of an expression library encoding the
canonical HCMV genes, the function responsible has yet
to be mapped (Seirafian, 2013). In this context, multiple
HCMV genes can be expected to impact Fas signalling.
The UL36 and UL37 gene products efficiently inhibit
Fas-mediated apoptosis by inhibiting caspase-8 activation
and cytochrome c release, respectively (Arnoult et al., 2004;
Goldmacher et al., 1999; Skaletskaya et al., 2001). More-
over, IE2 is known to upregulate c-FLIP, a protease-
deficient procaspase-8 homologue (Chiou et al, 2006),
whilst the tegument protein UL45 suppresses Fas-mediated
killing in the context of HCMV infection by an unchara-
cterized mechanism (Patrone et al., 2003). These functions
operate at or downstream of the DISC, and are thus likely
to impact on both TRAIL and Fas-mediated signalling to
similar degrees. In addition, since UL141 downregulation
of TR2 had a marked impact on TRAIL-mediated cell
death (Smith et al, 2013), it is likely that HCMV
downregulation of Fas is also an important component
of HCMV immune evasion.

Autoimmune lymphoproliferative syndrome (ALPS) is
a rare disorder characterized by abnormal lymphocyte
survival resulting from a defect in Fas function. A study
of two brothers with ALPS experiencing HCMV disease
following neonatal exposure documented the development
of disseminated infections that were eventually controlled
(Arkwright et al., 2000). That Fas-mediated apoptosis is
not critical for the control of HCMV disease is consistent
with the virus having evolved effective countermeasures to
evade Fas-mediated killing. The immune-evasion functions
of HCMYV are a realistic target for therapeutic intervention.
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