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Abstract.

The selective functionalisation of triazamacrocycles is investigated herein, with the
focus on 1, 4, 7-tnazacyclononane (tacn). The ligands tris (5-fluoro, 2-
aminophenyl) 1, 4, 7-triazacyclononane (L'), tris (4-fluoro, 2-aminophenyl) 1, 4, 7-
triazacyclononane (L?) and tris (3-fluoro, 2-ammophenyl) 1, 4, 7-triazacyclononane
(L") were studied. X-Ray crystal data was obtained for [(L"YM](CI1O;)2.xMeCN
where  M=Mn"/Fe'"/Ni"/Cu'/Zn"/Cd"/Hg", [(L*)M](CIO;)..xMeCN  where
M=Mn"/Fe"/Ni"/Cu"/Zn"/Cd" and [(LYYM](C104)2.xMeCN where
M=Mn"/Ni"/Cu"/Zn"/Cd"/Pb" complexes. The [(L')Cu](ClO,); complex exhibits a
rare dynamic Jahn-Teller effect in the sold state. Selected compounds exhibit an
interesting capping mode by their perchlorate counterions, with threefold-hydrogen
bonding through the oxygen to the amine protons. The [(L')Pb](ClO;). crystal
structure exhibits a typical geometry which accommodates a stereoactive lone pair
from the lead centre. The variable temperature 'H NMR of tris 1, 4, 7-(2-
aminophenyl) 1, 4, 7-tnazacyclononane zinc bis tetraphenylborate was carried out
over 298K-193K and spectra are included within. All complexes characterized by
'H NMR, "C NMR, '"F NMR, IR, UV and where appropriate Mossbauer
spectroscopy.

The investigation into the synthesis and chemistry of the novel
sulphonamide pentaazamacrocycles 1-(p-tolylsulphonyl), bis 4, 7-(2-aminophenyl)
- 1, 4, 7-triazacyclononane (L%), 1-(p-methoxyphenylsulphonyl), bis 4, 7-(2-
aminophenyl) - 1, 4, 7-triazacyclononane (L°), 1-(p-fluorophenylsulphonyl), bis 4,
7-(2-aminophenyl) - 1, 4, 7-triazacyclononane (L®) and 1-(2-mesitylsulphonyl) bis
4, 7-(2-aminophenyl) 1, 4, 7- triazacyclononane (L’). The complexation with
differing transition metals afforded the relevant complexes and X-Ray data was

obtained for [(LYYNV/Zn/Cd.MeCN](ClO;)>.MeCN,
[(L*)Pb(C104)])(C10s).2(MeCN), 2.[(LY)Cu](ClOs);.4MeCN.MeOH,
[(L’)N¥/Zn.MeCN](ClOs),.MeCN, and [(L®)Ni.MeCN](ClO;),.MeCN.H,0O. The
[(L")Zn/Hg/Pb.MeCN](Cl04)..MeCN, [(L*)Zn/Hg.MeCN](Cl0;),.MeCN,

[(L)Zn.MeCN](C104),.MeCN and [(L")Zn.MeCN](ClOs). MeCN  compounds
exhibit an unusual amine pattern in the '"H NMR. This was further studied by
variable temperature 'H NMR over the range of 298K-418K. The [(L*)Cu(C10;),
crystal structure shows two complexes of the same compounds crystallizing in the
same cell, each with slightly differing dimensions, but both of square based
pyramidal geometry. The [(L*)Pb(C10,4)]C104.2.MeCN crystal structure exhibits a
typical geometry which accommodates a stereoactive lone pair from the lead centre.
The bis sulphonamide 1-(2-aminophenyl)-bis 4, 7-(para-tolylsulphonyl) 1, 4, 7-
triazacyclononane (L*) was also prepared and its complexation of L*Ni/Cu/Zn/Cd
coordination chemistry expanded.

The fluorinated N-aryl tacn class was expanded by producing bis and tris
ortho meta para-fluorinated phenyl ligands. This selective methodology led to the
development of a tri substituted tacn ring with meta and para-fluorinated aromatic
rings. We report the electronic spectroscopic examination of the autocatalytic
oxidative degradation of the macrocyclic aniline moiety over 120hrs. The synthesis
of mono 1-(5-fluoro, 2-aminophenyl) bis 4, 7, (2-aminophenyl) 1, 4, 7-
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triazacyclononane (Lg), and mono 1-(4-fluoro, 2-aminophenyl) bis 4, 7, (2-
aminophenyl) 1, 4, 7-triazacyclononane (L'") are reported. The X-Ray single crystal
data was collected for [(L’)Mn/Zn](CIO,)..

The synthesis of 1, 4-bis-(2-amino, 4-fluorophenyl) homopiperizene
(L'") and its X-Ray crystal structure of (L''Ni 2. MeCN)(CI0O,); is described. The
conversion of N, N’ bis (2-aminophenyl) 1, 4-diazacycloheptane by reaction with p-
toluenesulphonyl chloride afforded N, N’ bis (2-tosylaminophenyl) 1, 4-
diazacycloheptane (L'%). Reaction with nickel perchlorate afforded the neutral
complex [(L'*)Ni]. This dianionic ligand is proposed as a porphyrin analogue.
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Chapter One

Introduction

Try to learn something about everything and everything about something.

-- Thomas H. Huxley

The covers of this book are too far apart.

-- Ambrose Bierce, The Devil's Dictionary
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Introduction

In a collaborative project between Cardiff University and PiezOptic Ltd. we set
about to investigate the development of a colorimetric sensor for the detection
of atmospheric nitrous oxide. We aimed to combine technology currently
present at PiezOptic, with our azamacrocyclic chemistry, to develop a reagent to
react with the target gas and produce a colour change that could be detected by

the PiezOptic system.

Chemical sensors

A chemical sensor is a system which gives a specific response to a target
reagent. Exposure to noxious gases has been an important area for health and
safety regulations in recent years. This area has been focused upon further in
light of harmful medical effects these gases have found to have on the human
body. The health risks and effects of these gases have been recognised, and so
the policies that govern exposure limits have been reviewed and revised every
year, commonly reducing the exposure levels annually. Detection of these gases
has been difficult due to many factors such as equipment standard, size and

portability, interference from other gases, accuracy and the range of detection.

PiezOptic Technology
PiezOptic Ltd specialises in the development and supply of specific gas
dosimeters for use in environments where toxic gases and vapours are present.
The initial technology was invented at the Centre for Applied Microbiology
Research (CAMR) at Porton Down in the early 1990’s. Research is now also
being carried out at PiezOptic Ltd in Ashford, Kent.

PiezOptic Ltd was formed to take advantage of a niche in the gas
detection market'. Specific analytes covered by the PiezOptic system at the
moment include glutaraldehyde, chlorine dioxide, formaldehyde, nitrogen

dioxide, ozone, sulphur, dioxide and styrene. Examples include glutaraldehde

'Wright. J. D. Colin. F. Stockle, R. M. Shepherd. P. D. Labayen. T. Carter. T. J. N. A.
Sensors and Actuators B. 1998, 51, 121-130. C. A. Gibson, T. J. N. Carter. P. D.
Shepherd. J. D. Wright. Sensors and Actuators B. 1998, 51,238-243



Chapter One: Introduction.

which is a toxic and corrosive reagent used in the sterilisation of hospital

equipment. Detection is achieved by using 2. 7-diaminofluorene.

jaS g Q'O o Q'O
> M (.

Figure 1.1: Reaction scheme of glutaraldehyde sensing by 2, 7-

31

diaminofluorene.

Reaction with the difunctional aldehyde propyl chain affords the 2, 7-
diaminofluorene/glutaraldehyde derivative, with the formation of imine bonds
and the loss of water. Differing products are obtained when the ratios of
reactants are altered. These products include the 1:1 adduct, 1:2 adduct, 2:1
adduct, polymeric material, oligomers, and cyclic oligomers. The colour change
observed can be detected by the human eye, but is quantitatively calculated by

the generic film reader so detecting the total exposure to the glutaraldehyde.

SR Y o g

‘038 Clo,

Figure 1.2: Reaction scheme of chlorine dioxide by of 2, 2-azino bis (3-

ethylbenthiazoline)-6-sulphonic acid diammonium salt.
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Chlorine dioxide is detected through the use of 2, 2-azino bis (3-
ethylbenthiazoline)-6-sulphonic acid diammonium salt (ABTS)’. ABTS is
oxidised from the colourless compound, in the presence of ClO, undergoing a
one electron oxidation to form the stable radical cation, which is an overall

anionic green compound.

H
Br—r—H

7 Br—+—H
2Br =z
Mry ——= Br, + 2B » —
AN

2¢

Figure 1.3: Reaction scheme of bromine sensing by styrene.

Styrene is detected through employing the tribromide ion suspended in a
polyethylene glycol matrix’. Colour is lost as the reaction that occurs results in
the halogenation of the alkene bond present in the styrene. The reaction can be
detected by the naked eye, but the generic reader can identify the specific
amount of colour change through the voltage generated across the piezofilm.
The high toxicity and volatility of these gases make the need for their detection
in the workplace paramount, in order to comply with legislation.

The sensors developed are used in the rapid monitoring of gases in the
workplace, a test that was previously slow and expensive in both terms of time
and money. The dosimeter badges (Figure 1.4) that have been developed require

little training, are disposable, and give results in a short period of time.

2 U. Pinkernell. B. Nowack, H. Gallard, U. Von Gunten, Wat. Res, 2000, Vol. 34. No 18, 4343-
4350.

*K. R. Bearman. D. C. Blackmore. T. J. N. Carter. F. Colin. J. D. Wright. S. A. Ross. Chem.
Commun.. 2002. 980-981.
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badge®. The PiezOptic system utilises a phenomenon called the “Piezoelectric
effect”. This has been employed as the mechanism in the films, used in the

badges.

The piezoelectric effect

The piezoelectric effect is the generation of an electric potential across certain
faces of a crystal, which is induced by mechanical pressure and distortion’.
Pierre and Jacques Curie discovered this phenomenon in quartz crystals and
Rochelle’s salt (potassium tartrate), in 1880. The effect is named
piezoelectricity from the Greek “peizein” — to press. This effect has been
found in several crystalline structures such as tourmaline and barium titanate.
lons present in the crystal lattices are displaced from the non-symmetrical unit
cell. Electric polarisation occurs when the crystal is compressed. These effects
accumulate as the crystal is of regular conformation. This accumulation
produces an electric potential across the faces of the crystal. Piezoelectric
crystals are used as transducers, record playing pickup elements, and in
microphones, due to their capacity to convert mechanical deformation into
electric voltages. They are also used in resonators in electric oscillation, and
high frequency amplifiers, as mechanical resonance frequency of adequately

cut crystals is well defined.

PiezOptic Badge Technology

The reagent spots are coated on a piezofilm sensor which is sputtered

with indium tin oxide, (ITO)’. The reader illuminates the spot in the badge with

'J. D. Wright. C. Von Biiltzingslowen. T. J. N. Carter. F. Colin. P. D. Sheperd. J. V. Oliver. S. J.
Holder. R. J. M. Nolte. J. AMater. Chem. 2000, Vol 10, 175-182.

* Cady. W.G. Piezoelectricity: An Introduction to the Theory and Applications of
FElectromechanical Phenomena in Crystals, New rev. ed., 2 vols. New York: Dover, 1964.
Mason. W. P. Piezoelectric Crystals and Their Application to Ultrasonics. New York: Van
Nostrand. 1950. Rosen. C. Z.: Hiremath, B. V.. and Newnham, R. (Eds.). Piezoelectricity. New
York: Springer-Verlag, 1992. Halliday & Resnick. Fundamentals of Physics 3rd Ed p808
Tipler. Physics. 3rd Ed Extended Ch 36 p1211

°C. Yan. M. Zharnikov. A. Golzhiuser. M. Grunze. Langmuir 2000, 16, 6208-6215.
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diffusion filter conducting pad

y

spongesq)portpad\

reagent spot (1 of §)

ITO coated PVDF film
—»

sponge support pad

light emitting diode ——p
(1 0f 5)

Figure 1.7: Dosimeter Badge construction.

Construction of the reagent spot must be carried out whilst meeting
specific criteria. The chemical reaction that occurs within the badge must be
irreversible. Since the dosimeter badges measure the accumulative exposure,
and do not monitor the immediate levels of gases present. Systems that are
currently available in the market employ charcoal absorber tubes, which after
usage the exposure levels are calculated by either solvent extraction or by
thermally desorbing the tube so that the sample can be run on GC/MS or HPLC.
The reagent spot must be stable to light, temperature, humidity, mechanical
shock and ambient gases. The colour change must complement the LED’s in the
reader, so the light is absorbed. The interaction between target gas must be fast
and specific to the target gas only. The results obtained from the exposure must
be quantitative and the reagent should be easy to synthesize, and precursors
commercially available. When the spots are developed on the piezofilm, they
must form a uniform spot, which is of even depth. These form porous matrices
on the film, and form the desired spots. This allows good diffusion of the target

gas into the matrix in order to react with the reagent. The solid formed is then
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ground to a fine powder and made into a paste with a volatile solvent. The paste
is then deposited onto the PVDF film and allowed to dry. Advantages of a
uniform dispersant are that maximum accessibility is presented for the target gas
when it diffuses into the badge spot matrix. The concentration of the reagent can
be varied to control the sensitivity of the badge. The reagent spots are deposited
onto the PVDF film that is a secured film piece in a spot-deposition jig. The
spot solutions are deposited in Sul aliquots, which are dispensed from an
electronic micro pipette, which is also aligned by the jig. The employment of the
jig allows the spots to be constructed within strict sizing parameters

(approximately Smm+10% diameter), and to also retain spot integrity.

Nitrous Oxide Complexation Chemistry.

The formation of nitrous oxide adducts are very rare and to date only one such
complex has been formed and studied. Research in this field was carried out in
the late 1960’s by Armor and Taube’. They showed that synthesis of ruthenium
monoaquo-pentammine reacted reversibly with N,O. When passed under a

stream of N,O, the water molecule is displaced to form the nitrous oxide adduct.
(H3N)sRuOH,*" + N;O « (H3N)sRuN,0** + H;0
Figure 1.7: Reaction between Ruthenium monoaquapentammine and N;O.

The use of other metals to form such adducts has resulted in the unwanted
formation of oxides, nitrosyls and nitrides species. In the presence of a reducing
agent such as Cr®', it has been shown that the nitrous oxide component of this
adduct is reduced to the dinitrogen species with the loss of water. From the data
shown in the literature®, the formation of more stable nitrous oxide complexes
would be a challenging and extensive field of research. N;O is a weak ¢ and n

donor and so a compound would have to be synthesised to produce a more

" Armor J T.. Taube H.. J. AAm. Chem. Soc.. 1969, 91. 6874-6876
¥ Paulat F.. Kuschel T.. Nither C.. Praneeth V. K. K., Sander O.. Lehnert N.. Inorg. Chem..
2004. 43. 6979-6994.




































































































































































































































































































































































































































































































































