Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Low complexity channel shortening and equalization for multi-carrier systems

Nawaz, Rab. 2006. Low complexity channel shortening and equalization for multi-carrier systems. PhD Thesis, Cardiff University.

[thumbnail of U584814.pdf] PDF - Accepted Post-Print Version
Download (6MB)

Abstract

A new time domain blind adaptive channel shortening algorithm for Discrete Multi Tone (DMT)-based multicarrier systems is first proposed. It is computationally less expensive, and more robust to non- Gaussian impulsive noise environments than a recently reported Sum squared Autocorrelation Minimization (SAM) algorithm. A "left" initialization scheme is also suggested for Carrier Serving Area (CSA) loop Asymmetric Digital Subscriber Line (ADSL) channels. Simulation studies show that by a proper selection of the learning parameter i.e., the step size, the bit rates achieved by the SAM algorithm when operating in an environment contaminated by Additive White Gaussian Noise (AWGN) can be further improved. Next a novel time domain low complexity blind adaptive channel short ening algorithm called Single Lag Autocorrelation Minimization (SLAM) is introduced. The algorithm is totally blind in the sense that it does not require a prior knowledge about the length of the channel impulse response. The proposed novel stopping criterion freezes the adaptation of the SLAM algorithm when the maximum amount of Inter Symbol Interference (ISI) is cancelled. As such, the stopping criterion can also be used with SAM. An attractive alternate frequency domain equalization approach for multicarrier systems is Per Tone Equalization (PTEQ). This scheme en- ables true signal-tonoise ratio optimization to be implemented for each tone and it always achieves higher bit rates than Time domain Equalizer (TEQ) based channel shortening schemes but at the price of increased computational complexity and higher memory requirements. A low complexity (PTEQ) scheme is, therefore, finally proposed. The com plexity of the PTEQ can be traded off with the complexity of the timing synchronization within the system. In particular, it is shown that the use of more than one difference terms and hence a long equalizer in the PTEQ scheme is generally redundant. The PTEQ scheme assumes knowledge of the channel impulse response. In this case synchronization is trivial and it is possible to use only a length two PTEQ equalizer and attain essentially identical bit rate performance to a PTEQ equalizer with length matched to the cyclic prefix. This observation allows for a substantial reduction in computational complexity of the PTEQ scheme in both initialization and data transmission modes. For a reasonable range of values of synchronization error, <5, around the optimal value of 5 = 0, the performance of this length two equalizer is shown to remain relatively constant. For positive synchronization errors, however, the required PTEQ equalizer length is proportional to the synchronization error. A low complexity blind synchronization method is ultimately suggested which is based on the construction of the difference terms of the PTEQ scheme.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
ISBN: 9781303204715
Date of First Compliant Deposit: 30 March 2016
Last Modified: 12 Feb 2016 23:15
URI: https://orca.cardiff.ac.uk/id/eprint/56060

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics