Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Formation and evolution of interstellar filaments: hints from velocity dispersion measurements

Arzoumanian, D., Andre, Ph., Peretto, Nicolas and Könyves, V. 2013. Formation and evolution of interstellar filaments: hints from velocity dispersion measurements. Astronomy and Astrophysics 553 , A119. 10.1051/0004-6361/201220822

[img]
Preview
PDF - Published Version
Download (4MB) | Preview

Abstract

We investigate the gas velocity dispersions of a sample of filaments recently detected as part of the Herschel Gould Belt Survey in the IC 5146, Aquila, and Polaris interstellar clouds. To measure these velocity dispersions, we use 13CO, C18O, and N2H+ line observations obtained with the IRAM 30 m telescope. Correlating our velocity dispersion measurements with the filament column densities derived from Herschel data, we show that interstellar filaments can be divided into two regimes: thermally subcritical filaments, which have transonic velocity dispersions (cs ≲ σtot < 2   cs) independent of column density and are gravitationally unbound; and thermally supercritical filaments, which have higher velocity dispersions scaling roughly as the square root of column density (σtot ∝ Σ00.5) and which are self-gravitating. The higher velocity dispersions of supercritical filaments may not directly arise from supersonic interstellar turbulence but may be driven by gravitational contraction/accretion. Based on our observational results, we propose an evolutionary scenario whereby supercritical filaments undergo gravitational contraction and increase in mass per unit length through accretion of background material, while remaining in rough virial balance. We further suggest that this accretion process allows supercritical filaments to keep their approximately constant inner widths (~0.1 pc) while contracting.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Uncontrolled Keywords: stars: formation; ISM: clouds; ISM: structure; evolution; submillimeter: ISM
Additional Information: Pdf uploaded in accordance with publisher's policy at http://www.sherpa.ac.uk/romeo/issn/0004-6361/ (accessed 16/04/2014)
Publisher: EDP Sciences
ISSN: 0004-6361
Date of First Compliant Deposit: 30 March 2016
Last Modified: 04 Jun 2017 06:05
URI: http://orca-mwe.cf.ac.uk/id/eprint/56250

Citation Data

Cited 30 times in Google Scholar. View in Google Scholar

Cited 65 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics