Intramolecular Benzyne Trapping in Synthesis of a Vitamin E Precursor

A thesis submitted to Cardiff University

By

Qing Xu
BSc (Hons.)

In candidature of

Doctor of Philosophy

November 2004

School of Chemistry

Cardiff University
DECLARATION

This work has not been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed...(candidate)
Date..

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed...(candidate)
Date..

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and interlibrary loan, and for the title and summary to be made available to outside organisations.

Signed...(candidate)
Date..
Acknowledgements

I would like to acknowledge and thank the following people for the following reasons.

For his supervision and constant encouragement throughout the course of my PhD I would like to thank Prof. D. W. Knight.

For financial support I would like to thank my parents and Prof. D. W. Knight as well as an ORS award.

For NMR analysis, GC analysis, HPLC analysis and the accurate mass spectroscopic data, I would like to thank Mr. Rob Jenkins.

For proof reading I would like to thank Dr. Nigel Bainbridge and Dr. Charlie Haskins, with special thanks to Prof. D. W. Knight.

For friendship, intellectual and moral support I would to thanks: my parents G. L. Xu and R. Z. Wang, Nigel, W. F. Tan, Charlie, Ying Fa, Simon, Sian, Ian, Tony, Emily, Mel, Charlie boy and Tai.
This thesis is dedicated to my parents Guolin Xu and Ruizhi Wang.
Abstract

Intramolecular benzyne trapping by alcohols have been applied to the synthesis of a series of racemic chromans. The theme of this project was to utilise this technique in the synthesis of the precursor, (R)-8-iodo-6-methoxy-2,5,7-trimethyl chroman-2-methanol, to the natural product Vitamin E.

The racemic form of the above compound has been synthesised in 12 linear steps from the commercially available 2,6-dimethyl-4-nitroanisole. Attempts to synthesize the enantiomerically enriched side chain (-)-(S)-3,4-dihydroxy-3-methyl-1-butyne have also taken place; and was achieved in seven linear steps.

Methylation of 8-iodo-6-methoxy-2,5,7-trimethyl chroman-2-methanol on its 8 position was carried out by Stille coupling reaction: the best result was a 25% conversion to the product.

In addition, a series non-racemic chromans have also been synthesised. The benzyne precursors were prepared by condensation between the dianion 391 and allylic halides, and the chirality introduced by AD-mix reactions of the resulting alkenes.

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{C-OBu'}
\end{array}
\]

\[391\]
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD-mix</td>
<td>Asymmetric dihydroxylation</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetate</td>
</tr>
<tr>
<td>Boc</td>
<td>t-Butoxycarbonyl</td>
</tr>
<tr>
<td>BuLi</td>
<td>Butyl lithium</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentrated</td>
</tr>
<tr>
<td>CAN</td>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>CM</td>
<td>Cross metathesis</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>DA</td>
<td>Diels-Alder</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>(DHQD)$_2$PHAL</td>
<td>Dihydroquinidine phthalazine</td>
</tr>
<tr>
<td>DIBAL</td>
<td>Diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-N,-N-Dimethylaminopyridine</td>
</tr>
<tr>
<td>D-(-)-DET</td>
<td>D-(-)-Diethyl tartrate</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>2,2-Dimethoxypropane</td>
</tr>
<tr>
<td>DMPU</td>
<td>1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DTBS</td>
<td>di-tert-Butyldimethylsilylethyl</td>
</tr>
<tr>
<td>ee.</td>
<td>Enantiomeric excess</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalence</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>HKR</td>
<td>Hydrolytic kinetic resolution</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>HOSA</td>
<td>Hydroxylamine-O-sulphonic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>$meta$-Chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>MIPE</td>
<td>Methyl isopropenyl ether</td>
</tr>
<tr>
<td>Moc</td>
<td>Methoxycarbonyl</td>
</tr>
<tr>
<td>MOM</td>
<td>Methoxymethyl</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>n-Bu</td>
<td>Normal butyl</td>
</tr>
<tr>
<td>"Hex</td>
<td>Hexane</td>
</tr>
<tr>
<td>NIS</td>
<td>N-iodosuccinimide</td>
</tr>
<tr>
<td>NMP</td>
<td>Methylpyrroldinone</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>Pd-C</td>
<td>Palladium on carbon</td>
</tr>
<tr>
<td>Pd0(dba)$_3$</td>
<td>tris-(Dibenzyldiene-acetone) dipalladium (0)</td>
</tr>
<tr>
<td>PPTS</td>
<td>Pyridinium p-toluene sulfonate</td>
</tr>
<tr>
<td>pyr.</td>
<td>pyridine</td>
</tr>
<tr>
<td>t-Butyl</td>
<td>tert-Butyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TBAF</td>
<td>$teta$-n-Butylammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-Butyldimethylsilyl</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-Butyldiphenylsilyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>t.l.c.</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N,N,N-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>TsOH</td>
<td>para-Toluenesulfonic acid</td>
</tr>
<tr>
<td>Triflate (Tf)</td>
<td>Trifluoromethanesulfonate</td>
</tr>
</tbody>
</table>
CONTENTS

Chapter 1 – Introduction

1.1 Review of Dr. P.B. Little’s Thesis—‘Novel Benzyne Chemistry’
 1.1.1 Synthesis of 1-Aminobenzotriazole 2
 1.1.2 Protection of 1-Aminobenzotriazole 4
 1.1.3 Lateral Lithiation 4
 1.1.4 The Sonogashira Coupling 7
 1.1.5 Reduction / Deprotection / Cyclization 8
 1.1.6 Partial Reduction: Towards Chromenes 9
 1.1.7 Phenols as Efficient Traps in the Benzyne Cyclisation 10
 1.1.8 An Attempted Synthesis of Tocopherol 13

1.2 A General Introduction to Benzyne 19
 1.2.1 Structure and Reactivity 19
 1.2.2 Generation of Benzyne 20
 1.2.3 Reaction of Benzyne 24
 1.2.3.1 Pericyclic Reactions of Arynes 25
 1.2.3.2 Nucleophilic Addition to Benzyenes 30
 1.2.3.3 Transition Metal-Catalyst Reaction of Benzyenes 33

1.3 Towards the Total Synthesis of Vitamin E Precursor Using
 Intramolecular Benzyne Trapping By Alcohol 34
 1.3.1 The Use of 1-Aminobenzotriazole as a Benzyne Precursor 34
 1.3.2 Hydroxyl Group Acting as Intramolecular Traps for Benzyne 35
 1.3.3 Novel Strategy Towards the Vitamin E Precursor Based
 on the Intramolecular Trapping by –OH of Benzyne 36

1.4 An Introduction to Vitamin E: 37
 1.4.1 The Structure 37
1.4.2 Food Sources 38
1.4.3 Biochemical Function 38
1.4.4 Vitamin E Deficiency 39
1.5 Previous Routes Towards the Total Synthesis of Vitamin E 40

Chapter 2 – Towards the Total Synthesis of Vitamin E Precursor

2.1 Introduction 47
2.2 The Synthesis of Iodide 164 48
2.3 The Preparation of 3,4-Dihydroxy-3-Methyl-1-Butyne 69 53
2.4 The Sonogashira Coupling 56
2.5 Reduction 62
2.6 Diazotisation and Cyclisation 63
2.7 Deprotection of the Acetyl Group 71
2.8 Electrophilic Amination of the NH-Benzotriazole 161 73
2.8.1 Using Hydroxylamine-α-Sulphonic Acid 73
2.8.2 Using Oxaziridine 75
2.8.2.1 A Brief Review of Oxaziridine 75
2.8.2.2 Preparation of α-Butyl 3-Trichloromethyl-2-Oxaziridinecarboxylate 280 79
2.8.2.3 Amination of NH-Benzotriazole Using Oxaziridine 280 80
2.9 Deprotection and Benzyne Cyclisation 82
2.10 Methylation of Iodo-Chroman 44 86
2.10.1 Synthesis of Model Compound—Iodo Dimethoxy Benzene 195 86
2.10.2 Stille Cross-coupling Reaction 87
2.10.3 Attempted Methylation Using Methyl Iodide by Halogen-Lithium Exchange 93
2.11 Synthesis of Enantiomerically Enriched Diol 69 94
2.11.1 From the Silylated Enyne 315 by AD-mix Reaction 94
2.11.2 By Hydrolytic Kinetic Resolution (HKR) of Terminal Epoxide 96
2.11.3 By Asymmetric \textit{bis}-Hydroxylation (AD-mix) on
\textit{N}-Methoxy-\textit{N}-Methyl Methacrylamide 324 and Subsequent Transformations 98

\begin{itemize}
 \item 2.11.3.1 Preparing Methacrylamide 324 99
 \item 2.11.3.2 AD-mix Reaction 99
 \item 2.11.3.3 Protection of Diol-amide (\textit{R})-325 as an Acetal and the Following Reduction to Aldehyde 341 103
 \item 2.11.3.4 Preparation of Dimethyl Diazoketophosphonate 348 and the Attempted Transformation of Aldehyde 341 to Alkyne 352 104
 \item 2.11.3.5 Synthesis of the Acetylene 352 Through the Trichloro-intermediate 357 Followed by Eliminations 108
 \item 2.11.3.6 Reaction of Acetal Acetylene 352 110
 \item 2.11.3.7 Protection by di-\textit{tert}-Butylsilyl (DTBS), Benzyl (Bn) or bis-\textit{tert}-Butyldimethylsilyl (TBDMS) 114
 \item 2.11.3.8 Synthesis of the Key Diol (\textit{S})-69 117
\end{itemize}

2.12 Towards (\textit{S})-Chromane 44 119

\textbf{Chapter 3 – A Preliminary Investigation of a Tandem AD-mix / Benzyne Trapping Sequence}

3.1 Introduction 126

3.2 Synthesis of \textit{N}-Boc-1-aminobenzotriazole 390 127

3.3 Towards the Synthesis of (1’\textit{R},2\textit{R})-2-(1-Hydroxyethyl)-8-Iodochroman 407 130

\begin{itemize}
 \item 3.3.1 Metallation-Alkylation 130
 \item 3.3.2 AD-mix Reaction 131
 \item 3.3.3 Deprotection-benzyne Cyclisation 131
\end{itemize}

3.4 Attempt of \textit{bis}-Benzyne Cyclisation to Form Symmetrical Dichromans 410 133
3.4.1 Preparation of 7-Butene Benzotriazole 414 135
3.4.2 Cross-Metathesis 135
3.4.3 AD-mix Reaction 139
3.4.4 Prepare of bis-Aminobenzotriazole 427 in a Single Step and the Subsequent AD-mix Reaction 139
3.4.5 Towards the Synthesis of Dichromans 410 141
3.5 The Synthesis of (1′-Hydroxy-1′-phenyl)-8-Iodochroman 442 143
3.6 Further Works 144

Chapter 4 – Experimental

References 203
Chapter One

Introduction
1.1 Review of Dr P.B. Little’s Thesis—‘Novel Benzyne Chemistry’:

The current project follows on from and develops further the themes in Dr Paul B. Little’s PhD thesis entitled ‘Novel Benzyne Chemistry’. In this, he had developed a new synthetic route which could possibly be applied to a synthesis of the precursor 1 to the natural product Vitamin E and also to the syntheses of other optically active chromans, using intramolecular benzyne trapping by alcohols as the key step.

One overall strategy, which was eventually established in Little’s work for synthesising chromans and chromenes by intramolecular benzyne cyclisation, is outlined in Scheme 1. The commercially available benzotriazole 2 could be aminated to an amine, followed by protection to form the N-Boc derivative 3. It was hoped that precursor 3 would undergo a regioselective lithiation, which would allow the introduction of an iodine into the 7-position of this molecule, to give the iodide 4. Acetylenic alcohols 5 could then be formed by a Sonogashira coupling reaction. Reduction of the triple bond could either give a (Z)-allylic alcohol 6, for chromene synthesis, or a fully saturated side chain for chroman synthesis. After the reduction, deprotection followed by benzyne formation, using the N-iodosuccinimide (NIS) technology devised by Birkett, should complete the required chroman / chromene 8 syntheses. The realisation of these ideas are described in more detail below to set the scene for the present project, which is aimed at applying this type of chemistry to a new synthesis of Vitamin E as indicated above.

1.1.1 Synthesis of 1-aminobenzotriazole

Direct amination of the commercially available benzotriazole 2 was carried out using hydroxylamine-\(\cdot\)O-sulphonic acid as the aminating reagent, according to a literature method (Scheme 2).\(^2\) Alternative solvent systems as well as temperatures were tried by Little. As a result, amination at room temperature in dimethylformamide containing 5% water, as well as potassium hydroxide as base, was found to be a superior way to prepare 1-aminobenzotriazole 9 in a reasonable yield (69%). In this way, the desired 1-aminobenzotriazole 9 was the sole product. The conversion was improved (82%) when the reaction was heated to 75-85°C under these conditions, but a 4:1 mixture of 1-aminobenzotriazole 9 and 2-aminobenzotriazole 10 was obtained due to the increased stability of isomer 10 at this higher temperature.\(^2\) Separation of the two isomers proved not to be a simple matter.

Scheme 1

Scheme 2
A two-step method was also attempted for large scale production of the required 1-aminobenzotriazole 9 (Scheme 3).

Nitration of benzotriazole 2 with fuming nitric acid in acetic acid gave 1-nitrobenzotriazole 11 in excellent yield (>90%), using the method developed by Fernandes and Habraken3 (Scheme 3), but the attempted conversion into 1-aminobenzotriazole 9 under palladium-catalysed hydrogenations and other reducing conditions failed to give the desired product.

Due to the desire to find a more efficient and cleaner aminating reagent than hydroxylamine-\textit{O}-sulphonic acid, three other hydroxylamine-based electrophilic aminating reagents with different leaving groups, namely diphenylphosphinoxy-\textit{13}, methoxy-\textit{15} and tosylxy-\textit{17}, were prepared from their commercially available precursors4 (Scheme 4) but none of these reagents aminated the benzotriazole 2.
1.1.2 Protection of 1-aminobenzotriazole

Since the formation of 1-aminobenzotriazole 9 could be readily scaled up, to give a sufficient amount by the one-step procedure, the amino group was then protected to generate a suitable metallation directing group, as well as to remove any chance of premature oxidation to a benzyne. 1-Butoxycarbonyl (Boc) was chosen as the protecting group; the mono-protected 1-aminobenzotriazole 19 was prepared by a one-pot, two-step procedure, in 95% yield (Scheme 5).
1-Aminobenzotriazole 9 was reacted with two equivalent of di-\textit{tert}-butoxycarbonyl dicarbonate in acetonitrile, containing a catalytic amount of 4-\textit{N,N}-dimethylaminopyridine (DMAP). This led to the formation of \textit{N,N-bis-\textit{tert}-butoxycarbonyl} aminobenzotriazole 18. Sodium hydroxide was then added and after heating the reaction mixture to 50°C, one of the Boc groups was selectively removed. It was found that using one equivalent of di-\textit{\textit{tert}-butoxycarbonyl} dicarbonate led only to an equal mixture of \textit{bis}-protected aminobenzotriazole 18 and starting material 9. This showed that the \textit{mono}-protected amine 19 is of similar reactivity to the unprotected amine 9. This was the first indication of the perhaps surprisingly high nucleophilicity of the acylated amine 19, presumably due to the α-effect.

1.1.3 Lateral lithiation

After setting up the two-step methodology for obtaining the \textit{mono}-protected amine 19, the next step on the route to substituted benzyne precursors was a lithiation with subsequent condensation with electrophiles (Scheme 6).

As a model reaction, tributyltin chloride was chosen as the electrophile due to it being, as claimed by Little, an excellent electrophile, when combined with the ability of aryl stannanes
to participate in palladium-catalysed cross couplings. After a series of optimisations, Little found that stirring the aminobenzotriazole 19 in a solution of n-butyl lithium and 12-crown-4 in tetrahydrofuran at -78°C for half an hour, followed by the addition of tributyltin chloride, gave an excellent yield (92%) of the stannane 21. Meanwhile, other conditions such as using N,N,N,N-tetramethylethylene-1,2-diamine (TMEDA) as a chelating agent, with THF or diethyl ether as the solvent, as well as using tert-butyl lithium, potassium tert-butoxide and lithium diisopropylamide as the base only resulted in partial conversions (~60% or less). Use of a catalytic amount (20%) of the ligand, 12-crown-4, also only gave a poor conversion (23%). On the other hand, a stoichiometric amount of tetaethylene glycol dimethyl ether (tetraglyme), which can be regarded as a ring opened homologue of 12-crown-4, and is cheaper and less toxic, worked as effectively as its cyclic counterpart. However, when 5 equivalents of tetraglyme were used, the yield was increased to 94%.

Since Little proved that the dianion 20 could be completely formed and could be reproducibly condensed with tributyltin chloride in excellent yield, a range of electrophiles were condensed with this intermediate, using the tetraglyme protocol (Table 1).

![Chemical structure](image)

Table 1

<table>
<thead>
<tr>
<th>Electrophile</th>
<th>E</th>
<th>% Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bu3SnCl</td>
<td>SnBu3</td>
<td>96</td>
</tr>
<tr>
<td>2. D2O</td>
<td>D</td>
<td>89</td>
</tr>
<tr>
<td>3. p-MeOC6H4CHO</td>
<td>p-MeOC6H4CHO(OH)</td>
<td>79</td>
</tr>
<tr>
<td>4. DMF</td>
<td>CHO</td>
<td>67</td>
</tr>
<tr>
<td>5. n-C3H11CHO</td>
<td>n-C3H11CHO(OH)</td>
<td>20</td>
</tr>
<tr>
<td>6. NIS</td>
<td>l</td>
<td>27</td>
</tr>
<tr>
<td>7. Iodoperfluorohexane</td>
<td>I</td>
<td>29</td>
</tr>
<tr>
<td>8. n-PrCH=CHCHO</td>
<td>n-PrCH=CHCHO(OH)</td>
<td>75</td>
</tr>
</tbody>
</table>
Little found that the dianion 20 reacted efficiently with non-enolizable electrophiles, such as deuterium oxide (entry 2) and *para*-anisaldehyde (entry 3), while the yield was poor when it was condensed with the alkyl aldehyde hexanal, an enolizable electrophile (entry 5). It was reasoned that the nucleophilicity of the dianion was lower than its basicity and that the dianion was deprotonating the enolizable electrophiles in preference to nucleophilic attack.

For his additional objective of forming the 7-idoaminobenzotriazole (E=I), the use of *N*-iodosuccinimide (NIS) and iodoperfluorohexane resulted in only 27 and 29% yields respectively of the 7-ido derivative 23. An alternative iodination method, which involved a lithium / cerium exchange was therefore used (Scheme 7).

$$\begin{align*}
\text{Scheme 7} \\
\text{19} & \xrightarrow{\text{a} \ 2.2 \text{ eq. BuLi, THF, -78°C}} \text{19} \quad \text{5 eq. TMEDA} \\
& \xrightarrow{\text{b) CeCl₃}} \quad \text{19} \quad \text{c) 1,2-diiodoethane} \\
& \xrightarrow{\text{97%}} \quad \text{23}
\end{align*}$$

The exchange was made by transferring the dianion 20 solution, which was produced in the normal way, to a slurry of cerium(III) chloride in tetrahydrofuran *via* canula at -78°C. Electrophiles such as *para*-anisaldehyde (entry 3), dimethylformamide (entry 4), hexanal (entry 5), *trans*-2-hexenal (entry 8) as well as iodoperfluorohexane were applied again and all of the yields were improved, to 95%, 95%, 79%, 87% and 55% respectively. These results amply demonstrated the increased nucleophilicity of the cerium species, however, the original reason for employing cerium was to reduce the basicity of the dianion towards enolizable electrophiles. The iodination yield using iodoperfluorohexane was also increased, from 29% to 55%. Eventually, he found that the use of 1,2-diiodoethane delivered an outstanding 97% yield of iodide 23, treating the initial dianion with five equivalents of tetramethylethelenediamine (TMEDA).
1.1.4 The Sonogashira Coupling

As described above, a number of benzyne precursors 22 including iodide 23 had been produced. The next phase of Little’s project was the introduction of tethered nucleophiles for the projected intramolecular benzyne trapping. Due to the desire to incorporate asymmetry into the synthesis in order to produce chiral chomans and chromenes, Sonogashira cross coupling was examined as this strategy would give the opportunity for diversity in the synthetic route, and allow the easy introduction of the desired stereogenic centres (see structure 5, Scheme 1). After a series of modifications to the cross coupling using propargylic alcohols, Little found that using a catalytic amount of tetrakis(triphenylphosphine)palladium(0), copper(I) iodide and triethylamine in tetrahydrofuran under reflux gives a range of acetylenes 24 in moderate to good yields (Table 2).

![Diagram](image)

<table>
<thead>
<tr>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>92</td>
</tr>
<tr>
<td>Et</td>
<td>91</td>
</tr>
<tr>
<td>Me</td>
<td>87</td>
</tr>
<tr>
<td>Ph</td>
<td>38</td>
</tr>
<tr>
<td>p-MeOC6H4</td>
<td>81</td>
</tr>
<tr>
<td>CH2OH</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 2
1.1.5 Reduction / Deprotection / Cyclization

The incorporated tethers were then reduced. Palladium-catalysed hydrogenation in methanol delivered the saturated alcohols 25 (Table 3). The last remaining transformations were a deprotection followed by benzyne formation. A two-pot sequential reaction was developed to avoid isolation and purification of the reactive and rather polar free amines 26.

After the removal of the tert-butoxycarbonyl protecting group, by treatment with a 20% solution of trifluoroacetic acid (TFA) in dichloromethane over half an hour, the reaction mixture was basified to liberate the free amine 26. Benzyne generation and cyclisation, triggered by N-iodosuccinimide (NIS), formed chromanes 27, in satisfactory yields.

![Chemical structures and reactions](image)

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>25(%)</th>
<th>27(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>H</td>
<td>H</td>
<td>95</td>
</tr>
<tr>
<td>2.</td>
<td>Et</td>
<td>H</td>
<td>94</td>
</tr>
<tr>
<td>3.</td>
<td>Me</td>
<td>Me</td>
<td>95</td>
</tr>
<tr>
<td>4.</td>
<td>Me</td>
<td>CH₃OH</td>
<td>72</td>
</tr>
<tr>
<td>5.</td>
<td>p-MeOC₆H₄</td>
<td>H</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3
1.1.6 Partial reduction: towards chromenes

It was felt that the partial reduction of acetylenes 24 to (Z)-allylic alcohols 28, followed by deprotection and cyclisation could, in a similar fashion, give their unsaturated analogues. After a lengthy search for optimised conditions for this partial reduction, Little found a reproducible protocol using Rieke zinc,\(^{10}\) which is a highly divided zinc metal that acts as a selective reducing agent in a tetrahydrofuran, methanol and water solvent mixture. Rieke zinc was generated \textit{in situ} by the reduction of zinc(II) chloride with potassium metal in hot tetrahydrofuran. As a result, a range of chromenes 29 have been synthesised by this method, with the exception of the aryl substituted alcohol which gave unrecognisable products (entry 4) (Table 4).

\[
\begin{array}{cccc}
\text{R} & \text{R'} & 28(\%) & 29(\%)
\hline
1. & Et & H & 94 & 83 \\
2. & Me & Me & 80 & 0 \\
3. & \text{CH}_2\text{OH} & \text{Me} & 60 & 63 \\
4. & p-\text{MeOC}_6\text{H}_4 & H & 0 & ~
\end{array}
\]

Table 4

Little also mentioned but did not investigate the idea that the chromene 29 might be functionalised by derivatisation of its double bond. Possibilities include dihydroxylation, epoxidation, hydroboration, Heck type reactions \textit{etc}.
1.1.7 Phenols as efficient traps in the benzyne cyclisation

Due to the fact that aromatic substituents are present in the majority of chroman natural products, and that there was a gap with respect to this area in the literature, Little began to focus on the efficient intramolecular trapping of a benzyne by a tethered phenol (Scheme 8).

Condensing the dianion derived from benzotriazole 19 with protected salicylaldehyde 30 formed alcohol 31 in 82% yield; the silyl ether was then cleaved with hydrogen fluoride / pyridine complex in dichloromethane to give the free phenol 32. Unfortunately, deprotection of the Boc group using the routine method as well as under other mildly Lewis acidic conditions failed. It was reasoned that the acidic lability of the bis-benzylic alcohol was to blame for this result and the solution was to remove this functionality.

Scheme 8
Dehydroxylation of the *bis*-benzylic alcohol by palladium-catalysed hydrogenolysis formed the phenol 34. Carbamate cleavage by trifluoroacetic acid as usual then gave the free amine 35, which underwent the benzyne cyclisation after treatment with *N*-iodosuccinimide and afforded a single product—the iodoxanthene 36.

Methoxy-substituted iodoxanthenes 37 (Scheme 9) have also been synthesised using a similar method. The protecting group was changed from *t*-butyldimethylsilyl (TBDMS) to benzyl (Bn), in order to achieve simultaneous deprotection and dehydroxylation under the hydrogenolysis conditions.

![Scheme 9](image)

The same methodology has been successfully extended by Little to synthesise a fused-four ring—benzoxanthene 41 (Scheme 10). Surprisingly, when the benzoxanthene 41 remained in the reaction mixture with *N*-iodosuccinimide for longer than half an hour, a further oxidation reaction occurred and the benzoxanthone 42 was formed. It was reasoned that the *N*-iodosuccinimide is known to be a mild oxidising agent and this, combined with the sensitive nature of the bis-benzylic methylene group, probably explains this result.
1.1.8 An attempted synthesis of tocopherol

On the basis of Little's investigations on the scope and limitations of the intramolecular benzyne cyclisation, a series of chromans and chromenes were synthesised although, while most of these were racemic, the non-racemic compounds were not proven to be optically pure. More importantly, this methodology needed to be applied on a formal natural product synthesis to explore its potential value and gain our long-term aim of showing the utility of this type of chemistry when applied to highly substituted benzyne.

There are a wide range of natural products containing the chroman core. Among these vitamin E (α-tocopherol) 43 was chosen due to the juxta-positioning of the aliphatic and aromatic sections of the molecule. The disconnection which Little developed would separate these two sections.
Little has laid out the initial retrosynthesis as follows (Scheme 12).

Starting from chroman 1, the methyl group in the 8-position could be retrosynthetically converted to the iodide 44, which would be synthesised from the Sonogashira product, the acetylene 46, via the saturated diol 45. According to this, the iodide 47 was the key compound to be prepared.

Little initially attempted to apply a 3 + 2 cycloaddition between benzyne and trimethylsilyl azide to prepare benzotriazole 49 (Scheme 13), the iodide 47 then could be achieved in a few steps.
Commercially available 4-bromo-2,6-dimethylanisole 48, a classical benzyne precursor, was treated with trimethylsilyl azide under basic condition at -78°C. The cycloaddition was not selective and multiple products (approximately 12) were formed.

After giving up the above method, Little began to focus on a five-step route13 to the synthesis of acetamide 55 (Scheme 14), which would hopefully be converted into the iodide 47 by diazotization and then iodination. Nitration of anisole 50 in concentrated acids gave nitro anisole 51, which was then reduced using a classic iron powder reduction method in the presence of a catalytic amount of hydrochloric acid to give the aniline 52. Protection by a standard triethylamine / acetyl chloride protocol afforded amide 53, which was followed by a second nitration which delivered \(o \)-nitroamide 54 in 90% yield. The acetamide 55 was then prepared via a transfer hydrogenation from cyclohexene before being subjected to the standard diazotisation condition to give 1-acetylbenzotriazole 56.
But this route failed at the iodination step: no reaction occurred with \(N\)-iodosuccinimide and catalytic amounts of \(p\)-toluenesulphonic acid\(^{14}\) tetrabutylammonium iodide in acetonitrile with two equivalents of ceric ammonium nitrate\(^{15}\) caused non-selective and multiple iodinations; stirring 1-acetylbenzotriazole 56 with molecular iodine, periodic acid and sulphuric acid\(^{16}\) in acetic acid was also problematic.

Therefore Little decided to follow a modified Campbell and Rees route to the 1-aminobenzotriazole,\(^1^a\) a classical way which was developed in 1969. In this case, 4-amino-2,6-dimethylanisole 52 was the starting point for this route (Scheme 15).
Diazotization of amine 52 under standard conditions, followed by a nucleophilic addition of dimethyl malonate led to the hydrazone 58. Nitration of this hydrazone 58 gave \textit{o}-nitrohydrazone 59 which was reduced to the diamine derivative 60 by transfer hydrogenation from cyclohexene. Again, a standard diazotisation afforded the protected benzotriazole 61. At this point, the direct iodination procedures, which were described earlier were applied again, this time on benzotriazole 61; again, no useful reactions occurred.

At this stage, Little returned to the lithiation protocol, which had been developed for the unsubstituted aminobenzotriazoles, to form the iodide 47. Deprotection of benzotriazole 61 in acidic conditions gave the free 1-aminobenzotriazole 62, and was followed by the one-pot protection procedure to give \textit{mono}-carbamate 63. After forming the dianion intermediate by the standard procedure from \textit{mono}-carbamate 63, 1,2-diiodoethane was added as the electrophile, but multiple addition products were formed. Little then used a better electrophile, tributyltin chloride, to trap the presumed lithium dianion. As a result, two substituted products were found: the desired stannane 64, in a poor 18\% yield, along with stannane 65 in 27\% yield.

Despite this, the iodination was still performed by treating the stannane 64 with molecular iodine in dichloromethane at room temperature. The key iodide 47 was then obtained but obviously in an unacceptably low overall yield. However, sufficient material was isolated to allow a further preliminary study.
Therefore, Little’s next step was to attempt a Sonogashira coupling of the key iodide 47 with diol 69 (Scheme 16).
Scheme 16

The enyne 68 was produced by Sonogashira coupling between 2-bromopropene 66 and trimethylsilylacetylene 67 at room temperature. AD-mix reaction of enyne 68 followed by deprotection afforded diol 69. Analytical methods such as Mosher’s ester and chiral GC ‘failed to give clear results and therefore enantiomeric mixtures cannot be ruled out’, Little stated. The key Sonogashira coupling of iodide 47 with diol 69 under reflux as mentioned above, gave the diol 70 in 85% isolated yield.

It now only required a hydrogenation to saturate the aliphatic chain, followed by deprotection / cyclisation, to achieve the target. Unfortunately, the attempted hydrogenation, using the method employed previously, did not return any product, possibly due to the very small scale (Scheme 17).
Overall, it can be stated that Little made substantial progress in the area of synthesising ortho-substituted benzyne precursors, as well as in the benzyne cyclisation chemistry using oxygen nucleophiles. He has also opened a new entry towards the natural product Vitamin E (α-tocopherol) synthesis. Against the background of Little's research, the current project was aimed at developing this new route towards the optically pure Vitamin E precursor 1.

1.2 A General Introduction to Benzyne

Benzyne 72 is considered to be one of the classic reactive intermediates in organic chemistry. This highly unstable, neutral species can be derived formally by the removal of two adjacent hydrogen atoms from an aromatic ring.

1.2.1 Structure and reactivity

The first proof of benzyne came from Roberts\(^1\) in 1953. His experiments on the conversion of \(^{14}\text{C}\)-labeled chlorobenzene with potassium amide into aniline gave strong support to the intermediacy of \(o\)-benzyne in this and related reactions. Additional direct evidence for the existence of benzyne was provided by the observation of its infrared spectrum, solid-state \(^{13}\text{C}\) dipolar NMR spectrum, \(^1\text{H}\) and \(^{13}\text{C}\) NMR in a molecular cage and by ultraviolet
photoelectron spectroscopy.18 Benzyne has been the subject of extensive high-level theoretical studies.

The experimental findings and theoretical calculations agree in concluding that benzyne has the general structure depicted above, in which a degree of triple bonding with some diradical character exists between two adjacent carbons.

Even at low temperatures, benzyne is extraordinarily reactive. The reactions of this compound can be divided into three groups: pericyclic reactions, nucleophilic additions and transition metal-catalysed reactions.

1.2.2 Generation of benzyne

Benzyne is an important reactive intermediate and many studies on its generation have been undertaken. Due to their extreme reactivity, benyznes must be trapped \textit{in situ}. The generation methods most widely used are summarised in Scheme 18.18

![Scheme 18]

A halide 73 can be treated with a strong base, such as butyl lithium or sodamide, to remove the \(o\)-aromatic proton and generate benzyne \textit{via} an anion. The use of strong bases which may act as nucleophiles can be avoided by treatment of \(o\)-dihalosubstituted benzenes 75 with a metal (lithium or magnesium) to generate an \(o\)-metallohalobenzene 76, which rapidly collapses to benzyne by elimination.
A more recent and milder method features a very similar mechanism to the metal-halogen exchange method and is instigated by fluoride attack onto a silylbenzene 81, having also an excellent leaving group (triflate) in the ortho-position (Scheme 19).

![Scheme 19](image)

In contrast, another classical approach operates under mildly acidic conditions by diazotisation of anthranilic acid 80. Neutralising the diazonium salt with NaOH gives a zwitterion 79 with the negative charge on the carboxylate. The loss of nitrogen and carbon dioxide delivers benzyne 72.

Alternatively, oxidation of aminobenzotriazole 78 usually produces good yields, but has the disadvantage of requiring an oxidant such as lead tetraacetate in the reaction mixture.

Recent typical and improved examples of the different methods outlined above, in addition to novel methods, are introduced below.

![Scheme 20](image)

Metal-halogen exchange of o-halotriflates 83 with n-BuLi at -78°C produces arynes (Scheme 20).
Aryl triflates 86 react with lithium diisopropylamine (LDA) in diisopropylamine to give the corresponding amines 87, which must proceed by a benzyne mechanism (Scheme 21).18

Whereas o-halolithium or magnesium arenes readily undergo elimination to benzyne, o-fluoro and o-chloro-copper reagents 89 do not, and can therefore be used in nucleophilic displacements (Scheme 22).18

An efficient triphenylene synthesis involves o-sodiofluorobenzene 92 as an intermediate. Its fast decomposition gives rise to a high benzyne concentration and hence a high yield of triphenylene 93 (Scheme 23).18
A remarkable generation of a benzyne intermediate has been proposed in the thermal decomposition of azidoquinone 94 in benzene which provides cycloadduct 95 by reaction with the solvent (Scheme 24).18,19

\begin{center}
\begin{tikzpicture}
 \node (94) [catalyst] {
 \begin{tikzcd}
 \text{EtO} & \text{Cl} & \text{N}_3 \\
 & \text{Me}_3\text{Si} & \text{O} \\
 & & \text{NC} \\
 \end{tikzcd}
 }
 \node (96) [below right=1cm of 94] {
 \begin{tikzcd}
 \text{Cl} & \text{O} & \text{O}^* \\
 & \text{NC} & \text{SiMe}_3 \\
 \end{tikzcd}
 }
 \node (95) [above right=1cm of 96] {
 \begin{tikzcd}
 \text{Cl} & \text{OH} \\
 & \text{NC} \\
 \end{tikzcd}
 }
 \node (97) [below right=1cm of 96] {
 \begin{tikzcd}
 \text{Cl} & \text{OSiMe}_3 \\
 & \text{NC} \\
 \end{tikzcd}
 }
 \draw[->] (94) -- (95) node [midway, above] {PhH};
 \draw[->] (96) -- (97) node [midway, above] {PhH};
\end{tikzpicture}
\end{center}

Scheme 24

This unusual transformation is considered to proceed via the diradical intermediate 96, which suffers a trimethylsilyl shift from carbon to oxygen to give the benzyne 97. This then undergoes a Diels-Alder cycloaddition to the solvent resulting in adduct 95.

(Phenyl)\[\sigma\text{-}(\text{trimethylsilyl})\text{phenyl}\]iodonium triflate 100 readily prepared from \(\sigma\text{-bis(\text{trimethylsilyl})benzene}\) 98 and \(\text{PhI(OAc)}_2\) 99, was reported to be a new and efficient precursor of benzyne by Kitamura in 1995. Mild and neutral conditions provide adducts with typical agents.18

One limitation to many of these methods is the difficulty in synthesising substituted homologues.
1.2.3 Reactions of benzyne

The above chemistry demonstrates the wide range of conditions under which a benzyne can be formed, and now some example reactions of benzenes in synthetic organic chemistry are to be discussed. As was described in section 1.2.1, the reactions of benzyne can be divided into pericyclic reactions, nucleophilic additions and transition metal-catalysed reactions. Benzyne is well set up to act as a dienophile which, together with the strained nature of the triple bond, allows benzyne to undergo a wide range of facile cycloadditions.
1.2.3.1 Pericyclic reactions of arynes

The pericyclic reactions can be divided into several categories such as Diels-Alder reactions occurring in an inter- or intramolecular mode; [2+2] cycloadditions; [1,3]-dipolar cycloadditions; [1,4]-dipolar cycloadditions and ene reactions.\(^\text{18}\)

\textbf{A) Diels-Alder cycloadditions}

One of the main applications of benzyne is in the Diels-Alder cycloaddition reaction; this has been used both as a means of detecting benzyne and as a synthetic tool. Due to the highly dienophilic character of benzyne, the reaction is observed with a wide range of dienes.

Aromatic five-membered heterocycles react efficiently with benzyne to give the [4+2] cycloadducts. Furan and its derivatives have been widely used to intercept benzyne, and their adducts are useful as intermediates in the synthesis of naphthalenes, because the endoxide bridge can be readily cleaved by acids. One very recent example was reported by Caster.\(^\text{20}\) A series of fluorinated benzonorbornadienes were synthesised in high yields and selectivities by trapping the benzyne intermediates 102 with furan or N-methylpyrrole 106 (Scheme 26 & 26a).

![Scheme 26](image)

\(X=\text{Br}: 94\%\)
\(X=\text{Cl}: 9\%\)
In addition to the cycloadditions with various heterocyclic compounds, the reaction of benzyne with heterodienes has also proved to be a powerful tool in natural product synthesis. A new approach to the polycyclic framework of dynemicin A 109 was reported recently. The key step was the intermolecular Diels-Alder cycloaddition of pyrone 108 with benzyne 72 followed by CO₂ extrusion (Scheme 27).

As a complementary strategy to the intermolecular benzyne cycloaddition, the intramolecular cycloaddition approach has also been developed with the aim of preparing various alkaloids. For instance, treatment of amide 110 with LDA in THF achieved benzyne formation and intramolecular cyclization to afford the tetracyclic amide 112 in good yield. Mild oxidation followed by ring cleavage of lycorines 113 led to the phenanthridines 114 (Scheme 28).
B) [2+2] Cycloadditions

Benzynes are also well known to undergo [2+2] cycloadditions. They react with a wide range of olefins to give the [2+2] cycloadducts, benzocyclobutenes. Due to the electrophilic nature of benzyne, the reactions proceed best with alkenes that bear electron-donating substituents and this reaction offers a simple and direct route to useful synthetic intermediates.

Treatment of 1,4-dibromobenzene 115 with NaNH₂ in the presence of 2-methylene-1,3-dioxepane 116 leads to benzo-*bis*-cyclobutene derivative 118, a precursor of tricyclodione 119 (Scheme 29).²³
C) [1,3]-Dipolar Cycloadditions

Another well exemplified reaction of benzyne is the [1,3]-dipolar cycloaddition with a wide variety of stable [1,3]-dipolar compounds.

In 1993, Suzuki et al. studied the regiochemistry of cycloadditions of unsymmetrical benzyynes with nitrones. They showed the effect of the C(3)-substituent of the benzyne on the regioselectivity of the benzyne-nitrone cycloaddition (Scheme 30).

The regioselectivity of such cycloaddition was explained in a general form as shown below (Scheme 31). If the C(3) substituent R was an electron-withdrawing group, e.g., the OMOM in entry 1, the contribution of C would be dominant so that a dipole B would react in a way that leads to the formation of adduct F. An electron-donating group, e.g., when R = Me in entry 2, would behave in the opposite manner.
However, the steric factor also influences the regioselectivity. In the case of R = t-Bu (entry 3), adduct 125 was the major product. These observations could be rationalized as follows (Scheme 32).

The reaction process was governed by the direction of the nucleophilic attack of the oxygen terminus with high electron density. In the type D case the attack of the oxygen occurs at C(2) while the steric interaction discourages this C-O bond formation. Thus, the two factors, electronic and steric, work against each other in terms of the regioselectivity. Note that the type C is free from steric hindrance.

D) [1,4]-Dipolar Cycloadditions

A [1,4]-dipolar benzyne cycloaddition has been applied to the preparation of an important intermediate in the synthesis of daunomycinone.25 Cycloaddition of lithiated 2-cyanophthalide 127 with the benzyne intermediate generated from bromodimethoxynaphthalene 128 gave tetracyclic olefin 129 and 130 in moderate to good yields.
(Scheme 33). During this key reaction, cyanophthalides functioned as 1,4-dipoles and the benzyne behaved as a 1,2-dipole.

\[
\begin{align*}
\text{CN} & \quad \text{Br} & \quad \text{OMe} & \quad \text{LDA} & \quad \text{R} & \quad \text{OMe} & \quad \text{R} & \quad \text{OMe} \\
127 & \quad 128 & \quad 129 & \quad 130 \\
\end{align*}
\]

R = H: 73%, R = OMe: 66%

Scheme 33

E) Ene Reactions

The ene reactions of benzyne with olefins and imines have been used essentially to detect benzyne. Benzyne 72 will react with trans double bonds which have an allylic hydrogen atom (such as imine 131) to give ene adducts (such as 134) (Scheme 34).\(^{26}\) However this type of reaction has not been extensively employed for synthesis.

1.2.3.2 Nucleophilic additions to benzyne

Benzyne 72 has the ability to act as an electrophile to a wide range of nucleophiles. From a synthetic point of view, the most interesting species are probably nitrogen-bearng nucleophiles and carbanions (Scheme 34).

The reaction of benzyne with primary and secondary amines provides a convenient route to different anilines. Various precursors of benzyne have been involved in this kind of reaction, but one of the most recent examples is the synthesis of iodoanilines 138 from iodobenzene 135, which was reported by Durst et al. (Scheme 35).\(^{27}\)
The lithio derivatives 136, formed by the trapping of benzyne with lithium amine, combine rapidly with unreacted iodobenzene 135 to give the ate complexes 137, which are unreactive towards typical electrophiles but are in equilibrium with their components.

The addition of carbon nucleophiles to benzyne intermediates could be divided into two types. One is the addition of lithioacetonitrile derivatives and the other is of lithio enolates.

The reaction of benzyne 72 with α-lithionitrile 138 in the presence of iodobenzene gave 2-iodobenzyl cyanides 141 as the major products. Again, this presumably takes place via the iodine-ate complexes 140 (Scheme 36).
Very recently, Kita et al.29 reported the total synthesis of a potent antitumour antibiotic, fredericamycin A, which involved the addition of the malonate anion 145 to a substituted benzyne 144 (Scheme 37). Reaction of bromo benzene 142 with lithium tetramethylpiperidide and dimethyl malonate anion 145 afforded a regioisomeric mixture (2:3) of the homophthalates 146 and 147 through a non-regioselective addition of the lithiomalonate to the benzyne intermediate. Each regioisomer was readily separated by column chromatography to give the pure products.
1.2.3.3 Transition metal-catalysed reactions of benzenes

Benzynes participate in a number of synthetically useful metal-catalysed transformations, but the synthetic applications of metal-benzyne complexes are still limited owing to the lack of a general and mild method for their generation and the need for stoichiometric amounts of metal.\(^{18}\)

Very recently, Yamamoto et al.\(^{30}\) found that benzyne was very reactive as a carbo-palladation partner to \(\pi\)-allylpalladium chloride. 1,2-Diallylated derivatives of benzene 153 were prepared by the reaction of benzyne 150 with a \(\textit{bis-}\pi\)-allylpalladium complex generated from allyl chloride 151 and allyltributylstannane 152 (Scheme 38).

A mechanism for this intermolecular benzyne-alkene insertion reaction is shown below (Scheme 39). Insertion of Pd(0) to allyl chloride 151 gives the \(\pi\)-allylpalladium complex 154, which can be converted to \(\textit{bis-}\pi\)-allylpalladium 155 by reaction with allyltributylstannane 152. Subsequent addition of the two allyl groups of \(\textit{bis-}\pi\)-allylpalladium 155 to the triple bond of benzyne 156 gives the 1,2-diallylated benzene 153 and regenerates the Pd(0) species.

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 & \quad \text{R}^1 \quad \text{R}^2 \\
\text{150} & \quad \text{151} & \quad \text{152} & \quad \text{153} \\
\text{R}^1 = \text{R}^2 = \text{H}: \quad \text{76}\% & \quad \text{R}^1 = \text{H}; \quad \text{R}^2 = \text{Me}: \quad \text{67}\% & \quad \text{R}^1 = \text{OMe}; \quad \text{R}^2 = \text{H}: \quad \text{81}\% & \quad \text{R}^1 = \text{H}; \quad \text{R}^2 = \text{Cl}: \quad \text{40}\% \\
\end{align*}
\]

Scheme 38
1.3 Towards the Total Synthesis of Vitamin E Precursor Using Intramolecular Benzyne Trapping By Alcohol

1.3.1 The use of 1-aminobenzotriazole as a benzyne precursor

As it was described in section 1.2.2, the classical methods for benzyne generation, such as elimination of hydrogen halide from halobenzenes and halogen-metal exchange, are generally under strongly basic conditions. Alternatives which avoid strongly basic conditions include the use of another classical benzyne precursor, anthranilic acid 80, together with a variety of heteroaromatic systems, such as 1-aminobenzotriazole 9. As has recently been succinctly emphasised: “An important drawback of the aryne routes starting with bidentate or cyclic precursors can be the effort needed to prepare the precursor itself, especially for substituted arynes. However, these have the advantage that the arynic bond can be generated without positional ambiguity.”31 Certainly, a number of relatively complex benzyne precursors have been prepared, most often from bromobenzenes; few has been reported on the synthesis of fully substituted 1-aminobenzotriazole, beyond the original studies by
Campbell and Rees, and a few more recent, usually symmetrical examples and higher homologues, together with a benzene fused to two aminotriazole rings, which effectively acts as a bis-benzyne precursor although, presumably, the process occurs in a stepwise fashion.\(^1\)

The use of 1-aminobenzotriazole 9 as a benzyne precursor was highlighted by Campbell and Rees\(^1\) who demonstrated the ease of formation of the parent benzyne 72 by oxidation to the intermediates 158, which rapidly disintegrate presumably by the spectacular cascade shown (Scheme 40).

\[\text{Scheme 40} \]

Two of the best methods identified for achieving this rely on direct oxidation by lead(IV) acetate, in which case \(X = \text{OAc}\), or using N-bromosuccinimide, when \(X = \text{Br}\).

1.3.2 Hydroxyl group acting as intramolecular traps for benzyne

The extremely mild conditions associated with the oxidation methods stand in stark contrast to the alternatives outlined above which employ various strong base-induced eliminations from halo- or dihalo- benzenes. It occurred to us that these oxidative conditions might be compatible with hydroxyl groups and perhaps enable these to act as intramolecular traps for the benzyynes so generated, as indicated in formula 159.

\[\text{159} \]

In great contrast to related intramolecular cyclisations using amino- and enolate nucleophiles, such trapping by hydroxyl functions was virtually unknown and then using
only very simple types of alcohol. Arynes are soft electrophiles, but alkoxides are hard nucleophiles, the latter inevitably formed in base-induced aryne formation, would be expected to be less reactive partners. While intermolecular trapping of benzyne by phenols was well precedented, related intramolecular reactions were almost unknown until recently.

1.3.3 Novel strategy towards the vitamin E precursor based on the intramolecular trapping by -OH of benzyne

Little’s routes towards the Vitamin E precursor 1 (described in the first section) have foundered due to the following reasons: the lateral deprotonation with base was not regioselective and resulted in the generation of similar amounts of stannanes 64 and 65, both in poor yields; and diol 70 could not be reduced to its saturated homologue diol 71. Therefore, a new route was developed during the present project, which avoided metallation chemistry and hydrogenation of the diol 70. The retrosynthetic route is show in Scheme 41.
The chroman \((S)-44\) would be produced from iodocyclisation of the benzyne intermediate \((S)-160\), which could be synthesised from the benzyne precursor, benzotriazole \((S)-161\). The benzotriazole \((S)-161\) may be made by diazotisation of amide \((S)-162\) followed by cyclisation, according to Little’s method (Scheme 14). Amide \((S)-162\) could in turn be formed by hydrogenation of acetylene \((S)-163\). Presumably, this hydrogenation is more promising since acetylene \((S)-163\) is less steric hindered than diol 70. Then it was hoped that Sonogashira coupling of iodide 164 with optically pure diol \((S)-69\), using the protocol developed by Little, would give the acetylene \((S)-163\). At this point, the electron-withdrawing nitro group on the position \textit{para} to iodine may activate the reaction and make the coupling more facile. If successful, this would prove to be an improvement on the previous route to this highly important natural product. Another important issue requiring attention was also the realisation of an asymmetric synthesis of the diol 69.

1.4 An Introduction to Vitamin E

Vitamin E was discovered 80 years ago and is best known as an important food supplement in the nutrition of humans and animals.

1.4.1 The structure

Vitamin E occurs naturally in eight main forms: \(\alpha\), \(\beta\), \(\gamma\), and \(\delta\)-tocopherols 165 and the four corresponding tocotrienols 166 \(^{32}\) (Scheme 42). The \(\alpha\), \(\beta\), \(\gamma\), and \(\delta\)-homologues vary by the methylation patterns of the common chromanol moiety. Tocotrienols differ from tocopherols by possessing three double bonds rather than a saturated side chain. \(\alpha\)-Tocopherol shows the highest Vitamin E activity in both animals and humans and is the predominant tocopherol in tissue. \(^{33}\)
1.4.2 Food sources

The tocopherols occur in a variety of plant life such as nuts, seeds, oils, fruits, vegetables, and grasses. The tocopherols are interconvertible in plants and during germination and growth: the \(\alpha \)-form is synthesized from other tocopherols by transmethylation. Tocopherol content of foods depends upon the stage of life cycle, agronomic and genetic factors, season, weather, harvesting methods, processing procedures, storage environment and time periods of storage. The feeding of vitamin E to cattle, pigs and poultry results in increased levels of the vitamin in meat, milk and eggs and, if given in sufficient quantity, is effective in preventing oxidative rancidity and resultant off-flavours in these foods.33

1.4.3 Biochemical function

Vitamin E is primarily concerned with the protection of cellular membranes from damage resulting from both endogenous and exogenous sources of free radicals.33 Free radicals in biological systems can be formed through homolytic cleavage of covalent bonds in organic compounds, in which each fragment retains one electron of the original bonding pair. Radicals can also be produced from the capture of an electron by a molecule.

The principle role of vitamin E as an antioxidant is to neutralize free radicals. Quenching of a free radical 167 by vitamin E results in the formation of a tocopherol semiquinone radical.
168 which rapidly degrades to non-radical products. For example, α-tocopherol can donate a phenolic hydrogen atom to a free radical, thereby resolving the unpaired electron of the radical and oxidizing the tocopherol to its quinone form 169 (Scheme 43).

\[\begin{align*}
\text{RH} & \quad \text{HO} \\
\alpha\text{-Tocopherols} & \quad 165 (\alpha) \\
+ & \quad \text{R}^* \\
167 & \quad 168 \\
\quad \downarrow & \quad \quad \text{C}_{16}\text{H}_{33} \\
\quad \quad & \quad 169
\end{align*} \]

Scheme 43

In addition to its antioxidant functions, vitamin E is now known to act through other mechanisms, having direct effects on inflammation, blood cell regulation, connective tissue growth and genetic control of cell division.34

1.4.4 Vitamin E deficiency

Vitamin E deficiency is defined as a low blood tocopherol level or evidence of \textit{in vitro} haemolysis of erythrocytes exposed to hydrogen peroxide or other oxidants.33 Dietary deficiency of vitamin E may be associated with disorders of the vertebrate reproductive system, skeletal muscle, nervous system, cardiovascular system, haematopoietic tissue and liver. In addition, a recent study by Finnish scientists shows that the long-term use of a moderate-dose vitamin E supplement substantially reduced prostate cancer incidence and deaths in male smokers.35

Although many scientific questions remain with regard to the role of vitamin E in human and animal physiology, the research to date shows a great deal of promise. It was concluded
eighty years after the discovery of vitamin E: "it is time to take it more seriously and undertake the research needed to determine what makes it a real vitamin."³⁵

1.5 Previous Routes Towards the Total Synthesis of Vitamin E

During the past 50 years, Vitamin E has received increasing attention with regard to the total synthesis of the major naturally occurring form, α-tocopherol 165(α). In 1979, Cohen and co-workers³⁶ developed new strategies towards α-tocopherol 165(α) by formation of substituted heterocyclic rings from p-benzoquinone as key intermediates (Scheme 44). (S)-Phenol 170 was synthesised via a seven-step sequence starting from (S)-2-methyl-5-oxotetrahydro-2-furoic acid, which was prepared from its racemic form by resolution with cinchonine. Oxidation of (S)-phenol 170 with excess Fremy’s salt (dipotassium nitrosodisulfonate) furnished the (S)-p-benzoquinone 171. Treatment of this quinone with aqueous methanolic HCl afforded the bridged tricyclic monoketal 172. Selective scission of the oxymethylene bridge with hydrogen-palladium on carbon led to the desired (S)-chroman-2-methanol 174. Chromanol 174 was also accessible from alternative sequences not involving ketal 172. The hydroquinone acetonide 173, obtained by catalytic hydrogenation of 171, yielded chromanol 174 when exposed to refluxing, dilute methanolic H₂SO₄.
Alternatively, hydrolysis of (S)-phenol 170 gave the phenol diol 175 which was oxidized to the quinone 176 using Fremy’s salt. Catalytic hydrogenation under neutral conditions produced the air-sensitive hydroquinone diol 177. Upon treatment with p-toluenesulfonic acid in refluxing benzene, diol 177 was transformed into chromanol 174, in a similar manner.

The proposed mechanism for the key cyclisations of diol 177 is shown below (Scheme 45).

Acid-induced tautomerisation of the hydroquinone moiety 177 could give the keto-tautomer 178. The subsequent attack of the tertiary hydroxyl and rearomatization with loss of a water molecule should generate the observed chromanol 174. The intermediate 179 could also be attacked by the primary hydroxyl group to form tricyclic ketal intermediate 180, which again rearomatizes to give the observed product 174.
Cohen’s cyclodehydration method as well as the selective hydrogenation method (Scheme 44 from 172 to 174) to achieve the chroman moiety were so crucial that they have been applied in the following vitamin E syntheses which were developed later.

In 1985, Kunihiko and co-workers reported the synthesis of (S)-chromanmethanol 174 by utilizing the asymmetric epoxidation of (E)-allylic alcohol 183, which was made from an aromatic Grignard reagent (Scheme 46).
Treating bromide 181 with magnesium in THF followed by reaction with the isoprene oxide 182 and Cul at low temperature afforded the (E)-allylic alcohol 183. Sharpless asymmetric epoxidation gave the (2R,3R)-epoxy-alcohol 184. Reductive opening of the epoxide using lithium aluminium hydride, followed by protection of the diol product provided the acetonide 185. The aromatic ring was then oxidised with ceric ammonium nitrate (CAN). Subsequent acetonide deprotection with acid and dehydration afforded tricyclic monoketal 173. Reductive transformation using the method described previously (Scheme 45) gave chromanol 174 in a respectable yield (62%) from the monoketal 173.

Ten years later, an approach to (S)-chromanethanol 192, via deprotection and cyclisation of MOM protected diol 190 to benzylchromanethanol 191 in one step, was reported (Scheme 47).
Acetylation of the hemiacetal 186 gave the acetate 187, which then underwent Wittig reaction with trimethyl phosphonoacetate followed by reduction with DIBAL to afford the (E)-allylic alcohol 188. Chemoselective protection using MOMCl with subsequent Sharpless asymmetric epoxidation afforded the optically active epoxy-alcohol 189. The ensuing reduction with Red-Al gave the diol 190, then cyclisation by treatment with Ph$_3$CBF$_4$ gave the (S)-chromanethanol 191, with retention of absolute configuration, supposedly by double inversion (Scheme 48). Finally, deprotection of the benzyl group of 191 by palladium-catalysed hydrogenolysis gave the (S)-chromanethanol 192.

The double inversion (net retention) mechanism shown above has already been reported by Cohen et al. It involves formation of the (R)-oxetane 194 followed by an intramolecular, backside attack on the oxetane ring by the phenolic hydroxyl group.

A more recent synthetic route was reported by Tietze et al., whose approach to vitamin E is laid out below (Scheme 49). Catalytic asymmetric dihydroxylation (AD-mix reaction) has been applied to obtain the vitamin E precursor 202 with high enantiomeric excess (ee.).

A coupling reaction between iodine 195 and enyne 196 using Negishi’s procedure gave enyne 197. A subsequent AD-mix-α reaction on the double bond of the side chain afforded optically active diol; reduction of the triple bond with Adams’ catalyst followed by acetalisation with methyl isopropenyl ether (MIPE) then produced acetonide 198. Oxidative demethylation with CAN generated the quinone 199, which was cyclised to acetal 200 under acidic conditions. The following hydrogenation led to rearomatisation and deprotection of the

Scheme 48

45
benzyl ether; selective benzylation of the phenol with benzyl chloride gave diol 201 and subsequent oxidative cleavage of the diol accomplished the synthesis of aldehyde 202.

\[
\begin{align*}
\text{195} + \text{196} & \xrightarrow{n\text{-BuLi, THF, DMPU, -40°C, r.t., ZnCl}_2} \text{197} \\
\text{199} & \xrightarrow{\text{MeOH, 1N HCl}} \text{200} \\
\text{201} & \xrightarrow{\text{NaIO}_4, \text{H}_2\text{O, dioxane}} \text{202}
\end{align*}
\]

Scheme 49

In summary, the chroman moiety of vitamin E precursor has been synthesised via a variety of routes. To the best of our knowledge, most of the previous methods applied Cohen's procedure with quinone and hydroquinone cyclisations to achieve the chroman skeleton. This thesis will introduce a novel approach towards vitamin E in which the chroman core is successfully generated by intramolecular cyclisation of a hydroxy group onto a benzyne.
Chapter Two

Towards the Total Synthesis of Vitamin E

Precursor
2.1 Introduction
On the basis of Dr Little’s study on benzyne chemistry and his initial but unsuccessful approaches towards a vitamin E precursor, the current project is aimed at exploring a new route towards this crucial natural product, by using our well-developed intramolecular benzyne trapping technology. The retrosynthesis of this new route was laid out in Scheme 20 (Chapter 1), and was followed by an analysis of the retrosynthesis. According to this method, the synthesis was divided into three parts: 1) synthesis of the fully substituted aryl iodide 164; 2) synthesis of the necessary alkyne-diol 69 as a single enantiomer; 3) synthesis of chroman (S)-44, which has the \(R \) \(\alpha \)-tocopherol 43 stereochemistry. Due to sequence rules (Cahn-Ingold-Prelog) the \(R \) and \(S \) descriptors change; the stereochemistry does not.

![Scheme 50](image)

According to Little’s work, amide 53 was prepared from commercially available 2,6-dimethylanisole 50 by classical methods (Scheme 14, Chapter 1).\(^{42}\) Presumably, the subsequent iodination and nitration on the two free positions of the benzene ring should readily give us the key aryl iodide 164 (Scheme 51).

![Scheme 51](image)
For the second part of this approach, it was thought that our necessary alkyn-diol 69 could be made from the ynol 204. Dehydration of this tertiary alcohol by Carothers’s method43 gives enyne 205. Applying asymmetric dihydroxylation (AD-mix reaction) to the enyne 205 should give the alkyne diol 69 (Scheme 52). Due to the small steric bulk of the flat triple bond on the enyne 205, it could be difficult to obtain the alkyne diol 69 in high enantiomeric excess (ee.) under the AD-mix conditions. But considering that this is a quick way to access the required compound, we still decided to apply this popular method during the first stage.

![Scheme 52](image)

The last part of our total synthesis, which probably would be more difficult than the above two parts, starts with a Sonogashira coupling of the key iodide 164 and the alkyne diol 69, to give acetylene 163. Our initial retrosynthetic analysis from this point is laid out in Chapter 1 [Scheme 41, p.36].

2.2 The Synthesis of Iodide 164

To build our key iodide 164 from the commercially available 2,6-dimethylanisole 50, the first step was a nitration using concentrated nitric acid and glacial acetic acid44 (Scheme 53).

![Scheme 53](image)

The anisole 50 is stirred in acetic acid at 0°C before the nitric acid is dripped in very slowly (Caution: Towards the end of the nitric acid addition, the temperature of the reaction increases rapidly and large volumes of nitrogen oxides are evolved. This reaction must be undertaken in an efficient fume hood, preferably with the sash pulled down. Upon cooling,
the reaction mixture becomes immobile.) Once the addition of nitric acid was complete, the reaction mixture was slowly heated to just over 65°C (on a large scale, it has the risk of explosion if heated much above 70°C) before being allowed to cool to ambient temperature over the course of 2 hours. By addition of water to the reaction mixture, a complete precipitation of the yellow \(p \)-nitroanisole 51 occurs. The product is collected by filtration and recrystallised from methanol to give product as bright yellow crystals in around 60% yield, which had a melting point agreeing with the literature.

The mechanism of this electrophilic aromatic substitution can be explained as follows (Scheme 54). The lone pair of electrons on the oxygen contribute to a high-energy ‘highest occupied molecular orbital’ (HOMO) and these electrons are fed through the benzene ring to emerge at the \(para \) position to attack the nitronium cation.

![Scheme 54](image)

The methoxy group, being electron-releasing as a result of this strong resonance effect, is said to be an \(ortho, para \)-directing group towards electrophiles, while the two methyl groups are moderately electron-donating by the inductive effect and are also activating and hence \(ortho \)- and \(para \)-directing. As a result, the more powerful activating group- the methoxy group- has the dominant influence and gives \(p \)-nitroanisole 51 as the major product, even though the directing effects of the three groups are opposite to each other.

From another point of view, formation of the \(para \)-substituted nitroanisole 51 can also be explained by analysing the reaction intermediate. For this reaction, the following intermediates are possible, depending on whether the electrophile attacks \(meta \) or \(para \) to the methoxy group (Scheme 55).
Each intermediate is stabilized by delocalisation of the positive charge over three carbon atoms in the ring. If the electrophile attacks para to the electron-donating methoxy group, the positive charge is further delocalised directly onto the oxygen, but the intermediate in meta substitution does not enjoy this extra stabilization. Therefore, the extra stabilization in the intermediate in para substitution means that the transition state is lower in energy than that in meta substitution.

The nitration product was subsequently reduced to the amine 52, smoothly by a transfer hydrogenation from cyclohexene (Scheme 56).45

\[p\text{-Nitroanisole } 51 \text{ was refluxed in ethanol with a large excess of cyclohexene in the presence of a catalytic amount 10\% palladium on carbon. The reaction can be followed easily by t.l.c.} \]

A brown solid amine 52 was obtained in a high 91\% yield after filtration and evaporation of the solvent. The reaction occurs by transfer of hydrogen from cyclohexene to the nitro group via the palladium-carbon catalyst, with the formation of benzene. The process therefore
involves donor dehydrogenation and acceptor hydrogenation by the catalyst. According to proton NMR of the crude product, it was sufficiently pure for the following reaction. This was a much more convenient method than tin-HCl or Zn-HCl reduction.

The relatively unstable free amine 52 was then protected as its acetamide 53, which is much less nucleophilic, to prevent it interfering in the following steps. Subsequently, iodination using \(N \)-iodosuccinimide (NIS) in glacial acetic acid formed iodide 203 (Scheme 57).

\[
\begin{array}{c}
\text{52} \\
\xrightarrow{\text{AcCl, THF, Et}_3\text{N, r.t., overnight}} \\
\text{89\%} \\
\end{array}
\quad \xrightarrow{\text{NIS, AcOH, reflux, 1.5h}} \quad \begin{array}{c}
\text{53} \\
\text{70\%} \\
\end{array}
\quad \begin{array}{c}
\text{203} \\
\end{array}
\]

Scheme 57

Amine 52 was derivatised by a standard triethylamine/acetyl chloride protocol, to give the acetamide 53 as colourless crystals in 89% yield, after recrystallisation from ethanol. This was a modification and compares to Little’s report of orange crystals in 80% yield. The mechanism of this nucleophilic substitution is laid out below (Scheme 58).

The first step of the reaction is addition of the nucleophilic amine to the electrophilic acyl chloride. Triethylamine removes the proton from the amine as it attacks the carbonyl group. The tetrahedral intermediate 212 is unstable. It collapses by an elimination reaction and loses chloride ion and forms the amide 53.

\[
\begin{array}{c}
\text{52} \\
\xrightarrow{\text{AcCl}} \xrightarrow{\text{Cl}} \\
\text{211} \\
\xrightarrow{\text{N}_3\text{Et}_3} \xrightarrow{\text{N}} \\
\text{212} \\
\xrightarrow{\text{Cl}} \\
\text{53} \\
\end{array}
\]

Scheme 58

Acetamide 53 then underwent iodination with NIS by heating under reflux in glacial acetic acid (Scheme 59) and afforded the iodoanisole 203 in 70% yield after recrystallisation. This
is again an electrophilic aromatic substitution in which NIS provides iodonium cations for
the reaction. As the acetamide 53 is symmetrical, there is only one possible product, unless a
double iodination occurs. This did not appear to happen presumably because of the
deactivating effect of the new iodine atom.

Nitrination of the remaining free position in iodoanisole 203 provided the key aryl iodide 164
as pale yellow crystals (52%).

The reaction took much longer (5 hours), compared to the previous nitration of 2,6-
dimethylanisole 50, which went to completion in less than 2 hours. This may be caused by
the steric hindrance from the adjacent methyl and acetyl groups of the substitution position
on the benzene ring.

The idea was then to introduce the necessary side chain using a Sonogashira coupling, and so
the powerful electron-withdrawing nitro group was retained to assist this reaction.
2.3 The Preparation of 3,4-Dihydroxy-3-methyl-1-butyne 69

The retrosynthetic analysis (Scheme 61) shows that the diol 69 could be obtained by an asymmetric dihydroxylation reaction (AD-mix reaction) on the butyne 205, which should be readily prepared by a dehydration reaction of ynol 204.

![Scheme 61](image)

Following the above procedure, butyne 205 was made from ynol 204 by refluxing with acid (Scheme 62).

![Scheme 62](image)

Dehydration of the ynol 204 occurred under reflux with an equal weight of p-toluenesulfonic acid monohydrate. The highly volatile product, the butyne 205 (b.p. 34 °C), was distilled into a receiving flask as it was formed, along with a small amount of water by-product and the starting material. The crude product was purified by redistillation at 50°C to afford the pure butyne 205 as a colourless liquid. Although the yield was poor (29%), by reacting at a scale of 50 g of starting material, the reaction gave a sufficient amount of substrate. The starting ynol 204 is a very cheap adduct formed from ethyne and acetone. The mechanism of this dehydration is believed to follow an E1 elimination procedure, during which the unimolecular loss of water from the protonated cation 218 was the rate-determining step (Scheme 63).
As a weak nucleophile, counterion 217 of the toluenesulfonic acid does not attack the carbon of the carbocation 219, but only removes its proton and forms butyne 205 as the product.

AD-mix-β reaction on butyne 205 afforded the non-racemic diol \((R)-69\) smoothly in a reasonable yield (Scheme 64). (Since the AD-mix-β reagent was readily available in our laboratory, it was used in the experiment.)

The typical protocol for dihydroxylation to make racemic diol 69 was also applied, by using quinuclidine as the ligand instead of \((DHQD)_2PHAL\). The same product (according to NMR) was achieved, albeit in lower yield (45%). The racemic diol would be necessary in determining the optical purity of the asymmetrical dihydroxylation (AD) product.

Determination of the enantiomeric excess (ee) of the non-racemic diol \((R)-69\) from the AD-mix reaction, using chiral high performance liquid chromatography (HPLC) or gas chromatography (GC), failed to give clear separation of the enantiomers. Presumably, this was due to the high polarity and small size of the diol \((R)-69\). Therefore, the compound was
selectively protected by a benzoyl group to afford a larger molecule, the benzoate 220 with lower polarity (Scheme 65).

\[\text{(R)-69} \xrightarrow{\text{PhCOCl, dry DCM, NEt}_{3}, \text{overnight, r.t.}} \text{220} \]

Scheme 65

The esterification proceeded by stirring the diol (R)-69 with benzoyl chloride and triethylamine (NEt\(_3\)) in dry dichloromethane. The expected product was obtained in a 71% yield. As a result, GC analysis of the benzoate 220 showed a poor ee of 5.6% (CDX-β column; temp.: oven- 150°C, detector- 300°C, injection- 250°C; column head pressure- 20 PSI, retention time: 14.2 min.).

We realised that it would be difficult to achieve the optically pure product due to the structure of butenyn 205. Since the terminal triple bond is among the sterically least demanding functional groups, and as terminal double bonds are also known to not perform well in AD reactions, the enantioselectivity was therefore poor. But considering that the two steps are both simple reactions and are readily scaled up to multigram scale if required, we decided to temporarily follow this method to prepare our necessary side chain diol 69. If the following study proved our synthetic route towards vitamin E is efficient, a new way of making the optically active diol (S)-69 could probably be developed.

Until now, a large amount of the side chain diol 69 has been made, although in a poor ee. We were now ready to start part three of our total synthesis, which begins with the cross coupling of the two moieties, the iodide 164 and diol 69. The problem of the low ee of the latter would have to be addressed later, given that the subsequent steps could be made to work.
2.4 The Sonogashira Coupling

The Pd-Cu catalysed cross-coupling reaction of terminal acetylenes with sp^2-C halides was developed by Sonogashira three decades ago. He showed that a terminal acetylene 222 could be coupled directly with vinyl or aryl halides 221 in the presence of bis-triphenylphosphine palladium(0) dichloride and copper(I) iodide under mild basic conditions, to form either enynes or aryl acetylenes 223 (Scheme 66).

\[
\begin{align*}
\text{Hal} & \quad \text{(PPh}_3\text{)}_2\text{PdCl}_2, \text{ Cul} \\
\text{R} & \quad \text{R}_3\text{N} \\
\text{221} & \quad \text{222} \\
& \quad \text{223}
\end{align*}
\]

Scheme 66

The reaction could be considered to be an application of Pd-catalysis to the classic Stephens-Castro reaction (Scheme 67).

\[
\begin{align*}
\text{RX} & \quad \text{CuC=\text{-R'}} \\
\text{224} & \quad \text{225} \\
& \quad \text{pyridine} \quad \text{reflux} \\
& \quad \text{RC=\text{-R'}} \\
\end{align*}
\]

Scheme 67

Coupling of copper(I) acetylides 225 with aryl or alkenyl halides 224 under reflux with base gave aryl or alkenyl acetylenes 226.

Based on the above reaction, the Sonogashira coupling has been developed by combining a copper(I)-catalysed alkynylation of Pd complexes (cycle B and B', Scheme 68) and a Pd-catalysed cross coupling of sp^2-C halides with terminal acetylenes (cycle A). This protocol is based on the discovery of Cul-catalysed transmetalation with amine (cycle B and B'). and is constructed by a combination of three catalytic cycles (A, B, and B'). Although the reaction certainly follows the normal 'oxidative addition-reductive elimination' process common to many Pd-catalysed C-C bond-forming reactions, the exact mechanism for the
reaction is not known. In particular, the structure of the catalytically active species and the role of the Cul catalyst remain obscure.

The process may be considered to involve Pd0 species [Pd0] 229, neutral Pd0(PPh$_3$)$_2$ or anionic [Pd0(PPh$_3$)$_2$X]$^-$, which is generated from the Pd(II) pre-catalyst 227 to give the Pd(II) intermediate 230 by the oxidative addition of the sp^2-C halide. Subsequent reaction with a terminal acetylene, possibly via a transient copper acetylide species (Cycle B), leads to the alkynylpalladium (II) derivative 5 which proceeds to give the required coupled product and regenerates the active Pd species 231.

As a palladium source, (PPh$_3$)$_2$PdCl$_2$ 227 commonly is used in Sonogashira couplings, where a catalytically active, coordinatively unsaturated complex 229 is produced by reductive elimination of a Pd-acetylide complex, which is generated from (PPh$_3$)$_2$PdCl$_2$ 227 and a terminal acetylene (Scheme 68). In many cases, Pd(OAc)$_2$ or (CH$_3$CN)$_2$PdCl$_2$, two equivalents of a tertiary phosphine, L, and a terminal acetylene are used to reduce the Pd(II) complexes in situ to the catalytically active complexes 229.48 Pd0(PPh$_3$)$_4$, which generates
active catalytic species, Pd°(PPh₃)₂, after the loss of excess triphenylphosphine (Scheme 69) is also useful (L = PPh₃).

\[
\begin{align*}
\text{L-Pd}^{0}\text{-L} & \quad \text{unreactive} \\
\text{L} & \quad \text{reactive}
\end{align*}
\]

Scheme 69

tris-(Dibenzylidene-acetone)dipalladium(0), Pd°₂(dba)₃, in the presence of phosphine ligands (L), is also a useful Pd° source, where the dba ligand should easily be displaced to afford the active species, PdL₂ 235, in nearly quantitative amounts.

Recently, a room temperature Pd-catalysed reaction for less reactive aryl bromides was reported (Scheme 70).⁴⁹

\[
\begin{align*}
\text{Br} & \quad \text{R} \quad \text{H} \quad \text{R}' \\
\text{237} & \quad \text{222} & \quad \text{238}
\end{align*}
\]

Scheme 70

Aryl bromides 237 coupled with an equimolar amount of a terminal acetylene 222 at room temperature in quantitative yield. The reaction proceeds in 'Pr₂NH-dioxane in the presence of (PhCN)₂PdCl₂(3%), CuI(2%), and 'Bu₃P(6%) within 0.5-15h. Other phosphines such as PPh₃, P(o-tolyl)₃, dppf or PCy₃ are ineffective. This effect can be explained by the acceleration of the oxidative addition step (i) (Scheme 68) through coordination of a bulky electron-rich phosphine to the palladium center.

In general, the Pd-Cu-catalysed cross-coupling of terminal acetylenes with sp²-C halides is a useful method for the synthesis of conjugated acetylenes. Since it was discovered, a vast number of modifications have been employed to improve reaction rates and yields. The
major modifications include the choice of palladium catalyst, ligand, solvent system, temperature and amine base. There appears to be a seemingly endless number of combinations that may be used to achieve the best results for a particular system.42

With regards to the system under investigation, a Sonogashira coupling between aryl iodide and propargyl alcohol, Dr Little endeavoured to develop an efficient procedure. The initial attempt was to react iodide 23 with propargyl alcohol at ambient temperature, using 20 mol\% of both $\text{Pd}^0(\text{PPh}_3)_4$ catalyst and copper(I) iodide (Scheme 71).

![Scheme 71](image)

Both diethylamine (HNEt_2) and triethylamine (NEt_3) were employed with and without various quantities of tetrahydrofuran or dimethylformamide. In all cases, the reactions failed and starting materials were returned. At last, Little applied more vigorous conditions by heating the mixture under reflux with NEt_3 as the base, in oxygen free, anhydrous tetrahydrofuran. As a result, the reaction was complete in 18 hours and the alcohol 24 was formed almost in a quantitative yield (92\%) (See Table 2, section 1.1.4, Chapter 1).

With the result of Little’s study of Sonogashira couplings on his compounds, we planned to use an efficient procedure for coupling our iodide 164 and diol 69. Since the diol 24a was successfully coupled with the iodide 23 by Little (entry 6, Table 2, Chapter 1) in a reasonable yield (72\%), we also used the same base, catalyst and solvent as used in Little’s procedure. Initially, we tried our reaction in mild conditions, because our iodide 164 should be more active than Little’s for the reaction. Its strong electron-withdrawing nitro group in the \textit{meta} position should help the initial oxidative addition of the palladium(0) complex.
Before our first attempt at the reaction could take place, preparation of the catalyst Pd\(^{0}\)(PPh\(_3\))\(_4\) was required (Scheme 72). *

\[
Pd^{II}\text{Cl}_2 + PPh_3 \xrightarrow{\text{NH}_2\text{-NH}_2, \text{H}_2\text{O}} \text{DMSO, 160°C} \quad \text{Pd}(PPh_3)_4
\]

Scheme 72

A suspension of palladium(II) chloride and triphenylphosphine (5 equivalents) in dimethysulfoxide (DMSO) was heated under nitrogen until it became a clear solution (~160°C). The heat was removed before a solution of hydrazine (NH\(_2\)-NH\(_2\)) in water (55%) was added. Bright yellow crystals precipitated when the solution was cooled to room temperature. The fine crystals were collected by quick filtration and washed with water. Due to the air sensitivity of Pd\(^{0}\)(PPh\(_3\))\(_4\), it was found to be more efficient to store it in water or DMSO under nitrogen. As Pd\(^{0}\)(PPh\(_3\))\(_4\) is not water/DMSO soluble at low temperature, the liquid layer could 'seal' the crystals, and protect them from attack by oxygen. Before use, the crystals were taken out by a pipette and dried by filtration. The water/DMSO still attached to the crystals could be removed by squeezing the crystals between two layers of filter paper.

After the palladium catalyst Pd\(^{0}\)(PPh\(_3\))\(_4\) was prepared, the iodide 164 and diol 69 were stirred at room temperature in dried and degassed tetrahydrofuran containing triethylamine and copper iodide (Scheme 73).

\[
\begin{align*}
\text{NO} & \hspace{1cm} \text{NH} \\
\text{OH} & \hspace{1cm} \text{OH}
\end{align*}
\]

164 + 69 \xrightarrow{\text{NEt}_3, \text{Pd}(PPh_3)_4 \text{Cul, THF, r.t. for 3 days}} 163

Scheme 73

The proton NMR showed that no reaction occurred after 3 days. We then used forcing

conditions by heating the reaction mixture under reflux with a stronger base diethylamine for 6 hours. This reaction also failed. Therefore, we decided to repeat Little’s procedure, we hoped it would be successful. After the reaction was heated under reflux overnight using neat triethylamine, some coupling product appeared, according to 1H NMR spectroscopic analysis, however the majority of the iodide 164 remained unreacted. The result was disappointing, but it also gave us some hope. The reaction time was then prolonged by 50 hours and the process was followed by t.l.c. and proton NMR. It showed that the coupling reaction stopped after 25 hours reflux, despite the fact that extra amounts of base (triethylamine) and catalysts Pd0(PPh$_3$)$_4$, Cu(I) were added from this point. Proton NMR of the crude product shows unreacted iodide 164 but no sign of diol 69, which was in 1.5 equivalents to the iodide 164. It was reasoned that the diol 69 had been consumed by the palladium(II) complex, which was formed in situ from Pd0(PPh$_3$)$_4$, to afford the unwanted oxidised dimer 239. This process was probably similar to cycle B’ of Scheme 68.

![Scheme 74](image)

To solve this problem, two equivalents of the diol 69 were used. We were pleased to find that the reaction went to completion after 18 hours, without the need to add extra catalysts and base.

The crude solid was then purified by column chromatography using methanol / chloroform as the solvents followed by crystallisation from methanol in the fridge overnight. The pure
product, the acetylenic alcohol 163, was obtained as pale yellow crystals in a moderate 43% yield. In the 1H NMR spectrum of the product, peaks for the methyl groups had shifted compared to the starting materials, and the integrations for all the five methyl groups and the CH$_2$ group were correct. The structure was confirmed by all the other usual criteria.

2.5 Reduction
To complete our chroman synthesis, we needed to saturate the newly incorporated tether as well as to reduce the nitro group to an amine. When a simple hydrogenation was attempted, following Little’s method using 10% palladium on carbon in methanol under hydrogen (Table 3, Chapter 1), no reduction on the triple bond occurred even after stirring for 48 hours at room temperature. This was confirmed, as 1H NMR analysis showed no shift for the five methyl groups. A broad single peak appeared at 1.8 ppm. with reasonable integration, suggesting that the NH$_2$ was probably formed from the nitro group. A more vigorous condition of heating the mixture under refluxing with excess of cyclohexene was then tried, but this delivered the same product. The result proves that transfer hydrogenation by cyclohexene selectively reduces the nitro group without affecting the alkyne. After this failure of the reaction at both ambient and high temperature with palladium on carbon, we decided to modify the reduction by altering the catalyst. Palladium hydroxide (Pearlman’s catalyst) on carbon is known to be a more powerful catalyst than palladium on carbon. Indeed, our reaction went to completion and gave the saturated amine 162 after 24 hours of stirring under hydrogen (Scheme 75).
The reaction mixture was filtered through celite during the work-up. The residue was washed with warm methanol to dissolve the product which adhered to the catalyst. Evaporation of the filtrates gave the amine 162 in an excellent yield (99%), as a pale yellow gum. Evidence for the structure was that all the methyl groups in the 1H NMR spectra showed a move upfield. Two new triplets with the same coupling constant (~8.6 Hz) represented the newly formed CH$_2$ groups. The successful hydrogenation initially proceeded in a small scale, from 111 mg of starting material. For a larger scale of 395 mg, a much longer reaction time was needed (~48 h) to fully hydrogenate the triple bond. 1H NMR evidence suggested that traces of the corresponding double bond were present. Since there was only a small amount of this by-product and it should not affect the following reactions, we carried on to the next step without further purification.

2.6 Diazotisation and Cyclisation

The reduced amine 162 was subjected to standard diazotization conditions, to form a diazonium salt 240; subsequent intramolecular cyclisation should afford the benzotriazole 241 (Scheme 76).

An aqueous sodium nitrite solution (1.3 equivalents) was added to a stirred solution of amine 162 in methanol at ambient temperature. The mixture was then transferred dropwise to a separate flask containing 10 M hydrochloric acid (~10 eq.) at 0 °C. Stirring at 0 °C was continued for 0.5 h before water was added. The suspension was then extracted with
dichloromethane before being dried and evaporated to give the benzotriazole 241 in a moderate yield (50%).

1H NMR analysis shows that the broad peak (at 1.71 ppm.) which represented NH$_2$ for the amine 162 has disappeared, and the pattern for CH$_2$ and CH$_3$ groups had also changed (Figure 1). The peak for CH$_2$ attached to the aromatic ring (2.99-3.15 ppm.) turned into a multiplet, rather than the previous triplet. This is believed to be caused by the geminal effect of the two hydrogen atoms on the same carbon. This effect was also observed in the 4'-CH$_2$ peak: two double-doublets (3.41 and 3.54 ppm.) represent the two hydrogens, both of which coupled with the OH group next to them, as well as coupling with each other. The shifts of all five methyl groups (singlets) were also evidence of the reaction. Due to a shortage of other evidence about changes of coupling constants, the main method for identifying the products in this project was by comparing the chemical shifts of the methyl groups of the products with that of the starting materials in the 1H NMR spectra.

The first step of the diazotization reaction involves the formation of the weak acid, nitrous acid 242, from sodium nitrite and the strong acid HCl. Nitrous acid 242 is itself protonated and then loss of water creates the reactive electrophile NO' 246 (Scheme 77). The NO' cation 246 then attacks the lone pair of the amine group and dehydration follows after a series of proton transfers.

Scheme 77
The diazonium salt 240 formed from this diazotization is stable at low temperature, and does not decompose evolving nitrogen gas. Such a stabilising feature is provided by the π orbital system of the aromatic nucleus (Scheme 78).

![Scheme 78](image)

Subsequent nucleophilic attack by the amide group occurs on the end nitrogen atom of the diazonium salt to avoid forming pentavalent nitrogen. As a result, the cyclised benzotriazole 241 is formed after the loss of a proton from the amide group.

Efforts were made to improve the yield of the reaction. The amount of sodium nitrite was increased from 1.3 to 1.5 equivalents and a slightly better yield of 56% (compared to 50%) was achieved; when 2 equivalents were used, this only delivered a slightly improved 60% yield.

The reason for this was then found after a major by-product was observed. After the normal reaction work-up, the resulting aqueous solution was basified by potassium carbonate before being extracted with dichloromethane. A colourless solid was isolated after removal of the solvent. Initially it was thought that more product had been recovered. To our disappointment, analysis of the 1H NMR, 13C NMR and mass spectra or IR did not support that it was our desired benzotriazole 241. The 1H NMR spectrum showed a compound which also had three CH$_2$ and five CH$_3$ groups, albeit in a new pattern. This evidence strongly piqued our curiosity to find out the structure of this compound. It seemed that although the starting amide 162 had been fully reacted during the reaction, about 40% of it had become this by-product. It was hoped that this mysterious compound would also be useful to our total synthesis, and that it could be converted into our desired product once its structure was discovered. The following 13C NMR analysis shows that the carbonyl moved to a much lower shift of 155.0 ppm. which
seemed abnormal. The infrared spectrum showed no signal for a carbonyl stretch but a weak absorption appeared at 1448 cm$^{-1}$. Mass spectra (APCI) showed a peak of 293 mass units, which is different from the main product molecular weight of 322, and the starting material amide 162 value of m/z 311.

To further test the existence of any acetyl group, the unknown compound was treated with excess amounts of potassium carbonate in aqueous methanol at room temperature. No reaction occurred after 4 hours and the starting material was recovered. The same result was achieved using the stronger base potassium hydroxide. The compound also survived the more vigorous condition of refluxing in methanol for 2 hours with potassium hydroxide.

We then applied the above procedures on the similar acetyl benzotriazole 252, assuming it would show similar reactivity (Scheme 79); this was prepared from commercially available benzotriazole 2 using Katritzky’s method.50 As a result, the acetyl group of compound 252 was hydrolysed smoothly at room temperature with K$_2$CO$_3$ or KOH after 2.5 hours. This proved the efficiency of our hydrolysis method for the analogous benzotriazole (R)-161.

\[
\begin{align*}
\text{N} & \text{N} \\
\text{H} & \\
\text{N} & \text{N} \\
& \text{CO} \\
2 & 252
\end{align*}
\]

\begin{align*}
a_1 & \text{CH}_3\text{COCl, 80°C, 3h} \\
b_1 & \text{K}_2\text{CO}_3, \text{MeOH, H}_2\text{O, r.t., 2.5h} \\
a_2 & \text{CH}_3\text{COCl, dry DCM, NEt}_3, \text{reflux, 4h.} \\
b_2 & \text{KOH, MeOH, H}_2\text{O, r.t., 2.5h}
\end{align*}

Scheme 79

Benzotriazole 2 was refluxed in acetyl chloride for 3 hours before the volatiles were evaporated.50 The residue was crystallised from methanol and the acetyl benzotriazole 252 was obtained as colourless crystals in poor yield (11%). A better yield (60%) was obtained by refluxing equal amounts of the benzotriazole 2 and acetyl chloride in dry dichloromethane with triethylamine. Hydrolysis of the product with K$_2$CO$_3$ or KOH in aqueous methanol returned the benzotriazole in moderate yields (45%, 42% respectively).
Through the above spectroscopic analyses and the test reactions, we can draw the conclusion that the unknown by-product does not contain a carbonyl group. Since the 1H NMR spectra still shows five methyl groups, and a quaternary carbon peak appears at 155.0 ppm. after analysis of the 13C NMR, we realised that the carbonyl had probably been attacked by a nucleophile under the acidic condition during the diazotization reaction. The only nucleophile we could think of during the reaction was the free amine on the benzene ring. We therefore found that a nucleophilic addition could occur between the amine and the carbonyl group under the acidic condition to form a stable five-membered ring – a benzimidazole 256 (Scheme 80). Indeed, the molecular weight of this final product is 292, which corresponds to the mass spectra ion at m/z 293 (M+H$^+$).

![Scheme 80](image)

Protonation of the carbonyl group by hydrochloric acid would give the cation 253 which is much more electrophilic. Attack of the free amine followed by proton transfers forms cation 255, which then loses a water molecule to give the benzimidazole 256 as the by-product. Due to the high stability of the imidazole ring in benzimidazole 256 towards hydrogenation for converting it back to an amine, and the relatively small amount we had in hand, we decided to stop our research on this aspect.
After discovering that the side reaction affected the yield of the diazotization, we made two plans to try to solve this problem. One plan was to hydrolyse the amide 162 to form a diamine 257 before diazotization (Scheme 81). If successful, this would avoid the formation of benzimidazole 256 and also deliver our desired benzyne precursor 161. The other plan was to follow the original route but use three equivalents of sodium nitrite for the diazotization, with the aim of producing a greater excess of the reactive electrophile NO⁺ to attack the amine, before the side reaction happens, and then deprotect the acetyl group using the known method (Scheme 79) to form the precursor 161.

Amide 162 was refluxed in aqueous methanol with potassium hydroxide (2 equivalents) for 2 hours. The ¹H NMR spectra of the crude product showed a mixture with a 2 : 3 ratio of the product diamine 257 and the starting material. Repeating the reaction with a large excess of KOH (30 equivalents) and refluxing for 4 hours also delivered a mixture but with an increased ratio of 2 : 1 (product / starting material). During the reaction work-up, it proved difficult to separate the product due to the high polarity of the diamine 257, which makes it water soluble. Therefore, we used a one-pot reaction, trying to form the benzotriazole 161, which should be less polar.
After heating the reaction mixture under reflux for 5 hours, tlc analysis showed that the starting material had disappeared. The methanol was removed by evaporation before a small amount of water was added. The solution was then acidified with 2M HCl, before being treated with NaNO₂ and 10M HCl, followed by stirring at 0 °C for 40 minutes. Unfortunately, an unrecognisable mixture of products was formed according to ¹H NMR analysis. We then altered the conditions of diazotization by following a literature method for cyclisation of diamines, which uses glacial acetic acid and a temperature of 80°C, after stirring at low temperature for 30 minutes. But this method also delivered unknown compounds. The above results were disappointing, after all the efforts we made. The failure of this reaction was probably caused by the high polarity of the diamine 257 which contains two amines and two hydroxyl groups. Purifying the diamine 257 before diazotization might make the reaction proceed. But we left this sequence at this stage in search of a more efficient route.

Back to our original route, since we had already achieved a reasonable yield from the diazotization, we hoped that a useful modification could be made by simply adding more of the reagent NaNO₂. Indeed, an improved 73% yield was achieved by repeating the diazotization of amide 162 with 3 equivalents of NaNO₂. Only trace amounts of the by-product benzimidazole were found after the aqueous layer was basified. Now we could follow our original route, to carry the synthesis towards the vitamin E precursor 44.
2.7 Deprotection of the Acetyl Group

After the amino-benzotriazole 241 was obtained in a good yield, it was our plan to then deprotect the acetyl group and give the \textit{NH}-benzotriazole 161. Hopefully, the following electrophilic amination on the NH group would form the benzyne precursor- the free amine-258 (Scheme 83), which would form the benzyne intermediate with \textit{N}-iodosuccinimide, and which would then be trapped by the alcohol to give the chromane 44.

Hydrolysis of the amino-benzotriazole 241 was performed with K₂CO₃ at room temperature (Scheme 84).

\begin{center}
\begin{tikzpicture}[node distance=2cm,auto,thick]
\node [rectangle, draw] (241) {241};
\node [rectangle, draw, right of=241, xshift=2cm] (161) {161};
\node [rectangle, draw, right of=161, xshift=2cm] (258) {258};
\node [rectangle, draw, below of=258] (44) {44};
\node [rectangle, draw, below of=44, yshift=1cm] (160) {160};
\node [rectangle, draw, below of=44, yshift=-1cm] (99) {99 \%};

\draw [->] (241) -- node {Deprotection} (161);
\draw [->] (161) -- node {Amination} (258);
\draw [->] (258) -- node {NIS} (44);
\draw [->] (44) -- node {OH} (160);
\end{tikzpicture}
\end{center}

\textbf{Scheme 83}

\begin{center}
\begin{tikzpicture}[node distance=2cm,auto,thick]
\node [rectangle, draw] (241) {241};
\node [rectangle, draw, right of=241, xshift=2cm] (161) {161};

\draw [->] (241) -- node {K₂CO₃, H₂O / MeOH, r.t., 4h} (161);
\end{tikzpicture}
\end{center}

\textbf{Scheme 84}
Amino-benzotriazole 241 was stirred in methanol at ambient temperature and K$_2$CO$_3$ was added along with water. The reaction was tested by tlc before the solvent was removed. Initially, the reaction was worked-up by treating the residue with water, followed by extraction with dichloromethane; a 77% yield of the product was obtained. Since the fact that NH-benzotriazole 161 is a highly polar compound and is water soluble, part of the product could have been lost during the aqueous work-up. Therefore, the procedure was altered by treating the evaporation residue with dichloromethane directly, before being dried and filtered, to avoid adding water. The filtered solid was washed with warm dichloromethane and a higher yield of 83% was achieved. At last, it was found that washing the solid residue with distilled methanol could give an excellent yield of 99%. The resulting 1H NMR spectrum (run in CD$_3$OD) from this modified work-up shows a pure product, which was ready for the next step.

The mechanism of this reaction is believed to follow the typical process of hydrolysis of amide under basic condition (Scheme 85).

Attack of the hydroxide anion on the amide carbonyl group forms a tetrahedral intermediate 259. Benzotriazole is then lost as the leaving group to give the anion 260 which is stablised by electron delocalisation in the ring system. Therefore, the NH-benzotriazole 161 was
formed with its tautomer 262. The NH-benzotriazole 161 should be the favoured product because a hydrogen bond between the NH and the OH could form to stabilise the structure (Scheme 86).

There was actually no need to separate these two isomers, even if this were possible, since they could both deliver the desired benzyne intermediate through the same method. Interestingly, the mixture of the two tautomers can only be observed from 1H NMR spectra run in deuterated chloroform (CDCl$_3$), the spectra show a mixture of the two compounds in a 2 : 1 ratio. In the case of running the sample in deuterated methanol, in which the products are more soluble, the spectra show only a single tautomeric form. This may be because of the much higher solubility helps to form stronger hydrogen bonds.

2.8 Electrophilic Amination of the NH-Benzotriazole 161

2.8.1 Using hydroxylamine-O-sulphonic acid

We had now synthesised the NH-benzotriazole 161 (with its tautomer) in a satisfying yield, and so the next phase of our project required the introduction of an amine group onto the amine (NH) of the benzotriazole, to obtain the key benzyne precursor.

Electrophilic amination is an important synthetic reaction in which an electron-poor nitrogen carried by the reagent is transferred to a nucleophilic centre of the substrate to form a Nu-N bond in the product. From the work of Campbell and Rees, hydroxylamine-O-sulphonic acid was employed as the aminating reagent in a direct electrophilic amination of benzotriazole 2.
To avoid formation of the unwanted by-product, 2-aminobenzotriazole 10, Little modified the condition and achieved a moderate yield of 69% (Section 1.1.1). To follow Little’s established amination method, we planned a one-pot procedure of amination and benzyne cyclisation towards iodo-chroman 44. This is due to the even higher polarity of the desired amination product, the amino diol 258 than its precursor, making it more water soluble and therefore difficult to isolate by a normal work-up. If successful, the direct amination and the concomitant benzyne cyclisation triggered by N-iodosuccinimide (NIS) would afford our final product in only a single step (Scheme 87).

\[\text{DMF, (H}_2\text{O)} - \text{V} - \text{KOH, H}_2\text{NOSO}_3\text{H} \]

\[\text{NIS} \]

\[\text{DCM} \]

\[\text{Scheme 87} \]

Hydroxylamine-O-sulphonic acid1a,2 (HOSA) (5 eq.) was added to a solution of NH-benzotriazole 161 and KOH (10 eq.) in dimethylformamide (DMF) containing water (5%). The resulting solution was stirred for a further 10 minutes before being placed in a water bath at 45-50°C. This was to ensure the reaction temperature remained below 50°C and prevent the formation of the 2-isomer. After 30 minutes, the DMF was removed by rotary evaporation and high vacuum. The residue was treated with dichloromethane and stirred vigorously before NIS was added. The resulting solution turned a pink colour and stirring was continued for 2 hours. The crude product was obtained after a normal aqueous work-up. Unfortunately, 1H NMR analysis presented an unrecognisable set of resonances which showed no sign of the cyclised iodo-chroman 44. Further analysis by mass spectrometry showed a base peak of m/z 404. We thus deduced that the iodo-diol 263 (m.w. 403) could have been formed.
If the above by-product did form, the N-amination must have failed and the NH group of the starting material was iodinated by NIS. Formation of the double bond on the side chain could also be caused by NIS, due to its oxidative property. We thus avoided the aqueous condition by carrying out the amination without water. But the same result was obtained, even with a prolonged reaction time.

Since our attempts at direct amination were unsuccessful, probably because of the steric hindrance from the side chain, or the rather polar nature of the desired product, our following work was to develop an alternative aminating procedure.

2.8.2 Using oxaziridines

2.8.2.1 A brief review of oxaziridines

Oxaziridines have the ability to readily deliver their N-alkoxycarbonyl amino (such as N-Boc) fragment to amines to give, under mild conditions, their amination products in N-protected form. Presumably, utilising this method on our compound could afford a stable NH-Boc protected amine 71 (Scheme 88). If successful, we could then follow Little's one-pot procedure of Boc-deprotection (to give amino-diol in situ) and subsequent benzyne cyclisation, to achieve our final product chroman 44.
The amination of nucleophiles by oxaziridines such as 266, derived from dialkylketones 265, was first reported by Schmitz and coworkers in 1964 (Scheme 89).54

Owing to their instability, Schmitz oxaziridines are prepared \textit{in situ} in dilute diethyl ether solutions and this circumstance somewhat restricts their utilization in organic synthesis. Three decades later, Vidal55 focused on the design of oxaziridines stable enough to be isolated and which can deliver an N-protected group, rather than a free amino group. This objective was met by means of the 3-aryl-N-alkyloxycarbonyl oxaziridines 271 and 273 (Scheme 90).
These reagents are crystalline solids, which transfer their \(N\)-methoxycarbonyl (\(N\)-Moc) and \(N\)-tert-butoxycarbonyl (\(N\)-Boc) fragments respectively, under mild conditions, to nucleophiles such as primary and secondary amines (Scheme 91). Meanwhile, aminations of amino acids, enolates, sulfides and phosphines by this methodology were also shown to be possible.

\[
\begin{array}{c}
R^1NH \quad + \quad NC-\text{phenyl} \quad \text{O} \quad \text{N-Boc} \quad \xrightarrow{\text{DCM, r. t.}} \quad R^1NH-\text{Boc} \quad + \quad NC-\text{phenyl} \quad \text{CHO} \\
\text{274} \quad \text{274} \quad \text{275} \quad \text{276}
\end{array}
\]

Scheme 91

Vidal\(^{53}\) then extended the investigations to include a number of new 3-aryl-\(N\)-protected oxaziridines, including the \(N\)-Moc derivatives 277 (a-h) and 278 and their \(N\)-Boc analogues 279 (a-d).

\[
\begin{array}{c}
\text{X = a: 4-CH}_3; \quad b: 4-F; \quad c: 4-Cl; \quad d: 4-CF}_3; \quad e: 4-CN; \quad f: 2-Cl; \quad g: 3-Cl; \quad h: 2,4-di-Cl. \\
\text{277}
\end{array}
\]

\[
\begin{array}{c}
\text{Y = a: 4-CN; \quad b: 2,4-di-Cl; \quad c: 3,4-di-Cl; \quad d: 2,3,5-tri-Cl.} \\
\text{279}
\end{array}
\]

It was found that these new oxaziridines behave similarly to their analogues 271 and 273 shown in Scheme 90. The main difference between them was the rate of transfer of the \(N\)-\(\text{CO}_2\text{R}\) fragment. In reactions with secondary amines, the presence of electron-withdrawing substituents on the phenyl ring speeds up the amination reaction significantly. For example, the fastest amination is obtained using the 2,3,5-trichlorophenyl derivative 279(d) in the Boc series. Due to this fact, Vidal continued to explore alternative structures of the same family that would also fulfil this reaction.\(^{56}\)
The improvement was then made by an efficient synthesis of oxaziridine 280, a congener of 271 and 273, in which the 3-aryl group is replaced by a 3-trichloromethyl group.

![Chemical structure of oxaziridine 280]

This new oxaziridine proved to deliver its N-Boc fragment to nucleophiles at a much faster rate than its substituted 3-aryl analogues. When morpholine 281 was reacted with a 1:1 mixture of oxaziridines 280 and 271 (0.5 mmol each), only hydrazine 282 and chloral were formed (Scheme 93).

![Scheme 93]

Although the amination properties of oxaziridine 280 were essentially the same as those of 273, it was found in most cases the yields were slightly better when using oxaziridine 280. A typical example was amino acid 284, which reacts slowly with the 3-aryl oxaziridine 273 to give the Np-Boc-hydrazine ester 285 in 44% yield, the main side product being imine 286, formed from the released 4-cyanobenzaldehyde and amino acid 284 (Scheme 94).

![Scheme 94]

The reaction of oxaziridine 280 with the amino acid 284 was much easier. The reaction was complete within 3 hours at 0 °C, giving hydrazine ester 285 in 56% yield. In this case, the amination was faster than the side-reaction with the released chloral.
2.8.2.2 Preparation of t-butyl 3-trichloromethyl-2-oxaziridinecarboxylate 280

Since an optimised oxaziridine has been developed by Vidal, we decided to follow his procedures for the synthesis of the oxaziridine 280, hopefully for making our desired NH-Boc protected amine 71.

The synthesis of oxaziridine 280 was achieved by oxone oxidation of imine 288, which could be prepared from the aza-Wittig reaction of the N-Boc iminophosphorane 287 with chloral (Scheme 95).

A mixture of freshly distilled, anhydrous chloral and the iminophosphorane 287 in dry toluene was refluxed for 3 hours under nitrogen. After evaporation of the solvent, by-product Ph₃PO was precipitated by the addition of dry hexane and filtered off. After evaporation of the filtrate, the imine 288 was then obtained as a yellow oil in an excellent yield (99%).

The following oxone oxidation was carried out on the crude imine 288. A solution of oxone in chilled water was added at 0°C to a vigorously stirred mixture of imine 288 in chloroform, potassium carbonate and water. The aqueous phase was discarded every hour and replaced by a freshly chilled K₂CO₃-oxone solution until the oxidation of imine 288 was complete. A total of 8 such cycles was needed. This is due to the relatively fast decomposition of oxone in basic aqueous solutions. The reaction was worked up by washing the organic phase with water, before drying and evaporating. The bath temperature of the evaporator was kept below 30°C. Column chromatography of the crude product using dichloromethane as the eluant gave oxaziridine 280 in 71% yield, as a foul-smelling, volatile oil which was stable, if stored in the dark below 0°C, for a number of months.
2.8.2.3 Amination of NH-Benzotriazole Using Oxaziridine 280

Before employing the oxaziridine 280 on our vitamin E precursor NH-benzotriazole 161, it was felt necessary to explore suitable reaction conditions through a series of test reactions on a model compound – the commercially available benzotriazole 2. Firstly, the reaction was undertaken with slight excess of oxaziridine 280 (1.1 equivalents) in dry dichloromethane.

After stirring the solution at ambient temperature overnight, it successfully delivered the NH-Boc benzotriazole 19 albeit in moderate yield (65%). We then tried to improve this yield by adding bases, in order to deprotonate the N-H group to form a more powerfully nucleophilic anion to attack the oxaziridine 280 or, alternatively, using a greater excess of the oxaziridine 280 without base. Thus, three trial reactions proceeded simultaneously: the first one was using triethylamine (1.5 eq.) with oxaziridine 280 (1.2 eq.), the second with a catalytic amount of N,N-dimethylaminopyridine (DMAP) and the last one adding two equivalents of the oxaziridine 280. All of these used dry dichloromethane as the solvent. As a result, the first two conditions only gave us unrecognisable mixtures as the product, while the third one significantly improved the amination to an excellent 95% yield.

Thus encouraged, these optimised conditions were applied to the key NH-benzotriazole 161 (Scheme 97).
The same good result was obtained after stirring the solution of \(NH \)-benzotriazole 161 and oxaziridine 280 (2 eq.) in dry dichloromethane overnight. An analytical sample was isolated by column chromatography using a 5% solution of methanol in chloroform as the eluant. An excellent 94% yield was attained and the product was a yellow oil. \(^1\)H NMR spectra showed a broad single resonance between 1.32-1.75 ppm. with the integration of 9 protons, which represents the Boc group. The line broadening of this peak could be due to slow rotation of the Boc group, which was caused by its enclosed side chain. \(^{13}\)C NMR spectra showed a peak at 156.7 ppm.; a strong absorbance appeared at 1739 cm\(^{-1}\) in infrared spectra -both of these support the incorporation of the carbonyl group. High resolution mass spectra (HRMS) analysis found a molecular weight of 395.2295; the calculated mass \([M+H]^+\) is 395.2289.

Two mechanisms can be postulated to account for the course of this reaction (Scheme 98). Attack of the \(NH \)-benzotriazole 161 at the oxaziridine nitrogen leads to a symmetrical transition state 289, with a negative charge developing both on the oxaziridine carbon and oxygen atoms. This transition state can fragment either in a concerted way (path A) to yield ylide 290, followed by fast proton transfers to the \(NH \)-Boc-benzotriazole 71, or via a betaine intermediate 291 (path B). This betaine can then fragment to the amination product (path B1).
2.9 Deprotection and Benzyne Cyclisation

Since NH-Boc-benzotriazole 71 has been synthesised efficiently, the last remaining transformations were a deprotection followed by benzyne formation. Utilizing the two-pot, sequential reaction protocol that Little had developed, the protected aminobenzotriazole 71 could be converted into the iodo-chroman 44 without isolating the actual cyclisation precursor 258 (Scheme 99).

Removal of the tert-butoxycarbonyl protecting group was achieved by reaction with a 20% solution of trifluoroacetic acid in dichloromethane. The reaction progress was followed by tlc analysis. After 45 minutes stirring at room temperature, the solvent was removed and the residue was put under high vacuum to remove residual trifluoroacetic acid (TFA).
The remaining product was treated with dichloromethane before basifying by the addition of 2M aqueous sodium hydroxide to liberate the free amine. The organic layer was then separated and salt was added to the aqueous layer, before extraction with further dichloromethane. This work-up procedure was a modification of Little’s, owing to the higher polarity of the desired amino-diol 258 relative to Little’s amine 26 (section 1.1.5, Chapter 1). The solution was then dried, filtered and concentrated before N-iodosuccinimide (NIS) was added. The resulting solution turned to deep purple, indicating that iodine was being produced. The reaction was stirred for 1 hour before a simple work up. Flash column chromatography isolated the racemic iodo-chroman 44 as a yellow gum in a poor yield of 14%. Mass spectrometric analysis showed a peak at m/z 345, which corresponded to [M⁺ - OH]. ¹³C NMR analysis showed the aromatic carbon C-I at the right position 90.0 ppm.; the resonances due to the CH₂ and CH₃ groups on ¹H NMR spectra has also changed dramatically. Thereby, we had the confidence that the benzyne cyclisation was successful and had formed the desired chroman 44.

The problem of this low yield could reside in the small reaction scale (< 100 mg) as well as the highly polar nature of the amino-diol 258, which was soluble in the aqueous NaOH during the deprotection work up. Thus, the aqueous basifying conditions were avoided by
adding solid potassium carbonate, after which the solid was filtered off and washed with warm dichloromethane. The overall yield was then measured at 21% from NH-benzotriazole 161 to iodo-chroman 44, which was a slight increase from the 14% obtained from the first one-pot deprotection-cyclisation step.

At present, a detailed mechanistic rationale is not clear; the generation of benzyne perhaps begins with iodination of the amine 258. This could be depicted as proceeding via a hydrogen-bonded species 292 to form the iodo-amine 293 (Scheme 100).

\[
\begin{array}{ccc}
R= & \text{OH} & \text{OH} \\
292 & \rightarrow & 293 \\
\end{array}
\]

Scheme 100

Decomposition of this iodo-amine intermediate 293 gives benzyne 160 and two moles of nitrogen gas (Scheme 101). Then perhaps a similar hydrogen-bonded association between the reactants, as depicted in formula 294, plays a key role in activating the key nucleophilic attack: the subsequent trapping by iodine and also proton transfer to succinimide in a concerted but non-synchronous manner as indicated could occur.\(^{31}\)

\[
\begin{array}{ccc}
\text{OH} & \text{OH} & \\
293 & \rightarrow & 294 \\
\text{OH} & \text{OH} \\
+2N_2 + HI & \rightarrow & 44 \\
\end{array}
\]

Scheme 101
The 1H NMR spectrum of the iodo-chroman 44 showed a different pattern compared to its precursor NH-Boc-benzotriazole 71. One of the major changes is in the 3-CH$_2$ group: one of its protons shows a double, double, doublet (ddd) at 1.67 ppm, and the other one shows a multiplet (1.80-1.90 ppm) resonance. Another multiplet was also observed at 2.59-2.74 ppm representing the 4-CH$_2$. Comparing to the literature’s data39 for the analogous chroman diol 201 (Chapter 1, section 1.5), we now had more confidence of the structure of our cyclised compound. For the chroman 201 that Tietze had made, the 3-CH$_2$ appeared at 1.73-1.85 and 1.98-2.15 ppm as two multiplets, and the 4-CH$_2$ also appeared as multiplets, at a similar shift to ours (2.56-2.60 ppm). As for the other groups, there are four methyls on the chroman diol 201 which correspond to our iodo-chroman 44 and they also have very similar chemical shifts indeed. The two methyls on the benzene ring for the former resonate at 2.10 and 2.23 ppm, and for the later at 2.08 and 2.35 ppm; the methyl groups on the chroman ring for the two compounds resonate at 1.24 and 1.21 ppm respectively. HRMS showed [M+NH$_4$]$^+$ of 380.0714; the corresponding calculated mass is 380.0717.

The iodine atom brings to the chroman 44 an important potential utility on biochemistry. Replacing this iodine with isotope 125I or 131I would give radioactive labelled vitamin E derivatives. This modification could possibly be used for detection, such as for localization and imaging studies, and molecular structure and function studies of vitamin E in human and animal cells.
2.10 Methylation of Iodo-Chroman 44

As the iodo-chroman 44 has been synthesised successfully, the feasibility of our benzyne methodology as a viable approach towards the vitamin E precursor had nearly been proven. The incorporated iodine atom offered possibilities for further elaboration of the cyclised product. Our iodide was expected to show enhanced reactivities and hence represent even more attractive intermediates. Some of these possibilities such as Stille coupling, Sonogashira coupling and Heck reactions were illustrated by previous PhD students in our group\(^{31}\) and it may even be possible to effect halogen-metal exchange and also useful radical trapping reactions.

In our case of synthesising the vitamin E precursor, a methylation on the iodide was undertaken to effectively complete the total synthesis of this highly important natural product. It was felt that the palladium-catalysed Stille cross-coupling with tetramethyltin and base could generate our desired final compound 1 (Scheme 102).

![Scheme 102](image)

2.10.1 Synthesis of model compound- iodo dimethoxy benzene 195

Before utilising the cross-coupling on the iodo- chroman 44, it was felt necessary to find the best conditions by a series of test reactions on an accessible model compound. Thus we planned to synthesise an analogue of the chroman 44, the dimethoxy-iodo benzene 195 (Scheme 103). We assumed that it would provide a very similar environment to the central iodo-chroman 44, as it also contained two electron donating oxygen atoms, as well as the iodine at the corresponding positions on the benzene ring.
Starting with the commercially available phenol 295, the dimethoxybenzene 296 was obtained by \textit{bis-o}-methylation on oxygen58 using dimethyl sulphate and anhydrous potassium carbonate in dry acetone (Scheme 103).

![Scheme 103](image)

The reaction was stirred overnight under reflux, before an aqueous work-up with 2M potassium hydroxide and ammonia. Dimethoxybenzene 296 was obtained as a colourless solid in a good 94\% yield. 1H NMR data suggested that the crude product was pure enough for the next step. Iodination employed the same procedure as had been used to prepare the iodine 164, utilising \textit{N}-iodosuccinimide in acetic acid. The crude product was recrystallised from a mixture of 1:1 diethyl ether/hexane and the iodo-dimethoxybenzene 195 was obtained in a moderate 40\% yield.

2.10.2 Stille cross-coupling reaction

Once we had produced enough of the model compound, we tried our hand at the Stille reaction. The palladium-catalyzed coupling of unsaturated halides or sulfonates with organostannanes is commonly referred to as the Stille reaction (Scheme 104).59

\[
\begin{align*}
RX + R'SnR''_3 & \xrightarrow{\text{Pd(0), PPh}_3} RR' + XSnR''_3 \\
297 + 298 & \xrightarrow{\text{heating}} 299 + 300
\end{align*}
\]

\(R, R' = \text{aryl, vinyl, allyl} \quad X = \text{Br, I, OTf}\)

![Scheme 104](image)

The currently accepted mechanism for the Stille coupling involves three basic steps, which are oxidative addition, transmetallation and reductive elimination, as shown in Scheme 105. Some evidence suggests that the transmetallation is the rate-determining step in most couplings of synthetic interest,59,60 and yet little is known about the mechanism of this step.
In 1991, which was five years after the reaction was discovered by Stille, Farina and co-workers reported an improvement over the typical Stille conditions. Large rate enhancements, typically 10^2-10^3 over triphenylphosphine-based catalysts, were observed when tri-2-furylphosphine (TFP) and triphenylarsine (AsPh$_3$) were used as the palladium ligands. According to his study on the coupling between iodobenzene and vinyltributyltin (Scheme 106) in the presence of 17 ligands, Farina found that AsPh$_3$ provided the highest yield (95%) and the reaction went 1100 times faster than when using PPh$_3$ as the ligand.

This was probably because the bond between Pd(II) and AsPh$_3$ is weaker than the one between Pd(II) and PPh$_3$, which makes the ligand dissociate from the complex much more readily, allowing formation of the key transmetalation intermediate, in this case, a π-complex between the Pd(II) and the olefinic stannane (Scheme 107).

Thus, we decided to utilise Farina’s procedure for the coupling between our model compound dimethoxy benzene and tetramethylditin (Scheme 108).
Using tris(dibenzylidene-acetone)dipalladium(0)-chloroform (Pd₂dba₃·CHCl₃) as the palladium source and triphenylarsine (AsPh₃) as the ligand, the reaction mixture was refluxed with tetramethyltin (Me₄Sn) in tetrahydrofuran for 24 hours. Unfortunately, only traces of the product 309 were formed according to analysis of the ¹H NMR spectra. The reaction was then repeated but using a highly dipolar solvent, N-methylpyrrolidinone (NMP) and the reaction temperature was also increased from ~80 to 100 °C. But the result was still poor; a 30% conversion was observed according to the ¹H NMR data. Due to the similar polarity of the methylated product and the starting material, separation by column chromatography proved to be difficult. It seems to us that in our case, AsPh₃ does not work as efficiently as in Farina’s reaction shown in Scheme 106. Presumably this was due to the fact that our transmetalation step with Me₄Sn follows a different pathway from Scheme 107, in which the π-complex intermediate 308 was formed by ligand dissociation. The weak bond between AsPh₃ and Pd(II), in our reaction, could have provided insufficient stabilization for the Pd(0) intermediate, leading to catalyst decomposition with precipitation of metallic Pd. ⁵⁹

With regard to the reason above, we decided to replace the AsPh₃ ligand with the traditional PPh₃, which binds tighter to palladium ⁵⁹ and therefore better stabilizes the Pd(0) species. A more recent report by Farina ⁶² shows that with PPh₃ as ligand, co-catalytic Cu(I) salts can give a >100-fold rate increase over the traditional Stille conditions. In the report, Farina examined the coupling between iodosobenzene 304 and vinyltributyltin 305, both in the presence and in the absence of copper(I) salts (Scheme 109).
After exploring different ratios of Pd to PPh₃, and Cu to Pd, Farina found that it is the ratio between Cu and PPh₃ that affects the rates most. The best result was obtained with a ratio of 1:4:2 (Pd:L:Cu); the reaction rate was enhanced by ~120 times, compared to when Cul is absent, but the ratio of palladium to ligand remains the same.

We were delighted to find that when applying the above procedure to our model reaction, dimethoxybenzene 309 was successfully generated from its iodo precursor 195 (Scheme 110).

Iodobenzene 195 was dissolved in dry, degassed NMP before being treated with PPh₃, Pd₂dba₃.CHCl₃ and Cul (in the ratio of 1:4:2). The solution was degassed by being stirred at room temperature for 20 minutes under a flow of nitrogen; diethylamine and Me₄Sn were then added. The reaction mixture was heated at 100°C for 24 hours before being quenched by 10% aqueous sodium sulphite. The suspension was washed with 10% aqueous potassium fluoride before being extracted with diethyl ether. The crude product was purified by column chromatography and the symmetrical tetramethyl benzene 309 was obtained as a colourless solid in a reasonable yield (59%). None of the starting iodide 195 was observed; presumably it had all been reacted during the reaction.

Therefore we utilised the method on our key iodide chroman 44, but it did not deliver the same result (Scheme 111).
After repeating the procedure above as shown in Scheme 110 and purifying the crude product by column chromatography, a mixture of the desired product 1 and the starting material was obtained in a ratio of 1:3, according to analysis of the 1H NMR spectra. Mass spectra (APcI) showed the peak of 250, which represents the methylated product 1.

It was felt that the nucleophilic free hydroxide group could have destroyed the catalytic cycle and thus stopped the reaction from going to completion. To prove this idea, the reaction on the model compound, iodobenzene 195 (Scheme 110) was repeated with one equivalent of butanol, to check if the same yield can be achieved. As a result, the conversion was not complete after the same reaction time. The 1H NMR spectrum showed a 1:1 mixture of the starting material and the desired product, after column chromatography. Thus, it seems that the free OH group does affect the Stille reaction; we therefore decided to protect the alcohol before proceeding with the coupling. tert-Butyldimethylsilyl was our first choice as the protecting group as it should be easy both to put on and take off (Scheme 112).

To a solution of iodo-chroman 44 in dry dichloromethane at ambient temperature was added tert-butyldimethylsilyl chloride (TBDMSCl) and triethylamine. The reaction mixture was stirred at this temperature overnight. T.l.c. showed that no reaction had occurred. Then a more powerful base, 4-dimethylaminopyridine (DMAP), was added to the mixture, the reaction was stirred for further 24 hours; unfortunately, the product had still not formed and the starting material was recovered.
Presumably a higher temperature is needed for the substitution to occur. But heating the reaction would have risked the destruction of the iodide; therefore we turned to protecting the alcohol with an acetyl group, which should proceed smoothly under mild conditions.

The iodo-chroman 44 was stirred with acetic anhydride and pyridine overnight at ambient temperature; the reaction occurred but did not go to completion, a mixture of product and starting material (3:2) being obtained. Changing the conditions by using acetyl chloride and a catalytic amount of DMAP, the desired acetyl chroman 311 was finally achieved in good yield (79%), after column chromatography. The –OCH₂- group appeared as a pair of double doublets in the ¹H NMR spectrum, while before protection, the signal overlapped with the methoxy group and appeared as a multiplet.

Now, applying the well-developed Stille reaction procedure on the acetyl chroman 311, it was disappointing to find that none of the desired product was formed (Scheme 112).
Due to the result above, we decided to return to our original method, in Scheme 111, but with 3 times the amount of the reagents and catalysts, including PPh₃, Pd₂(dba)₃·CHCl₃, Cul, HNEt₂ and SnMe₄. Unfortunately, the reaction was not an improvement and delivered the same result of the partial conversion (25%).

2.10.3 Attempted methylation using methyl iodide by halogen-lithium exchange
As the Stille reaction failed to give us a satisfactory result, we planned another procedure, using halogen-lithium exchange by n-butyllithium, followed by the addition of methyl iodide at low temperature, with the aim of delivering a better result. Again, a test reaction was performed first (Scheme 113).

\[
\begin{align*}
\text{MeO} & \quad \text{I} \\
\text{195} & \quad \text{BuLi} \\
\downarrow & \quad -78^\circ\text{C} \\
\text{MeO} & \quad \text{Li} \\
\text{313} & \quad \text{Mel} \\
\downarrow & \quad -78^\circ\text{C} - 0^\circ\text{C} \\
\text{MeO} & \quad \text{Me} \\
\text{309} & \quad + \\
\text{MeO} & \quad \text{Me} \\
\text{296} & \quad \text{OMe}
\end{align*}
\]

Scheme 113

A solution of the iodobenzene 195 in dry tetrahydrofuran was cooled to -78°C before n-butyllithium (1.0 eq.) was added. After 15 minutes of stirring at this temperature, methyl iodide (1.5 eq.) was added. The solution was then gradually warmed to 0°C and stirred at this temperature for a further 5 hours. The reaction was quenched by addition of aqueous ammonium chloride, and the suspension was then extracted with diethyl ether. As a result, a 3:4 mixture of the desired product 309 and 1H-trimethylbenzene 296 was obtained according to ¹H NMR spectrum of the crude product. Presumably, the aryl anion 313 reacted with a
small amount of water, which was present, quicker than with the reagent itself. Since the desired product 309 has been formed by this method, we decided to apply it on our key iodo-chroman 44, using more equivalents of the methyl iodide and butyllithium thereby trying to avoid the unwanted reaction (Scheme 114).

![Scheme 114](image)

After 7 equivalents of methyl iodide was added to a solution of iodo-chroman 44, to which 2.5 equivalents of butyllithium had been added at -78°C, the solution was stirred for a further 30 minutes at this temperature. The reaction was then quenched by saturated aqueous ammonium chloride before being extracted by dichloromethane. Unfortunately, 8-H chroman 314 was the only product formed; the reaction was then repeated with distilled methyl iodide, but gave the same result.

After all the above efforts were made, the best result came from the Stille reaction with a 25% conversion to the product. Time constraints and running out of material meant that we had to leave this subject and carry out the synthesis of the enantiomerically enriched side chain, the acetylene diol 69.

2.11 Synthesis of Enantiomerically Enriched Diol 69

2.11.1 From the silylated enyne 315 by AD-mix reaction

Since the racemic form of the iodo-chroman 44 has been synthesised successfully, we turned our attention to making the enantiomerically enriched side chain diol 69. If successful, we could use our methodology in the synthesis of enantiomerically pure vitamin E. Our initial AD-mix reaction on the butynyne 205 (Scheme 64, section 2.3, p 52) delivered the diol 69 with a poor ee; probably this was because the small and flat olefin failed to align with the
osmium-ligand complex in the desired manner, and therefore did not give enantioselectivity during the hydroxylation. We therefore decided to enlarge the molecule by putting a bulky protecting group - a tert-butyldiphenylsilyl (TBDPS) - onto the terminal alkyne. Again, the readily accessible AD-mix-β would be applied. As the C=-(TBDPS) group is much larger than the methyl group, presumably the reaction would form the silyl diol \((R)-316\). The selectivity of the reaction would also be tested, although the \((S)\) enantiomer is actually needed for the final natural product (Scheme 115).

![Scheme 115](image)

To synthesise the silyl butyne 315, butyllithium was added dropwise to a solution of the butyne 205 in dry tetrahydrofuran at 0°C. The solution was then added to tert-butylchlorodiphenylsilane (TBDPSCI) dropwise, before stirring at this temperature for 2 hours. A standard aqueous work-up gave the crude silyl butyne 315 as a light yellow gum, which was suitable for the next step without further purification. Asymmetric bis-hydroxylation using the AD-mix-β reagent under the standard reaction conditions\(^63\) afforded the silyl diol \((R)-316\) in 56% yield.

The silyl diol \((R)-316\) was then protected as its ester analogue to reduce the polarity. Again, this was for the purpose of a clear separation on chiral HPLC (Scheme 116).

![Scheme 116](image)
The silyl diol \((R)-316\) was treated with pyridine and acetic anhydride at room temperature. The solution was stirred overnight before a simple work up with aqueous copper sulphate. The crude product was purified by chromatography and the acetate \((R)-317\) was obtained as a colourless oil in 90% yield.

Analysis of the enantiomeric excess by chiral HPLC on the acetate \((R)-317\) showed a slightly improved ee. of 12.7% (column: OD; inj. vol: 10μ; flow: 0.8ml/min, solvent: 0.7% IPA/Hexane; λmax: 254nm; 25.8 min.), but this result was still far from our expectation and requirement. We realised that the problem could reside in the terminal alkene, which is also known to be disadvantageous, apart from the triple bond, towards the AD-mix reactions.\(^{63}\) Therefore, we began to search for another asymmetric methodology which would be more suitable for the synthesis of our diol \((R)-69\).

2.11.2 By hydrolytic kinetic resolution (HKR) of terminal epoxide

Recently, there has been great interest in the applications of the hydrolytic kinetic resolution (HKR) of terminal epoxides using Jacobsen's salen Co(III)OAc catalysts.\(^{64}\) This method is based on the enantioselective ring opening of a racemic terminal epoxide \(318\) by water, or other simple nucleophiles, in the presence of the chiral metal-ligand catalyst. This process provides direct access to both 1,2-diols \(319\) and the unreacted epoxide \(320\) in high enantiomeric excesses (ee) and chemical yields (Scheme 117).

\[
\begin{align*}
\text{Scheme 117} \\
\end{align*}
\]

It seemed that this could resolve our problem of making the diol \(69\) in a high ee, as long as the 1-alkene silane \(315\) could be oxidised to an epoxide; we could then employ the above method to achieve the mixture of our desired diol \((R)-69\) and its epoxide counterpart, which should be readily separated by column chromatography.
Epoxidation of the silane 315 proceeded smoothly without affecting the triple bond and gave the epoxide 321 in good yield (95%) (Scheme 118). The reaction was carried out by adding meta-chloroperoxybenzoic acid (m-CPBA) to a stirred solution of the silane 315 in dichloromethane. The resulting suspension was stirred for 2 hours at room temperature before saturated aqueous sodium bicarbonate was added.

![Scheme 118](image)

The resulting mixture was extracted with ether. The pure epoxide 321 was obtained as a yellow oil after purification of the crude product by chromatography.

Now there was only one thing left before we could carry out the HKR reaction—preparing the salen Co(III)OAc catalyst 323 (Scheme 119).

![Scheme 119](image)

Having obtained complex 322 from co-workers in our department, the orange solid was stirred, open to the air, with two equivalents of acetic acid in toluene. The reaction progress was followed by tlc. After stirring for 1 hour at room temperature, the solution was evaporated and the brown residue was dried under vacuum. The pure activated catalyst \([\{(R,R)-salen\}Co(III)OAc\] 323 was then obtained.
We then tried our hand at this HKR reaction on our epoxide 321 (Scheme 120).

\[
\begin{array}{c}
\text{Si} \quad \text{C} \quad \text{O} \\
\text{Si} \quad \text{C} \quad \text{O} \\
\text{321} \\
\end{array}
\]

\[
\text{THF, H}_2\text{O, r.t., 18h} \\
\text{[(R,R)-salen]Co(III)OAc} \\
\]

\[
\begin{array}{c}
\text{321} \\
\text{[(R,R)-salen]Co(III)OAc} \\
\text{323} \\
\text{H}_2\text{O, 0.4 eq.} \\
\text{(S)-316} \\
\text{(R)-321} \\
\end{array}
\]

Scheme 120

The epoxide 321 in dry THF was stirred at room temperature in the presence of the [(R,R)-salen]Co(III)OAc catalyst 323 (1.0 mol%) and H2O (0.4 eq.). The solution was stirred overnight before the solvent was removed. The residue was purified by chromatography. Unfortunately, only a trace of the desired diol (S)-316 was found according to NMR analysis and the unreacted epoxide 321 was recovered. This suggested that this methodology might not be suitable for epoxides that contain tertiary carbon: no example of this kind of ring opening has been found in the literature.

2.11.3 By asymmetric bis-hydroxylation (AD-mix) on N-Methoxy-N-methyl methacrylamide 324 and subsequent transformations

Since the attempts above failed to deliver the diol (R)-69, due to the disadvantages of the butenyne 205 because of its structure, the terminal double bond and the quaternary centre, as well as the triple bond. We had therefore to look for a brand new route to generate this chiral centre. After searching through the literature, we found that Alberto et al. had reported the successful generation of (S)-propionamide 325 by an AD-mix reaction on the readily accessible methacrylamide 324 in a high ee (93%) (Scheme 121).

\[
\begin{array}{c}
\text{O} \quad \text{N} \quad \text{O} \quad \text{Me} \\
\text{324} \\
\text{AD-mix-β} \\
\text{t-BuOH/H}_2\text{O} \\
\text{324} \\
\text{HO} \quad \text{HO} \quad \text{N} \quad \text{O} \quad \text{Me} \\
\text{(S)-325} \\
\text{ee. 93%} \\
\end{array}
\]

Scheme 121
Considering that an aldehyde 326 could be generated from \((R)\)-propionamide 325 in two simple steps, and a subsequent Wittig-type reaction\(^6\) could deliver an acetylene, which should undergo a deprotection reaction to achieve diol \((S)-69\) (Scheme 122), we decided to use this route.

![Scheme 122](image)

2.11.3.1 Preparing methacrylamide 324

Therefore we started our new route by making the methacrylamide 324 on a large scale (Scheme 123).\(^7\)

![Scheme 123](image)

A solution of methacryloyl chloride 327 and \(N,O\)-dimethylhydroxylamine hydrochloride 328 in chloroform was cooled to 0°C before pyridine was added dropwise. The mixture was stirred at room temperature for one hour before the volatiles were evaporated. The residue was partitioned between brine and a 1:1 mixture of ether and dichloromethane. The separated organic layer was dried and evaporated carefully to afford the volatile amide 324, which was then purified by chromatography. The pure product was then obtained as light yellow oil in an excellent 99% yield.

2.11.3.2 AD-mix reaction

Over the past few years, the osmium-catalysed asymmetric dihydroxylation reaction of substituted alkenes with the AD-mix-\(\alpha\) and -\(\beta\) reagents has emerged as one of the most
powerful and practical methods for controlling relative and absolute stereochemistry, in secondary and tertiary alcohol derivatives. The process of the AD reaction crucially depends on the ligand acceleration effect (LAE); this ensures that the reaction is funnelled through a pathway, which involves the chiral catalyst. The principle of ligand acceleration, for the AD reaction is illustrated below (Scheme 124).

Scheme 124

Employing relatively inexpensive reagents for the reoxidation of the osmium(VI) glycolate products greatly enhances its synthetic utility; a great deal of work has been done on this subject. In 1990, Minato and co-workers demonstrated that potassium ferricyanide \(\text{K}_3\text{Fe(CN)}_6 \) in the presence of \(\text{K}_2\text{CO}_3 \) provides a powerful system for the osmium-catalyzed dihydroxylation of olefins with the \(\text{K}_3\text{Fe(CN)}_6 \) acting as a reoxidant.

In an effort to induce enantioselectivity into the osmylation, chiral pyridine derivatives were introduced, but these ligands failed, due to their low affinity for \(\text{OsO}_4 \). Consequently, quinuclidine derivatives, and cinchona alkaloids, 335 and 336 (\(\text{R} = \text{Ac} \)) (Scheme 125), were used instead of pyridines in later investigations, due to their intrinsically higher affinity for \(\text{OsO}_4 \). Thereafter, the discovery of ligands with two independent cinchona alkaloid units (335 or 336), attached to a heterocyclic spacer, such as phthalazine 337 or
diphenylpyrimidine 33875 (Scheme 125), has led to a considerable increase in both the enantioselectivity and the scope of the reaction.63

After studies on ligand structure-activity and on the origins of the enantioselectivity, Sharpless76 demonstrated that the 'dimeric' cinchona alkaloid ligands provide a 'binding pocket', like an enzyme active site. Alkenes can only approach the osmium if they are correctly aligned in the chiral pocket; steric hindrance forces such an alignment.

For predicting the enantiofacial selectivity in the reaction, a mnemonic device has been developed (Scheme 127).77
The special southwest (SW) quadrant is regarded as being an ‘attractive’ area, which is especially well-suited to accommodate flat, aromatic substituents, or ‘large’ aliphatic groups. On the other hand, the southeast (SE) quadrant and to a much lesser extent the northwest (NW) quadrant present steric barriers. The northeast (NE) quadrant is relatively open for olefin substituents of moderate size. As a result, an olefin positioned according to these constraints will be attacked either from the top face (i.e., the β-face), when using dihydroquinidine (DHQD) derivatives, or from the bottom face (i.e., the α-face), when applying dihydroquinine (DHQ) derived ligands.

Using the empirical mnemonic device to predict terminal olefins could be ambiguous, since it may be difficult to judge which of the two substituents prefers the attractive, SW quadrant. Groups which are well suited for this quadrant have to be ‘soft’, large and/or flat. As for the methacrylamide 324 which gave a high ee in the AD-mix reaction, presumably the R₈, shown below, could have favoured the SW quadrant due to its soft property, from the nitrogen atom and its relatively large bulk compared to the methyl counterpart.

\[
R_8 = \text{N-} \begin{array}{c} \bigtriangleup \\ \bigtriangleup \end{array} \text{C} \begin{array}{c} \bigtriangleup \\ \bigtriangleup \end{array} \text{O}
\]

Scheme 128

Following the general procedure for the AD-mix reaction, methacrylamide 324 was bis-hydroxylated smoothly in good yield (91%) (Scheme 129).

\[\text{AD-mix-α} \atop \begin{array}{c} t\text{-BuOH/H}_2\text{O, 0°C, 18h} \end{array} \rightarrow \begin{array}{c} \text{AD-mix-α} \atop \begin{array}{c} t\text{-BuOH/H}_2\text{O, 0°C, 18h} \end{array} \end{array}] \]

\[\text{324} \quad (R)-325 \quad 91\%, \text{ ee. 91%}\]

Scheme 129

A round-bottomed flask was charged with equal amounts of tert-butyl alcohol and water, AD-mix-α (containing K₃Fe(CN)$_6$, K₂CO$_3$, (DHQ)$_2$-PHAL and K₂OsO₂(OH)$_4$) was also added. The suspension was stirred at room temperature until both phases became clear, then
the olefin 324 was added. The heterogeneous slurry was stirred vigorously at room
temperature until tlc analysis indicates the absence of the starting olefin 324 (ca. 18h). The
reaction was quenched by the addition of aqueous sodium sulfite, with stirring being
continued for 30-60 min. The reaction mixture was extracted several times with
dichloromethane. Purification of the crude product by chromatography gave the pure diol-
amide (R)-325 as a yellow oil. Determination of the ee. using gas chromatography (GC)
(CDX-β column; temp.: oven- 100°C, detector- 300°C, injection- 200°C; column head
pressure- 20 PSI, retention time: 29 min.) on the basis of the racemic counterpart of the
product, which was made following the method in Scheme 64 (section 2.3, p.53), showed a
91% ee., compared to the literature value of 93%.68

2.11.3.3 Protection of diol-amide (R)-325 as an acetal and the following reduction to
aldehyde 341

After the chiral centre was created with a satisfactory ee, the following work was to
transform the diol-amide (R)-325 into the diol (S)-69. As was planned above in Scheme 122,
the diol-amide (R)-325 was protected as an acetal 340 using 2,2-dimethoxypropane (DMP)
(Scheme 130).68 This protection was necessary for preventing the deprotonation of the diol
group by the powerful hydride source which was to be used in the next step.

\[
\text{HO} \quad \text{O} \quad \text{N}\text{-OMe} \quad \xrightarrow{\text{TsOH, 2,2-DMP}} \quad \text{HO} \quad \text{O} \quad \text{N}\text{-OMe} \\
(R-)\text{-325} \quad \text{toluene, reflux, 2h} \quad \text{340} \quad 87\%
\]

Scheme 130

A solution of the diol-amide (R)-325, 2,2-DMP and p-toluenesulphonic acid (TsOH) in
toluene was heated under reflux (~105 °C) for 2 hours. The solution was cooled to room
temperature and the solvent was removed. The residue was purified by column
chromatography to give the pure acetal 340 as a pale yellow oil in good yield (87%).
The following reduction using diisobutylaluminium hydride (DIBAL) at low temperature smoothly delivered the aldehyde 341 in an excellent yield (Scheme 131).⁷⁰

![Scheme 131](image)

A solution of the acetal 340, in dry THF, was treated with DIBAL (3 eq.) at 0°C. After 1 hour stirring at this temperature, the reaction was quenched by being poured into a cold solution of 5% hydrochloric acid in ethanol, to form the aldehyde product 341. The organic extract was washed with a small amount of water before being evaporated carefully, to give the crude aldehyde 341 as a yellow oil. Due to the likelihood that it might decompose during column chromatography, we decided to use the crude material in the next reaction, even though ¹H NMR analysis showed small amounts of impurities.

We had previously used five equivalents of DIBAL for the above reaction (Scheme 131); stirring for 30 minutes at 0°C only delivered trace amounts of unrecognisable product. We believed this was due to the excess amount of the DIBAL, which had over-reduced the amide 340 to the primary alcohol. The acid work-up could protonate the alcohol and form water soluble cation.

2.11.3.4 Preparation of dimethyl diazoketophosphonate 348 and the attempted transformation of aldehyde 341 to alkyne 352

Dimethyl (diazomethyl)phosphonate 342 (the Seyferth/Gilbert reagent) is a valuable reagent, useful for the efficient one-carbon homologation of aldehydes and ketones to alkynes.⁶⁹ᵃ (Scheme 132).
It is presumed that the mechanism is Wittig-like and involves initial formation of adduct 344. Elimination of dimethyl phosphate leads, via the diazo intermediate 345, to an alkylidene carbene 346, which undergoes a 1,2-rearrangement to give the alkyne 347. Since the Seyferth/Gilbert reagent 342 is unstable, it should be freshly prepared and isolated prior to its reactions with ketones 343. The reactions normally proceed with strong bases at low temperatures.\(^{69a}\) For the conversions of aldehydes into terminal alkynes (R\(_1\) = H), the phosphonate 342 could be generated \textit{in situ} from its stable and easily prepared precursor, the ketophosphonate 348, and then the reactions can be carried out under mild conditions (Scheme 133).\(^{69b}\)

Applying the above method, we could make the corresponding acetylene from the aldehyde 341 in a single step, which should then, subject to acetal deprotection, form the key diol (S)-69.
Following the literature method, diazophosphonate 348 was prepared from the commercially available oxopropylphosphonate 351 in a single step by diazo transfer with tosyl azide (TsN₃) 350 (Scheme 134).

Scheme 134

Firstly, the reactive TsN₃ 350 was prepared from toluenesulfonyl chloride (TsCl) 349 with sodium azide, in an acetone / water solution, which were reacted under reflux. Then, a solution of the phosphonate 351, in dry benzene, was added to a suspension of sodium hydride (NaH) in dry benzene / THF at 0-5°C, the resulting mixture was then stirred for one hour at this temperature before TsN₃ 350 in benzene was added. The reaction mixture was then warmed to room temperature and stirred for further two hours. The solution was then simply filtered and concentrated under reduced pressure before being purified by chromatography. The pure diazophosphonate 348 was obtained as a pale yellow oil in reasonable yield.

Finally, we could try our hand at this Wittig-type carbene rearrangement (Scheme 135). To a suspension of the crude aldehyde 341 and K₂CO₃ in dry MeOH was added diazophosphonate 348 (1.5 eq.). Stirring was continued at room temperature for 4.5 hours, during which time the yellow suspension turned to a clear solution. The solution was then diluted with diethyl ether and washed with 5% sodium bicarbonate (NaHCO₃).
However, to our disappointment, neither the desired product nor the starting material were obtained after column chromatography. It was possible that the aldehyde 341 did not react with the reagents and had been destroyed during the aqueous base work up. Considering that the impurities from the crude aldehyde 341 could have damaged the reagent before the desired reaction occurred, we modified the conditions by adding two equivalents of the diazophosphonate 348, and also prolonged stirring to 18 hours. Unfortunately, the same mysterious result was delivered.

Still blaming the impurities present in the aldehyde 341, we therefore decided to purify the mixture by Kugelrohr distillation. As a result, only a small amount of neat aldehyde 341 was obtained, as a colourless oil; the majority of the crude product turned from a yellow oil into a brown gum under heating. This was possibly because the reactive aldehyde 341 had polymerised at high temperature. Repeating the Wittig-type reaction with this pure aldehyde 341 gave only unrecognisable compounds. We therefore realised that the reason for this failure was possibly due to the steric hindrance from the quaternary carbon that is α to the carbonyl. But before we left this attractive method, we gave it one last try. The idea was to apply the original procedure in Scheme 132, using the freshly made Seyferth/Gilbert reagent 342 and a strong base, since this method has worked efficiently on bulkier ketones.

Consequently, using the same conditions as above (Scheme 135), the phosphonate 342 was prepared and isolated (Scheme 136).
The reactions process was followed by tlc. After 6 hours, the solvent was removed and the resulting yellow oily residue was treated with dichloromethane. The suspension was filtered and the solid washed with further dichloromethane. Careful evaporation of the filtrate gave the phosphonate 342 as an orange-yellow oil, which was stirred in dry THF and cooled to -78°C. \(^\text{69a}\) n-Butyllithium was added at this point and, after 6 minutes stirring, the aldehyde 341 in THF was added slowly to the cold solution. The reaction mixture was stirred for another 15 minutes before being gradually warmed to 0°C, and then stirred at this temperature for another three hours before the reaction was quenched with saturated aqueous ammonium chloride (Scheme 137).

![Scheme 137](image)

To our disappointment, we still found no product, according to \(^1\)H NMR analysis. Therefore, we drew the conclusion that this method is not suitable for our aldehyde 341. The five-membered ring together with the methyl group at the \(\alpha\)-position formed bulky hindrance and presumably prevented the attack of the phosphonate ion.

2.11.3.5 Synthesis of the acetylene 352 through the trichloro-intermediate 357 followed by eliminations

Having failed with the Wittig-type reaction, we were looking for a two-step method towards the synthesis of the acetylene 352, possibly through a halo-olefin, which could be further eliminated to form the triple bond. By searching through the literature, we found a paper entitled 'A new and practical synthesis of vinyl dichloride via a non-Wittig-type approach'. \(^\text{79}\)

It reported the conversion of aldehydes 343 into vinyl dichlorides 355 by a three-step, one-pot reaction involving the formation of a trichlorocarbinol 353 by the treatment of aldehydes 343 with trichloroacetic acid and sodium trichloroacetate followed by \textit{in situ} protection and
elimination to form the vinyl dichlorides 355 (Scheme 138). Further elimination by methyl lithium at low temperature gave the corresponding acetylenes 347 in good yields.

\[
\begin{align*}
RCHO_{343} + Cl_3CCOOH & \xrightarrow{Cl_3CCOONa} \rightarrow \begin{array}{c}
\text{OH} \\
\text{Cl}
\end{array} \quad \begin{array}{c}
\text{Cl}
\end{array} & \xrightarrow{\text{Ac}_2O} \quad \begin{array}{c}
\text{OAc}
\end{array} \\
& \xrightarrow{\text{AcOH/Zn}} \quad \begin{array}{c}
\text{Cl}
\end{array}
\end{align*}
\]

Scheme 138

On applying this procedure directly to our aldehyde 341, the desired acetylene 352 was finally achieved (Scheme 139).

\[
\begin{align*}
341 & \xrightarrow{\text{Cl}_3\text{CCOOH,Cl}_3\text{CCOONa},\text{DMF},r.t.,4h} \rightarrow \begin{array}{c}
\text{OH} \\
\text{Cl}
\end{array} \quad \begin{array}{c}
\text{Cl}
\end{array} & \xrightarrow{\text{Ac}_2O} \quad \begin{array}{c}
\text{OAc}
\end{array} \\
& \xrightarrow{\text{AcOH,Zn}} \quad \begin{array}{c}
\text{Cl}
\end{array}
\end{align*}
\]

Scheme 139

Sodium trichloroacetate was added in portions to a stirred solution of trichloroacetic acid and the aldehyde 341 in N,N-dimethylformamide (DMF) at room temperature. The mixture was then stirred at room temperature for 4 hours, with continuous evolution of CO\(_2\). The solution was cooled in an ice-bath and acetic anhydride was carefully added: strong CO\(_2\) evolution was observed. The mixture was warmed to room temperature and stirred for an additional hour, then diluted with acetic acid and cooled again to 0°C. Zinc powder was added at this point in one portion. The solution was then gradually heated to 60°C and stirred for one hour.
before being cooled to room temperature. A standard aqueous work up gave the crude dichloro-alkene 358 in a 57% yield, which was pure enough for the further elimination according to 1H NMR spectra. Treatment of the dichloro-alkene 358 with n-butyllithium (3 eq.), which was considered to be more efficient than methyl lithium, afforded a 99% yield of the crude acetylene 352. Purification by silica chromatography failed due to the decomposition of the product. As the next step (deprotection) was not demanding in terms of reagent sensitivity to impurities, we decided to bring this crude material through to the final step.

2.11.3.6 Reactions of acetal acetylene 352

The hydrolysis of acetal acetylene 352 was of concern to us, due to the fact that the expected diol product (S)-69 could well be unstable under acidic conditions. The reactive tertiary alcohol group could be protonated by the acid and dehydration could follow. The resulting cation intermediate 360 would be stabilised by the triple bond (Scheme 140).

![Scheme 140](image)

For this reason, the typical conditions, using strong acid and heat, should be avoided. We were delighted to find a mild and clean deprotection method recently reported by Aranda (Scheme 141).
The acetal 363 was hydrolysed slowly and selectively by using CuCl₂·2H₂O in acetonitrile at room temperature, in 85% yield, without affecting the acetyl functions as well as the reactive tertiary OH. Utilising this new method on our acetylene acetal 352, we were disappointed to find that the unwanted dehydration occurred and the key chiral centre was simultaneously destroyed (Scheme 142).

The acetal 352 was stirred in acetonitrile with CuCl₂·2H₂O for 24 hours then the blue solution was filtered through silica gel. ¹H NMR of the resulting residue showed a clean conversion to the olefin 362, in which the resonance of a terminal double bond appeared at 5.7 ppm as a multiplet.

The failure of this method, with the salt CuCl₂·2H₂O, prompted us to test the stability of the acetal 352 towards a typical deprotection method, using acetic acid. Following a literature procedure, the acetal 352 was dissolved in an 80% acetic acid / THF mixture; the mixture was kept at 80°C for five hours. After a standard aqueous work up, we found a trace of the desired diol product (S)-69 revealed in the ¹H NMR spectra (Scheme 143).
There was no resonance for the elimination product olefin 362 or the starting material. This result was obviously still far from satisfactory. We now designed another plan of treating this chiral core.

Considering that the unsaturated triple bond is a disadvantage towards the hydrolysis at this point, we decided to carry out the Sonogashira coupling of it with the iodide 164. If this was successful, the coupled product could follow the same synthetic route as its diol analogue 163, thus both the Boc and the acetal protecting group could be hydrolysed in a single step by TFA, before the benzyne cyclisation (Scheme 144). The key here is that the tertiary hydroxyl really should be significantly less sensitive, once the acetylene group has been reduced.
When we repeated the Sonogashira procedure, as in Scheme 74 (Section 2.4, p.60), but coupling with the acetal 352 instead of the diol 69, the reaction did not give a good result (Scheme 145).

Column chromatography of the crude material gave a 3:2 mixture of the coupled acetal 365 and the deiodinated benzene 367, according to ^1H NMR analysis. The above two compounds were found to be difficult to separate due to their similar polarity. The calculated yield of the desired product was about 19%. The reason for the lower yield of this reaction, compared with the coupling with the diol 69, might reside in the bulky five-membered ring structure of the acetal 352.

We have further investigated the validity of this route by undertaking the hydrogenation of the above mixture. If the reductions were successful, we thought that the saturated acetal product should be separable from the other impurities, and allows us to further explore this subject. However, Pd(OH)$_2$-catalysed hydrogenation under one atmosphere of hydrogen formed the (Z)-alkene 368 after three days, and column chromatography failed to separate this product from the deiodinated impurity 367 (Scheme 146).
It was believed that the steric hindrance from the five-membered dioxolane was again the reason for the poor reduction.

2.11.3.7 Protection by di-tert-butyldimethylsilyl (DTBS), benzyl (Bn) or bis-tert-butyldimethylsilyl (TBDMS)

Having made several attempts with the acetal 352, which all failed, we began to think of other protecting groups that could be readily removed under milder conditions. Di-tert-butyldimethylsilyl (DTBS) protection of diols was thought of; ease of formation and the mild conditions for its deprotection, tetra-n-butylammonium fluoride (TBAF) at room temperature, favoured its use. Following a standard method, methacrylamide diol (R)-325 was protected as its di-tert-butyldimethylsilylene derivatives 370 using di-tert-butyldimethyl ditriflate. Unfortunately, the following reduction reaction by DIBAL at low temperature failed to deliver any recognisable product, according to 1H NMR analysis (Scheme 147).
The above two steps were performed as follows: to a solution of the diol \((R)-325\) and 2,6-lutidine in chloroform at 0°C was added di-\textit{tert} butylsilyl \textit{bis}-(trifluoromethanesulfonate) 369, the mixture was warmed to room temperature and stirred overnight. The crude product was purified by florisil column chromatography and the silyl ether 370 was obtained as a colourless oil (53 %). Subsequently, a solution of this oil in dry THF was treated with DIBAL (3 eq.) at 0°C; it was stirred at this temperature for three hours before an aqueous work up. To our disappointment, the \(^1\)H NMR spectrum of this product showed no sign of any aldehyde proton, while a huge singlet peak appeared for the \textit{tert}-butyl groups. The 1,2-diol derivative 370 was believed to have decomposed during the reaction. This suggested that, even at low temperature, it is more sensitive than its 1,3- and 1,4-diol counterparts towards basic conditions.\(^{82}\)

Having experienced difficulties with the foregoing two functional groups, we planned another two protections: one was benzyl protection (Bn), which should be stable enough towards strong bases and could be removed by palladium-catalysed hydrogenolysis; the other was \textit{tert}-butyldimethylsilyl (TBDMS) protection, which was also thought to be more stable than DTBS, but which could be removed under the same conditions using TBAF. Following a literature method,\(^{83}\) the benzyl protection was carried out with trichloroacetimidate 372 and triflic acid (Scheme 148).

Scheme 148

A catalytic amount of triflic acid was added to a solution of diol \((R)-325\) and benzyl trichloroacetimidate 372 (4 eq.) in cyclohexane/dichloromethane (2 : 1). The reaction was
stirred overnight at room temperature prior to a simple work up. Unfortunately, only a poor 7% yield of the product was achieved after chromatography. We believed that the majority of the starting material had decomposed in the strong acid.

Meanwhile, the other protection gave us hope, as it went smoothly and lead to the bis-TBDMS derivative 374 in good yield (94%) (Scheme 149).84

\[
\text{(R)-325} \xrightarrow{\text{TBDMSCl, imidazole}} \xrightarrow{\text{DMF, 35°C, 18h}} \text{374} \quad (94\%)
\]

Scheme 149

Diol (R)-325 was treated with t-butyldimethylsilyl chloride (2.1 eq.) and imidazole in N, N-dimethylformamide (DMF), the solution was heated to 35°C and stirred overnight. The protected product, the bis-silyl ether 374, was finally obtained as a colourless oil, after a simple work up followed by chromatography.

After repeating the usual reduction procedure using DIBAL, we were disappointed to discover that three products arose from the reaction, according to \(^1\text{H}\) NMR spectra and tlc: the expected aldehyde 375, the mono-protected aldehyde 376 and a trace of the over-reduced alcohol 377 (Scheme 150).

\[
\text{374} \xrightarrow{\text{DIBAL, THF}} 0°C, 1.5\text{h} \xrightarrow{\text{375}} + \xrightarrow{\text{376}} + \xrightarrow{\text{377}}
\]

Scheme 150
Employing the above mixture in the trichloromethylation reaction, followed by elimination (as in Scheme 138, Section 2.11.3.5, p.109), delivered unrecognisable products after column chromatography.

After considering the failure of the reduction step using DIBAL, we thought that the problem arose from the acidic work up using an HCl / EtOH solution, as one of the TBDMS groups had been hydrolysed to form the mono-protected aldehyde 376. Due to the fact that lithium aluminium hydride (LiAlH₄) reduction can use a basic work up, we decided to give it a try. (Scheme 151).

![Scheme 151](image)

The reaction was performed in dry ether with LiAlH₄ (3 eq.) at -78°C, and was followed by tlc. After approximately 40 minutes, it was quenched with 2M aqueous sodium hydroxide to destroy the excess LiAlH₄. The crude material was shown to be the neat aldehyde 375; the ¹H NMR spectrum showed it be a single compound. It was therefore used in the next step without purification.

2.11.3.8 Synthesis of the key diol (S)-69

Since we had obtained the aldehyde 375 in an efficient manner, the next step was to transform it into an olefin. Although the trichloromethylation-elimination method had successfully delivered the vinyl dichloride 358 from the acetal derivative (Scheme 138), the yield (57%) was only moderate, as it took two steps. We thus planned to use a Wittig reaction, trying to obtain a dibromo-olefin in a single step, which should readily undergo elimination to form the acetylene. According to the literature method, we first carried out a
test reaction using the commercially available benzaldehyde 378 as the starting material (Scheme 152).

![Scheme 152](image)

To an orange solution of triphenylphosphine (PPh₃) (2 eq.) and carbon tetrabromide (CBr₄) (1 eq.) in dry DCM was added benzaldehyde 378. The solution was stirred overnight before being quenched with water. The solvent was removed and the residue was purified by stirring in hexane, filtering off triphenylphosphine oxide and careful evaporation. The pure dibromoalkene 379 was obtained as a yellow oil but in a poor yield (9%). We then repeated the reaction with double the amounts of the reagents PPh₃ (4 eq.) and CBr₄ (2 eq.): the yield was thus increased to 50%.

Now we felt ready to apply the above method on aldehyde 375. We were delighted to obtain the dibromo derivative 380 in an increased yield (74%) (Scheme 153).

![Scheme 153](image)

The increase in the yield probably results from the fact that a different work up was used from that in the above procedure. It was found that more product could be obtained by taking the crude residue obtained after evaporation directly onto column chromatography. When using the traditional hexane-workup, the oily dibromo product was found to be attached to the triphenylphosphine oxide (PPh₃O) by-product and was difficult to wash off with hexane, while silica column chromatography can allow isolation of the product more efficiently.
The dibromo-olefin 380 was treated with n-butyllithium; the subsequent elimination gave us the acetylene 381 (Scheme 154).

\[
\begin{align*}
\text{TBDMSO} & \quad \text{Br} & \quad \text{Br} & \quad n-\text{BuLi, dry THF} & \quad \text{TBDMSO} \\
380 & \quad \text{Br} & \quad \text{Br} & \quad -30^\circ C - 0^\circ C & \quad 381
\end{align*}
\]

Scheme 154

Due to the relatively low polarity and high volatility of the product, pentane was used as the eluent for column chromatography.

The final deprotection was also successful, using TBAF under mild conditions (Scheme 155).

\[
\begin{align*}
\text{TBAF, dry THF} & \quad 2\text{h, r.t.} & \quad \text{HO} & \quad \text{HO} & \quad \text{HO} & \quad \text{HO} \\
381 & \quad \text{TBDMSO} \\
\end{align*}
\]

Scheme 155

A solution of acetylene 381 in THF was treated with TBAF (1M solution in THF), which was added dropwise at ambient temperature. The reaction was stirred for two hours before the solvent was removed. The product, diol (S)-69, survived silica gel chromatography in a pleasing yield (82%).

2.12 Towards (S)-Chromane 44

Until now, we have successfully synthesised the racemic form of the vitamin E precursor 44, and we had prepared a large quantity of the chiral core diol (S)-69 by the above methods. By these means, we have proven the validity of our benzyne methodology toward the synthesis of this highly important natural product. The following work was to repeat the previous schemes that used the racemic compound, but with chiral starting materials, starting with the Sonogashira coupling of iodide 164 with the diol (S)-69, to furnish the enantiomerically enriched diol (S)-163.
The Sonogashira coupling reaction was repeated and went smoothly as shown (Scheme 156).

\[
\begin{align*}
&\text{164} + \text{(S)-69} \\
&\quad \xrightarrow{20 \text{ mol\% } \text{Pd(PPh}^3\text{)}_4} \xrightarrow{20 \text{ mol\% } \text{Cul,}} \xrightarrow{2 \text{ eq. diol}} \xrightarrow{\text{degassed anhyd. THF, reflux, 18 h}} \xrightarrow{\text{NET}_3,} \\
&\text{163} \\
&\text{77\%}
\end{align*}
\]

Scheme 156

Purification by column chromatography gave the acetylene diol (S)-163 in a good yield. 1H NMR spectra of this product revealed a small amount of triphenylphosphine impurity. The solvent system used (chloroform / methanol) on silica gel failed to separate this completely from our product. As for the high polarity of our diol product (S)-163, using a large ratio of ethyl acetate as the column eluent could affect the nucleophilic amide group. Crystallisation of the diol product usually caused significant loss of the compound, and it was thought that a small amount of triphenylphosphine impurity would not affect the next hydrogenation step. Therefore, the above product was taken into the following step.

After stirring the acetylene diol (S)-163 with Pd(OH)$_2$ /C in methanol under hydrogen (1atm) for three days, it was disappointing to find that none of the desired product was formed; instead, we found the over-reacted benzimidazole (S)-256 again (Scheme 157).

\[
\begin{align*}
&\text{(S)-256}
\end{align*}
\]

Scheme 157

This unpleasant by-product had been formed before in the diazotisation reaction, which was under acidic conditions (aq. HCl) (see section 2.6). This time, unexpectedly, the triphenylphosphine impurity was believed to act as a catalyst, and the methanol helped
proton transfers to cause the loss of water, which was found during the work up. This was a large scale reaction and meant that we were running out of material. We therefore had to consider a way of performing the transformation using multiple steps, turning compound (S)-256 into a product which is accessible towards the vitaime E precursor.

Our attempt at this was to hydrogenate the imidazole ring to form diamine (S)-382, which could be hydrolysed into diamine (S)-257; we could then carry out the diazotisation to form the benzyne precursor, benzotriazole (S)-161 (Scheme 158).

After considering that a tert-alkyl cation intermediate on the imidazole ring could probably be formed by protonation on nitrogen, subsequent reduction by intermolecular hydride-transfer with triethylsilane (Et$_3$SiH)86 could give the saturated ring (S)-382. We therefore practised this method on the commercially available analogue, 2-methylbenzimidazole 383 (Scheme 159).

\[\text{Diazotization} \]

\[\text{Hydrolysis} \]

\[\text{Reduction} \]

\[\text{OH} \]

\[\text{R} = \text{OH} \]

\[\text{O} \]

\[\text{N} \]

\[\text{N} \]

\[\text{H} \]

\[\text{R} \]

\[\text{S}-256 \]

\[\text{S}-382 \]

\[\text{S}-257 \]

\[\text{S}-161 \]

Scheme 158
The reaction was carried out by stirring the methylbenzimidazole 383 with Et₃SiH (1 eq.), and trifluoroacetic acid (TFA) in dichloromethane overnight at room temperature. No reaction occurred according to the \(^1\)H NMR spectrum; two equivalents of the hydride reagent as well as the strong acid (TFA) were then added, and the same result was obtained.

According to a report by Garner et al.,\(^8^7\) the imidazole ring in benzimidazole and its alkyl derivatives, shows considerable stability towards reduction, since hydrogenation over platinum catalysts effects only the benzene ring, to produce tetrahydrobenzimidazoles. The difficulty with this transformation resides mainly in the instability of the dihydrobenzimidazole derivatives, which tend to aromatisation and revert to benzimidazoles. Garner\(^8^7\) had found that the reduction of the imidazole 386 with a large excess of LiAlH₄ in boiling ether for 8 days gave the dihydro counterpart 387 in quantitative yield (Scheme 160).

We therefore applied these forcing conditions to our model compound, 2-methylbenzimidazole 383. After refluxing with LiAlH₄ (3 eq.) for 24 hours in THF, we found no clear evidence of the reduced product from \(^1\)H NMR spectra, and the crude material was mainly the unreacted starting material. This suggested that our desired product was less stable than the above derivative 387; and that the tautomerism of the imidazole ring had also stabilised the starting material. This meant reducing our chiral methylbenzimidazole (S)-256 would need these forcing conditions for an even longer time than 8 days, and we could not take the risk that the other functions would not be affected. Also, this prolonged
reaction time was not practical for our synthetic route. For these reasons, we decided to abandon this attempt and continue our work towards enantiomerically enriched chroman (S)-44 by another route.

Since it was the amide group which caused the side reaction (it was attacked by the nucleophilic amine), we then planned to hydrolyse the amide before the hydrogenation reaction (Scheme 161).

\[
\begin{align*}
\text{Reaction 164} & \rightarrow \text{Hydrolysis} \rightarrow \text{Sonogashira} \rightarrow \text{Hydrogenation} \\
\text{R}_1 = & \quad \begin{array}{c}
\text{OH} \\
\text{R}_2 = \end{array} \\
\text{(S)-161} & \rightarrow \text{Diazotization} \rightarrow \text{(S)-257}
\end{align*}
\]

Scheme 161

Compared to the original scheme, in which the acetyl group was removed after diazotisation, this new plan did not add any extra steps. Further, the amine 388 should be readily prepared from iodide 164; if the Sonogashira coupling was successful, there would be only two steps (hydrogenation and diazotisation) towards the benzyne precursor.

The hydrolysis reaction was carried out in a hot sodium hydroxide (7 eq.) solution. After a simple aqueous work up, we found that no reaction had occurred and the starting material was recovered (Scheme 162).
Since the amide function was resistant to strong base (as above), we tried strong acid conditions. Following Renneberg's report, our amide 164 was treated with concentrated H₂SO₄ in methanol; after 18 hours under reflux, the free amine 388 was obtained as an orange-yellow solid in a moderate yield (64%).

Our attempt at coupling the amine 388 and diol (S)-69 by the general Sonogashira method was successful and gave the desired product 389 in a reasonable yield (51%) as an orange yellow-solid, after column chromatography (Scheme 163).

The subsequent hydrogenation was believed to have delivered the diamine (S)-257 according to ¹H NMR analysis, but to our disappointment, the following diazotisation reaction failed to give the benzotriazole (S)-161, as the ¹H NMR spectrum of the product was not identical with its racemic counterpart, which had been proven to be the correct compound and went through to the iodo-chroman 44. The lack of carbon-hydrogen bonding change from this reaction made it difficult to identify the product by its ¹H NMR / ¹³C NMR spectra.
The failure of the above route might be because it involves the highly polar diamine (S)-257.

The above set of experiments could prove that our original route was more accessible towards the vitamin E precursor, as long as the Sonogashira coupling product (S)-163 was purified extremely carefully, to get rid of traces of the impurities. Crystalisation should be an efficient way of purification, although part of the product would be lost.

Until now, extensive efforts on this subject have made and the validity of our methodology towards the vitamin E precursor has been proved by the racemic compounds, except the unoptimized yield of the final methylation step. The enantiomerically enriched side chain diol (S)-69 has finally been synthesised successfully on a preparative scale, by seven linear steps. Therefore the enantioselective synthesis of the vitamin E precursor can possibly be claimed. Due to time constrains, this part of the project was stopped at this point.
Chapter Three

A Preliminary Investigation of a Tandem AD-mix / Benzyne Trapping Sequence
3.1 Introduction

As it was introduced in Chapter 1, Little's project42 had arisen from the hypothesis that ortho-lithiation chemistry could be utilised to generate a new and general route to substituted benzyne precursors (Section 1.1.3) which could subsequently undergo cyclisations involving benzynes. During Little's exploration and investigations, a variety of chromans, chromenes and also iodoxanthenes were synthesised by the intramolecular trappings of benzyynes by alcohols and phenols (Section 1.1.5, 1.1.6 and 1.1.7). Introduction of the necessary hydroxide groups was achieved directly by coupling or condensation of the benzotriazole moieties with acetylenic alcohols (racemic) or benzaldehydes (Section 1.1.4, 1.1.7). But this method has a limitation when contributing to natural product synthesis, in which it usually involves stereochemistry. While stereogenic centres could be incorporated into these electrophiles, it proved difficult to create single stereoisomers at the new secondary (or tertiary) alcohol site. Further, in some cases, the very presence of a secondary benzylic alcohol caused problems (vide supra). During our work on synthesising a vitamin E precursor, the chiral core was introduced by an AD-mix reaction on the terminal alkene followed by transformation to the required alkyne (Section 2.11). This led to a further idea: would it be possible to homologate the dianions 391 by addition of an unsaturated side chain which could subsequently be bis-hydroxylated asymmetrically? Other work by Little and Birkett131,42 has shown that suitable diols tend to cyclise regioselectively with a strong preference for six- rather than five-membered ring formation. It also seems that neither four- or seven-membered rings can be obtained by this method.

An example of the idea is shown in Scheme 164. Starting with the 7-methyl derivative 390, deprotonation to the dianion 391 followed by regiospecific alkylation using an allylic bromide should give the homologues 392. Subsequent bis-hydroxylation should then provide the diols 393, hopefully with high levels of enantioenrichment.
Our ‘standard’ protocol for benzyne generation might then be expected to lead to the iodochromans 394.

![Scheme 164](image)

7-Methyl-benzotriazol-1-amine 390 can be prepared from the corresponding commercially available nitroaniline in six steps, following Campbell and Rees’ route,91 modified by Birkett.1d

Clearly, there are many alternatives to this initial idea. The aim during this present project was to attempt to establish the principle expressed in Scheme 164 and to try and extend it, if successful, to bis-benzyne generation.

3.2 Synthesis of N-Boc-1-Aminobenzotriazole 390

In pursuit of the idea above, the required N-Boc-1-aminobenzotriazole 390 was prepared following the route outlined in Scheme 165.
Diazotisation of nitroaniline 395 and immediate trapping of the resulting diazonium salt 396 in a buffered, aqueous emulsion of diethyl malonate gave the product 397 as a brown solid. Purification by column chromatography and recrystallization led to the pure iminomalonate 397 as yellow crystals in a moderate yield (50%). Subsequent reduction of the nitro group by transfer hydrogenation, using the combination of 10% Pd / C and cyclohexene in boiling ethanol, led to amine 398 after crystallisation (73%). Following our original method in Scheme 76 (section 2.6), this was then diazotised to form the salt 399, which underwent rapid cyclization to give the protected aminobenzotriazole 400 in excellent yield (91%). Hydrolysis by 10M hydrochloric acid in methanol at 50°C gave the aminobenzotriazole 401 in a reasonable yield (79%).
Attempts to obtain the *mono*-Boc-protected aminobenzotriazole 390 by Little’s one-pot, two-step procedure (Scheme 5, section 1.1.2) failed to deliver any product and the starting material was recovered (Scheme 166).

This was possibly owing to the steric hindrance from the extra methyl group, which had prevented the free amine from attacking the electrophile. Thus, we increased the substitution time with di-*tert*-butyl dicarbonate (Boc₂O) by 42 hours, however, after hydrolysis with aqueous 2M NaOH, a mixture of the *bis*-Boc adduct 402 (~40%) and the starting amine 401 was formed according to ^1H NMR analysis. We then modified the condensation conditions by adding 2.2 equivalents of triethylamine; after a prolonged 65 hours stirring at room temperature, tlc analysis showed that conversion to the *bis*-Boc adduct 402 was complete. Unfortunately, the subsequent base hydrolysis using Little’s conditions failed to remove any of the Boc group and the *bis*-Boc adduct 402 was re-isolated as the sole product (80%). However, treatment of this with 2M NaOH in methanol as the co-solvent successfully furnished the selectively deprotected product after 40 minutes at 50°C (45%). Therefore, Little’s one-pot process has failed in our hands with 7-methyl aminobenzotriazole 401 which, after all, needs the original two-step method. It was unexpected that the methyl group would have such a considerable hindrance effect on both the condensation and hydrolysis reactions.
3.3 Towards the synthesis of (1'R,2R)-2-(1-hydroxyethyl)-8-iodochroman 407

3.3.1 Metallation-alkylation

We now had in hand a sufficient quantity of pure 7-methyl aminobenzotriazole 390. The next step on our route to chroman derivatives with a chiral core, as shown in Scheme 164 (section 3.1, p.127), was lithiation of substrate 390 with subsequent alkylation by allylic halide electrophiles. We chose (E)-crotyl bromide for our first investigation of this subject (Scheme 167).

\[\text{NHBoc} \]
\[\text{NHBoc} \]
\[390 \]
\[n\text{-BuLi}, \text{TMEDA} \]
\[\text{dry THF, } -78^\circ\text{C} \]
\[\text{Br} \]
\[\text{NHBoc} \]
\[403 \]
\[404 \]

Scheme 167

Following the metallation-substitution procedure developed by Birkett,14,2,92 \(n \)-butyllithium (2.2 eq.) was added to a solution of freshly distilled \(N,N,N',N' \)-tetramethylethlenediamine (TMEDA) (2.2 eq.) in dry THF at \(-78^\circ\text{C}\). After 15 minutes at this temperature, a solution of the aminobenzotriazole 390 in dry THF was added dropwise via syringe. This resulted in the formation of a burgundy red solution, which indicated that the metallation was taking place. Stirring this solution for 5 minutes before warming gradually to \(0^\circ\text{C} \) for 0.5h was then required for complete formation of the dianion 391. To ensure regioselective alkylation at the (presumed) more reactive carbanionic centre, the reaction mixture was re-cooled to \(-78^\circ\text{C}\) prior to addition of the electrophile – a solution of freshly distilled crotyl bromide 403 (1.1 eq.) in THF. After stirring at \(-78^\circ\text{C}\) for 1h, the reaction was quenched using aqueous ammonium chloride. The resulting suspension was warmed gradually to ambient temperature and subjected to a standard work up. The crude material was separated by column chromatography using hexane/diethyl ether as the mobile phase, and the pure pentenyl aminobenzotriazole 404 was obtained in an excellent yield as a yellow gum.
The use of ethyl acetate as a column eluent was avoided, as the especially nucleophilic amine had been found to acetylate the NHBoc group, according to 1H NMR analysis, and despite the deactivating (protecting) effect of the Boc group.

3.3.2 AD-mix reaction

The general method of the AD-mix reaction (see above, pp.99-103) was applied to the pentenyl aminobenzotriazole 404. The reaction was found to be very sluggish at 0°C; after 36 hours stirring at this temperature, it was found that only $\sim 30\%$ conversion had occurred according to 1H NMR analysis. Presumably, this was due to steric hindrance from the bulky Boc group. The reaction was then repeated at room temperature as has been suggested in the literature for solving this problem. As a result, the reaction was shown to be complete in 43 hours by tlc analysis and afforded the diol 405 in a reasonable yield (65%) after chromatography (Scheme 168).

![Scheme 168](image)

3.3.3 Deprotection-benzyne cyclisation

Using our well developed deprotection-cyclisation procedure on the N-Boc benzotriazole 71 we were delighted to find that this successfully delivered a new iodo-chroman 407 in a slightly disappointing yield of 40%.
The crude product, after purification by column chromatography, gave an optical rotation of $[\alpha]_D^{29} = -7.36$. The racemic form of this chroman 407 was also synthesised for the purpose of determining the enantiomeric excess (ee.) using chiral HPLC. The bis-hydroxylation on alkene 404 was repeated but with quinuclidine in place of (DHQD)$_2$PHAL ligand, before another deprotection-cyclisation. Unfortunately, it proved impossible to obtain a clear separation for the (-)-chroman 407 with a small amount of impurity. Therefore, an accurate ee could not be measured. According to 1H NMR analysis, no evidence was found for seven-membered ring formation.

Also, we investigated the use of one equivalent of NIS in this reaction, instead of the usual 2.5 equivalents. Presumably in this case, the benzyne intermediate formed could attack a hydrogen on the OH group, to form a non-iodinated chroman 409. Indeed, it was achieved, albeit in a poor yield (18%) (Scheme 170).
In this reaction, the NIS added has been consumed by the amino-benzotriazole 408 to form the benzyne 406, subsequently the intermediate 406a trapped the hydrogen from the OH cation and gave the chroman 409. The low yield of this reaction could possibly be improved by adding slightly more (1.3 eq.) of the NIS reagent. But owing to a limit of the synthetic utility of this unsubstituted chroman 409, any further study on this subject has not been carried on.

3.4 Attempt of bis-benzyne cyclisation to form symmetrical dichromans 410

Until now, our benzyne cyclisation with diols had all successfully delivered six-membered rings, in another words, the hydroxide group closer to the benzyne had ‘won’ and traps the electrophile to form more stable six-membered rings as we had expected; no evidence for seven-membered ring products had been found. Based on this result and the idea that bis-benzyne trapping by both OH groups could form dichromans that are useful for natural product synthesis, we began our investigation on this subject. The retrosynthesis from the symmetrical dichroman 410 was thus
planned (Scheme 171). If successful, it will be a considerable enhancement on the scope of our benzyne cyclisation methodology.

![Chemical structures](image)

Scheme 171

The dichroman 410, which is a symmetrical dimeric version of the chroman 407 we had made, was expected to be formed from the dibenzyne intermediate 411; alternatively, the reaction could give seven-membered rings. Thus, the benzyne precursor, di-benzotriazole 412 was required. Of course, the key cyclisations could and probably do occur in a stepwise manner. An AD-mix reaction should give the diol function from alkene 413, which could be achieved by cross-metathesis of two molecules of benzotriazole 414 by using Grubb's catalyst. Alternatively, the forgoing Birkett dianion method could be combined with a 1,4-dihalo-2-butene.
3.4.1 Preparation of 7-butenyl benzotriazole 414

Applying the metallation-alkylation procedure as described above, benzotriazole 390 was reacted with freshly distilled allyl bromide 415 to give the 7-butenyl benzotriazole 414 in a good yield (80%) (Scheme 172).

\[
\text{NHBoc} \quad 390 \quad \xrightarrow{n-\text{BuLi}, \text{TMEDA}} \quad \text{dry THF, -78-0°C} \quad \text{NHBoc} \\
\begin{align*}
\text{Br} \quad 415 \\
\rightarrow \\
\text{80%} \\
\text{NHBoc} \\
414
\end{align*}
\]

Scheme 172

3.4.2 Cross-Metathesis

As a unique method for the intermolecular formation of carbon-carbon double bonds, olefin cross-metathesis (CM) has not yet found widespread application in organic synthesis, but is very likely to do so. This is because the general reaction conditions that give high product selectivity have not been developed. The simplified CM reaction between two terminal olefins is depicted in Scheme 173.\(^9\)

\[
\begin{align*}
\text{R}^1 \quad [\text{M}] \quad \xrightarrow{418} \quad \text{R}^2 \\
\text{Desired heterodimer} \quad 419 \\
\text{R}^1 \quad \text{R}^2 \\
\text{Undesired homodimers} \\
420 \\
421
\end{align*}
\]

Scheme 173

Generally, this reaction proceeds to yield three unique products: the desired heterodimeric product 419 and two undesired homodimeric products 420 and 421, each as a mixture of olefin isomers. But in the case of self-metathesis (\(R^1 = R^2\)) that is, the reaction we were carrying out, the unwanted heterodimeric situation would clearly not apply.
The most extensively used catalysts for terminal olefin cross-metathesis is the carbene complex- ruthenium benzylidene 422 (Scheme 174), developed by Grubbs et al.94

\[
\begin{align*}
\text{Cl} & \text{PCy}_3 \text{H} \\
\text{Ru} & \text{Cl} & \text{Cl} & \text{PCy}_3 \\
\text{Ph} & & & \\
\text{PCy}_3 = \text{tricyclohexylphosphine} & & & \\
\end{align*}
\]

Scheme 174

First, the Grubb’s complex 422 adds to one of the alkenes in what can be drawn as a [2+2] cycloaddition to give a four-membered ring as the metalla-cyclobutane 423 (Scheme 175). Reverse of the cycloaddition, but by cleavage of the other two bonds, gives a new carbene complex 424 and styrene 306.

Next, another [2+2] cycloaddition joins the carbene complex 424 and the other alkene 417 and produces a second metalla-cyclobutene 425, which can decompose in the same way as the first one to give the desired product 419, and the third carbene complex 426. This then attacks another molecule of starting material and the cycle is repeated.
According to a study by Blackwell, \(^9\) all of the olefin CM reactions have favoured the formation of the *trans* isomer. In respect of our aminobenzotriazole \(414\), the compatibility of Boc-protected substrates was also probed by Blackwell; \(^9\) it was found that the CM of *N*-Boc derivatives could successfully provide predominantly *trans*-disubstituted amine derivatives (3:1 *E/Z*) in good yields.

Therefore, we employed the standard CM conditions for homodimerizing our aminobenzotriazole \(414\) (Scheme 176).

After refluxing the starting material with Grubb’s catalyst \(422\) (5 mol\%) in dry dichloromethane overnight, no reaction had occurred. The procedure was thus repeated but with four times the quantity (20 mol\%) of the catalyst; unfortunately, this gave the same result. We suspected that it was the amino group [-NHBoc] which was destroying the Grubb’s catalyst, as the ‘\(\alpha\)-effect’ from the nitrogen atom next to the amino function could dramatically enhance its nucleophilicity (see above—this group can react with ethyl acetate during chromatography). To solve this problem, we planned to *bis*-protect the amino group to form the presumably less reactive *bis*-Boc derivative \(428\) (Scheme 177). This additional group could then be removed by the same method as in the case of the [-NHBoc] derivatives during the deprotection/benzyne cyclisation process.
Using the same procedure in Scheme 165 (section 3.2) from the free amine 401 to bis-Boc 402, but with 1.1 equivalent of Boc anhydride, the condensation went smoothly and delivered the bis-Boc adduct 428 in an acceptable yield (58%).

We were then delighted to find that the subsequent cross metathesis, using the standard conditions, successfully afforded the alkene 429, despite the presence of the four bulky Boc functions (Scheme 178). After 20 hours under reflux, the reaction was cooled to room temperature. The solvent was removed and the crude material was purified by column chromatography to give alkene 429 in a moderate yield (45%).

Integration of 1H NMR spectra showed that the product could be a single isomer, but the possibility of a mixture of two isomers cannot be ruled out. The symmetry of the compound may prevent the determination of a coupling constant, which would confirm the formation of (E)-isomer. CHs on the double bond showed a single multiplet. The two CH$_2$ groups next to the benzene ring show a triplets and a multiplet while the other pair of CH$_2$s is a multiplet. These different resonances for the symmetrical CHs and CH$_2$s could result from multiple conformations of the molecule.
The 13C spectrum shows a doubling of peaks, at δ 85.9 and δ 85.8, of the quaternary carbon of the BOC group, this doubling can either be due to restricted rotation of the BOC group, if only one isomer has formed, or it can be due to the formation of E and Z isomers. One way of determining which of these possibilities is correct would be the use of variable temperature NMR experiments; the rotamers would coalesce into a single signal, whereas the E and Z isomers would not.

3.4.3 AD-mix reaction

The AD-mix reaction of the dimer 429 was successful to give the symmetrical diol 430 (Scheme 179), which was ready for the key deprotection / benzyne cyclisation.

\[
\text{AD-mix-α, r-BuOH/H\textsubscript{2}O}
\xrightarrow{48\text{h}, \text{r.t.}}
\text{49\%}
\]

The reaction was carried out at room temperature for a prolonged 72 hours and delivered the diol 430 in a moderate yield (49%). Again in diol 430 there is a doubling of the Boc quaternary carbon in the 13C spectra, which can be due to the existence of either rotamers or diastereoisomers.

3.4.4 Preparation of \textit{bis}-aminobenzotriazole 427 in a single step and the subsequent AD-mix reaction

Meanwhile, we also applied the original metallation-functionalisation method to aminobenzotriazole 390 with (\textit{E})-1,4-dibromo-2-butene 431. If this double lithiation-
alkylation was successful, the *trans*-diaminobenzotriazole 427 could be obtained in one step (Scheme 180).

Following the general procedure, 2.4 equivalents of aminobenzotriazole 390 was reacted with 1.5 equivalent of dibromo-butene 431 (98% from Aldrich). As a result, the desired product 427 was obtained as a colourless solid in an improved yield (59%) after column chromatography. 1H NMR spectra showed very similar shifts compared with that obtained from the cross-metathesis-alkene 429, which is possibly a single (*E*)-isomer. All the four CH$_2$s appeared as broad peaks and the CHs as a multiplet. Again, these are possibly caused by the free rotation of C-C bonds.

Another advantage of this one-step method is that the *mono*-Boc function provides less steric hindrance for the following AD-mix reaction; thus we favour this route. The subsequent *bis*-hydroxylation, however, took the same long time at room temperature, but gave an improved yield of the product 432 (Scheme 181).
The reaction was initially carried out at 0°C; after 24 hours' stirring, no reaction had occurred according to tlc. The solution was then gradually warmed to ambient temperature; the reaction was complete after 72 hours at this temperature, to afford the diol 437 as a pale yellow oil in excellent yield. Again, the ¹H NMR spectra shows a very similar pattern to diol 430.

3.4.5 Towards the synthesis of dichromans 410

Finally, we tried our hand at the novel reaction. The normal deprotection / cyclisation process was applied but with twice the amount of the reagents; not surprisingly, the desired product was obtained in a low yield (~20%) after column chromatography.

Scheme 182

The ¹H NMR spectrum of this compound showed a different pattern compared to the starting material, especially for the methine and methylene resonances. The methylenes next to the benzene ring still showed as multiplets but were positioned from 2.81 to 3.13 ppm (width 0.32 ppm), rather than at 3.12-3.17 ppm in the starting material. Presumably, this could be two double, double doublets overlapping with each other. Although the structure is symmetrical, owing to the possible rotation about the C-C bond at the centre, the methylene protons could be slight different and so they showed as multiplets. The other pair of CH₂s had also changed from a broad singlet at 1.86-2.01 ppm to a multiplet at 1.75-1.98 ppm. The ¹³C NMR spectrum showed a promising C-I resonance at 80.1 ppm. But mass spectra (EI⁺) analysis did not support
this conclusion. The calculated mass of the desired compound was 518.132, while ions at 232, 259, 260 (base peak), were found. It might be possible that the chroman decomposed by a retro-Diels-Alder reaction, as showed in Scheme 183. If this did happen, the peak of 232 could be explained. An alternative fragmentation, but involving cleavage of the central carbon bond would account for the ion M/Z 259.

![Scheme 183](image)

(Likely ionised molecular ion)

Further investigation was still needed on this subject. We found that the feasibility of this double benzyne trapping was quite possible. The above work was on rather small scales. Time constrains and diminishing material meant that this could not be repeated; obviously, it needs to be. It should be emphasised again that, during this pilot study, no special efforts were made to measure optical purity as it was far from clear at the outset if any of the chemistry would actually work. The 13C NMR spectra of dimer 429, diol 430 and 432 show more peaks than expected. Diol 432 is formed from the trans-diaminobenzotriazole 427, so the extra peaks in this case are presumably due to restricted rotation of the Boc groups. The dimer 429 and 430 are produced by cross-
metathesis, so that the extra peaks could conceivably be due to the formation of double-bond isomers. Alternatively they could also be due to restricted rotation. We have no evidence which allows us to distinguish the two possibilities at the present time, and this issue should be addressed as a priority in further work in this area.

3.5 The synthesis of (1'-hydroxy-1'-phenyl)-8-iodochroman 442

As was introduced in sections 1.1.5, 1.1.6 and 1.1.7 (table 3, entry 5; table 4, entry 4, and Scheme 8) in Chapter 1, Little has experienced difficulties deprotecting substrates which contained benzylic hydroxyl functions. Such substrates degraded presumably via a benzyl carbocationic intermediate, following proton-assisted loss of the hydroxyl group. Bearing this in mind, we attempted a similar benzyne cyclisation following the sequence outlined in Scheme 184, in which \(R = \text{Ph} \). If successful, this would represent significant progress on this subject (Scheme 184).

Scheme 184

Following the general method of metallation /functionalisation on benzotriazole 390 with cinnamyl bromide 439, the benzylic alkene 440 was obtained in a good yield.
Subsequent bis-hydroxylation gave the diol 441, which successfully underwent deprotection / benzyne cyclisation and delivered the desired benzylic chroman 442, albeit in a low yield (24%). Meanwhile, a by-product, which was believed to be diiodobenzene 443 by tlc. analysis (13%) was also found, after the column chromatography. This was believed to be the main reason of the low yield. The degradation that we expected has not been discovered.

In general, a series of non-racemic chromans were achieved by the new route above, through which two stereogenic centers were created using AD-mix reaction. This method could be seen as an extension of Little’s benzyne chemistry, which involves single hydroxyl function without chiral centers. The procedure could also increase the feasibility of our benzyne chemistry towards other natural product synthesis.

3.6 Further Work

Until now, we had successfully synthesised a series of new chromans from non-racemic diols. During these benzyne cyclisations, there was ‘competition’ between the two hydroxyls; trapping of the 3'-OH would form a six-membered chroman ring while trapping of the adjacent 4'-OH should furnish the larger seven-membered ring (Scheme 185).
According to our studies, no such seven-membered ring derivatives 445 have been found. Therefore the six-membered ring formation was favoured over its seven-membered counterpart. This could because the 3'-OH was closer towards the benzyne function and the resulting six-membered ring was more stable. This intrigued us and generated another question: when there was a ‘competition’ between a six-membered ring and a five-membered ring, which one would be more favoured? Thus, we had planned another double benzyne cyclisation, which could possibly give us an answer.

The retrosynthetic analysis is showed in Scheme 186. The idea was to synthesise a 2',3'-diol derivative 448, which could undego benzyne trappings to form two possible products -- the five-membered ring system 446 and a four-fused six-ring-based system 447; a mixture of the two could also be obtained, of course.

Regarding the synthesis of the benzyne diol 448, presumably it could came from the corresponding benzotriazole alkene 449, which could be made from iodide 23, presumably by using a palladium catalysed coupling reaction with organometallic reagent 431a (M=MgX, ZnX, Cu, SnR₃ etc.). The iodide 23 has now been made and was ready for the following study on this subject.
Attempts to prepare the iodide 23 were successful using the cerium exchange chemistry developed by Little (Scheme 187).

$$\text{NHBoc}$$

![Scheme 187](image)

The aminobenzotriazole 19 was prepared in a substantial amount by the same route of its methyl substituted counterpart 390 as showed in Scheme 165, except that the transformation of 1-aminobenzotriazole 9 to mono-Boc aminobenzotriazole 19 was accomplished by the one-pot, two step procedure as described in Section 3.2 (Scheme 165). The employment of this route was due to large amount of starting material, nitro aniline 395a, which was readily available in our laboratory.
Scheme 188

Hence, at this trial stage of the present project, the necessary precursors are now available to continue. On the other hand, this benzyne cyclisation chemistry could also be applied to the total synthesis of pterocarps 450 (Scheme 189), which carries a cis-fused benzofuranyl-benzopyran skeleton, and which form the second largest group of naturally occurring isoflavonoids. Many of their derivatives exhibit remarkable pharmacological activities such as antifungal, antibacterial and anti-HIV effects.

![Scheme 189](image-url)
In 1982, Nakanishi and co-workers also demonstrated that two representatives of these natural products, cabenegrin A-(I) 450a and cabenegrin A-(II) 450b, showed activity against snake and spider venom but their mode of action is still to be explored. These orally-active snake venoms antidotes were isolated from the aqueous ethanol extract of a South American plant called locally ‘cabeca de negra’. The compounds have also been synthesised.

The retrosynthetic analysis of cabenegrin A-(I) 450a involving double benzyne cyclisation and is laid out in Scheme 190.

The cabenegrin A-(I) 450a precursor 451 could be achieved by a Heck-type coupling reaction between pterocarpan 452 and alkene 453 with Pd(0) catalyst. From structure 452 the benzyne precursor 454 can be deduced, which should be ready for benzyne generation/ cyclisation with NIS. Since the benzofuranyl ring could also be formed by a similar manner, bis-aminobenzotriazole 455 was thus needed. As there is no iodine on precursor 454, use of lead tetra-acetate \(\text{Pb(OAc)}_4 \) should be necessary for oxidising aminobenzotriazole 455 instead of using NIS. Compound 455 could possibly be prepared by selective reduction of ester 456.
Chapter Four

Experimental
Experimental:

General Details

Infrared spectra were recorded on a Perkin Elmer 1600 series FTIR instrument as thin films. 1H and 13C NMR spectra were recorded on a Bruker AM 400 (400MHz, PFT) instrument, with the 13C being recorded at 100MHz. The following abbreviations were used; s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, br s = broad singlet etc. J values are quoted in Hertz. The abbreviations δ_H and δ_C denote 1H and 13C NMR, respectively, taken at 300 K. Chemical shifts (δ_H and δ_C) are reported in parts per million (ppm) from tetramethylsilane (or chloroform) and are corrected to 0.00 (TMS) and 7.27 (CHCl$_3$) ppm for 1H NMR and 77.30 (CDCl$_3$), centre line, for 13C NMR. Unless otherwise stated, deuteriochloroform was used as solvent for NMR measurements. Molecular weights were determined using a Fisons VG Platform II instrument and CHN microanalytical data were collected on a Perkin Elmer 240C Elemental Analyzer. High resolution mass spectra were obtained courtesy of the EPSRC Mass Spectrometry Service, Swansea University.

All reactions using air / moisture sensitive reagents were performed in oven-dried or flame-dried apparatus, under a nitrogen atmosphere. Solvents and reagents were purified according to procedures set out in ‘Purification of Laboratory Chemicals’, by D.D. Perrin and W.L.F. Armarego. ‘Petrol’ refers to light petroleum, b.p. 40-60°C; ‘ether’ refers to diethyl ether. Unless otherwise stated, butyl lithium refers to n-butyl lithium (various molarities in hexanes). All organic solutions were dried by brief exposure to anhydrous magnesium sulphate. Column chromatography was performed using silica gel (Silica 60A particle size 35-70 micron from Fisher Scientific).
2,6-Dimethyl-4-nitroanisole 51

To an ice-cold solution of 2,6-dimethylanisole 50 (40 g, 294 mmol) in glacial acetic acid (60 ml), nitric acid (70%, 60 ml) was added dropwise. After the addition was complete and the majority of the gas had been evolved, the solution was carefully heated to 65°C to give a pale yellow solution. The solution was then allowed to cool to room temperature before being diluted with water (360 ml). Nitrogen was bubbled through the resulting solution for 0.5h to remove nitrogen dioxide from the now deep brown suspension. The yellow precipitate was collected and washed with copious water. The crude product was recrystallised from ethanol to give the nitroanisole 51 as yellow needles (32.6 g, 61%), m.p. 91.5-93.5°C (lit. 89-91°C), \(\nu_{\text{max}}/\text{cm}^{-1} \) 2964, 1590, 1516, 1351, 1006, 898 and 765; \(\delta_{\text{H}} \) 2.28 (6H, s, 2 x CH₃), 3.71 (3H, s, OCH₃), 7.83 (2H, s, 2 x Ar-H); \(\delta_{\text{C}} \) 16.8 (2 x CH₃), 60.3 (OCH₃), 124.6 (2 x CH), 132.7 (2 x Ar-C), 143.8 (Ar-C), 162.8 (Ar-C); \(m/z \) (APCI) 152 (M-29, 100%).

4-Amino-2, 6-dimethylanisole 52

To a suspension of 10% palladium on charcoal (0.65 g) in ethanol (130 ml) at ambient temperature was added portionwise the dimethyl-nitroanisole 51 (10 g, 55 mmol) and cyclohexene (26 g, 32 ml, 330 mmol). The mixture was then refluxed for 14h, then allowed to cool to ambient temperature before being filtered through celite. The filter cake was washed with ethanol and the combined filtrates evaporated to give the aniline 52 as a brown
solid (7.562 g, 91%). The crude product was sufficiently pure for further use without further purification and showed m.p. 62-63.4°C, (lit.98 m.p. 60-61°C), ν_{max} cm-1 3772, 3612, 3397, 2976, 1605, 1487, 1340, 1219, 1150, 1016, 856; δ_H 2.24 (6H, s, 2 \times CH$_3$), 3.47-3.51 (2H, br s, NH$_2$), 3.69 (3H, s, OCH$_3$), 6.39 (2H, s, 2 \times Ar-H); δ_C 16.5 (2 \times CH$_3$), 60.4 (OCH$_3$), 115.7 (2 \times Ar-CH), 131.9 (2 \times Ar-CH$_3$), 142.5(Ar-C), 150.0 (Ar-C); m/z (APcI) 152 (M$^+$+1, 100%).

4-Acetamido-2,6-dimethylanisole 53

![Diagram of 4-Acetamido-2,6-dimethylanisole](image)

4-Amino-2,6-dimethylanisole 52 (7.6 g, 50.0 mmol) was stirred in dry tetrahydrofuran (100 ml) with triethylamine (7.4 ml, 53.2 mmol) and the solution cooled in an ice-bath. Acetyl chloride (4.0 ml, 54.1 mmol) was added dropwise before the ice bath was removed and stirring continued overnight. The reaction was quenched with saturated aqueous ammonium chloride (47 ml) and acidified using 2M hydrochloric acid (47 ml). The resulting mixture was extracted with ether (3 \times 75 ml) and the combined extracts washed with water (75 ml) and brine (75 ml) then dried and evaporated. The crude product was recrystallised from ethanol to give the acetamide 53 as colourless crystals (8.6 g, 89%), m.p. 136-137°C, ν_{max} cm-1 3315, 2923, 1659, 1612, 1558, 1462, 1221, 1038, 1010, 862; δ_H 2.10 (3H, s, CH$_3$CO), 2.22 (6H, s, 2 \times CH$_3$), 3.64 (3H, s, OCH$_3$), 6.94-6.95 (1H, br s, NH), 7.08 (2H, s, 2 \times Ar-H); δ_C 16.5 (CH$_3$CO), 24.8 (2 \times CH$_3$), 60.2 (OCH$_3$), 121.1 (3,5-CH), 131.7 (2,6-C), 133.8 (Ar-C), 153.9 (Ar-C), 168.9 (C=O); m/z (APcI) 194 (M$^+$, 100%).
4-Acetamido-2,6-dimethyl-5-idoanisole 203

A suspension of 4-acetamido-2,6-dimethylanisole 53 (7.4 g, 38.1 mmol) and N-iodosuccinimide\(^9\) (12.9 g, 57.2 mmol) in glacial acetic acid (120 ml) was refluxed for 1.5h. The resulting purple solution was cooled to room temperature and neutralised with aqueous 2M sodium hydroxide. The resulting suspension was filtered, the solid washed with water and recrystallized from ethyl acetate to yield the iodoanisole 203 (8.5 g, 70%), m.p. 189-191°C, \(v_{\text{max}}\) cm\(^{-1}\) 3272, 2924, 1651, 1461, 1377, 1228, 1160, 1006; \(\delta_H\) 2.08 (3H, s, CH\(_3\)CO), 2.12 (3H, s, CH\(_3\)), 2.28 (3H, s, CH\(_3\)), 3.52 (3H, s, OCH\(_3\)), 7.15-7.25 (1H, br s, NH), 7.61 (1H, s, 3-H); \(\delta_C\) 16.4 (CH\(_3\)CO), 22.9 (CH\(_3\)), 24.8 (CH\(_3\)), 60.4 (OCH\(_3\)), 96.4 (C-I), 123.0 (3-CH), 131.7 (Ar-C), 134.4 (Ar-C), 135.1 (Ar-C), 153.9 (Ar-C), 168.5(C=O); \(m/z\) (APcI) 320 (M\(^+\)+H, 100%) [Found: C, 41.60; H, 4.35; N, 4.36. C\(_{11}\)H\(_4\)INO\(_2\) requires C, 41.38; H, 4.42; N, 4.39%].

4-Acetamido-2,6-dimethyl-5-iodo-3-nitroanisole 164

4-Acetamido-2,6-dimethyl-5-idoanisole 203 (1.0 g, 3.1 mmol) was stirred in glacial acetic acid (10.0 ml) at ambient temperature. Nitric acid (70%, 2.0 ml) was added dropwise, after which the mixture was stirred at 65°C for 5h. The mixture was allowed to cool to ambient temperature before water (18.0 ml) was added and the solid product collected by filtration, washed with water and recrystallized from aqueous ethanol to give the nitroiodide 164 as pale yellow crystals (0.58 g, 52%). m.p. 226-227°C, \(v_{\text{max}}\) cm\(^{-1}\) 3617, 3212, 2913, 1667, 1519,
1455, 1376, 1272, 1221, 1039, 989; δH 2.17 (3H, s, CH₃CO), 2.22 (3H, s, CH₃), 2.49 (3H, s, CH₃), 3.72 (3H, s, OCH₃), 7.06-7.17 (1H, br s, NH); δC 12.2 (CH₃CO), 23.7 (CH₃), 23.9 (CH₃), 61.0 (OCH₃), 106.3 (C-I), 125.2 (Ar-C), 126.3 (Ar-C), 127.3 (Ar-C), 139.9 (Ar-C), 156.2 (Ar-C), 169.3 (C=O); m/z (APci) 365 (M+H, 100%).

2-Methyl-1-buten-3-yne 205

![2-Methyl-1-buten-3-yne 205](image)

2-Methylbut-3-yn-2-ol 204 (50.0 g, 595.2 mmol) was heated at 90°C (bath) in a distilling flask with an equal weight of p-toluene sulphonate monohydrate for 3 hours. The butyne 205 distilled into the receiver as it was formed. Redistillation of the crude product at 50°C (external bath temperature) gave the pure **butyne 205** as a highly volatile, colourless liquid (11.4 g, 29%), b.p. 34°C, v max/cm⁻¹ 3300, 3100, 2983, 2926, 1614, 1455, 1374, 1266, 1214, 1171, 1013, 961, 904; δH 1.72 (3H, s, CH₃), 2.71 (1H, s, CH), 5.11 (1H, app. s, 1-CH₃), 5.21 (1H, app. s, 1-CH₃). These data are identical to those recorded in the literature.⁴³¹⁰⁰

General Procedure of Asymmetric Dihydroxylation Reaction (AD-mix reaction)⁶³

A round-bottomed flask, equipped with a magnetic stirrer, is charged with 5 ml of tert-butyl alcohol, 5 ml of water, and 1.4 g of AD-mix-α. MeSO₂NH₂ (95 mg, 1 equiv.) is added at this point for all 1,2-disubstituted, trisubstituted, and tetrasubstituted olefins. The mixture is stirred at room temperature until both phases are clear. One mmol of olefin is added at once, and the heterogeneous slurry is stirred vigorously at room temperature until tlc indicates the absence of the starting olefin (ca. 24h). The reaction is quenched by the addition of sodium sulfite (1.5 g) and stirring continued for 30-60 min. The reaction mixture is extracted several times with dichloromethane and the combined organic layers washed with 2N KOH to
remove most of the sulphonamide and then dried and concentrated to give a mixture of the crude diol and the ligand. Purification by flash chromatography (silica gel, ether/ hexane) gives the pure diol; the ligand does not elute in these solvent mixtures.

3, 4-Dihydroxy-3-methyl-1-butyne 69

\[
\begin{align*}
\text{205} & \rightarrow \\
\text{69}
\end{align*}
\]

Following the general procedure of the AD-mix reaction, treatment of the butyne 205 (3.0 g, 45.5 mmol) with AD-mix-β, containing (DHQD)_2PHAL (0.35 g, 0.45 mmol), potassium ferricyanide (45.0 g, 136.5 mmol), potassium carbonate (18.9 g, 137.0 mmol), potassium osmate dehydrate (33 mg, 0.8 mmol), yielded the diol 69 (3.1 g, 67%) as a yellow oil.

\[\nu_{\text{max/cm}^{-1}} 3430, 2938, 2113, 1622, 1511, 1244, 1060, 953, 891; \delta_{\text{H}} 1.37 (3\text{H, s, CH}_3), 2.39 (1\text{H, s, 1-H}), 3.44 (\text{H, d } J=7.6, 4\text{-H}_a), 3.60 (1\text{H, d } J=7.6, 4\text{-H}_b); \delta_{\text{C}} 25.6 (\text{CH}_3), 68.6 (3\text{-C}), 70.7 (4\text{-CH}_2), 72.6 (1\text{-CH}), 86.3 (2\text{-C}); m/z (APci) 100 (M^+, 100\%)
\]

These data are identical to previous data.\(^{42}\)

General procedure of Sonogashira Coupling

The aryl iodide (3.5 mmol) was stirred in degassed dry tetrahydrofuran (40 ml). Triethylamine (14.0 ml, 95 mmol), tetrakis(triphenylphosphine)palladium(0) (0.8 g, 0.7 mmol) was added along with a 1-alkyne (7.0 mmol). The reaction mixture was degassed again, by refluxing under a flow of dry nitrogen for 30 minutes, before copper(I) iodide (133.4 mg, 0.7 mmol) was added. The reaction mixture was then refluxed for ~25h under nitrogen then cooled. Most of the solvent was evaporated and the residue diluted with water (35 ml). The resulting suspension was extracted with dichloromethane (3 \times 50 ml) and the
combined extracts dried and concentrated. The crude product was subjected to column chromatography (typically 5% methanol/chloroform) as stated in the individual experiments.

\((\pm)-4\text{-Acetamido-2,6-dimethyl-5-[3',4'-dihydroxy-3'-methylbut-2'-yn-1-yl]-3-nitroanisole 163}\)

\[
\begin{align*}
\text{MeO} & \quad \text{NO}_2 \\
\text{I} & \quad \text{NH} \\
164 & \\
+ & \\
\text{OH} & \quad \text{OH} \\
69 & \\
\rightarrow & \\
\text{OH} & \quad \text{OH} \\
163
\end{align*}
\]

Following the general procedure for Sonogashira coupling, the nitroiodide 164 (1.3 g, 3.5 mmol) was refluxed with triethylamine (14 ml, 95 mmol), tetrakis(triphenylphosphine)palladium(0) (0.8 g, 0.7 mmol), copper (I) iodide (113.4 mg, 0.7 mmol) along with diol 69 (0.7 g, 7.0 mmol) in tetrahydrofuran (40 ml) for 25 h. The major product crystallized from methanol after chromatography (5% methanol/chloroform) to give the diol 63 as pale yellow, amorphous crystals (500 mg, 1.5 mmol, 43%). m.p. 178-182°C, \(\nu_{\text{max}}\text{ cm}^{-1} 3822, 3580, 3280, 1667, 1504; \delta_{\text{H}} 1.46 (3\text{H, s, 3'-CH}_3), 2.13 (3\text{H, s, CH}_3\text{CO}), 2.23 (3\text{H, s, Ar-CH}_3), 2.36 (3\text{H, s, Ar-CH}_3), 3.04 (2\text{H, br s, 2xOH}), 3.43-3.50 (2\text{H, m, 4'-CH}_2), 3.65 (3\text{H, s, OCH}_3), 7.54 (1\text{H, br s, NH}); \delta_{C} (\text{CD}_3\text{OD}) 12.1 (\text{CH}_3), 15.5 (\text{CH}_3), 23.0 (\text{Ar-CH}_3), 26.6 (\text{Ar-CH}_3), 61.4 (\text{OCH}_3), 70.2 (\text{CH}_2), 71.4 (3'-\text{C}), 78.7 (2'-\text{C}), 103.9 (1'-\text{C}), 124.3 (\text{Ar-C}), 126.2 (\text{Ar-C}), 127.7 (\text{Ar-C}), 128.3 (\text{Ar-C}), 138.6 (\text{Ar-C}), 157.8 (\text{Ar-C}), 173.4 (\text{C=O}); m/z (APcI) 319 (M' -OH, 100%); HRMS (FAB) calcd. for C\text{_{16}H_{21}N_{2}O}_{6} [M+H]^+ 337.1396; found 337.1400.
To a suspension of 10% palladium hydroxide on carbon (22.2 mg) in methanol (20 ml) at ambient temperature was added the alkyne 163 (111.0 mg, 0.33 mmol). The mixture was stirred under one atmosphere of hydrogen for 48h, then filtered through celite, and the filter cake washed with warm methanol. The combined filtrates were evaporated to yield the aniline 162 as a pale yellow gum (101.0 mg, 99%) $\nu_{\text{max}} \text{cm}^{-1}$ 3418, 1641, 1461, 1121; δ_{H} 1.09 (3H, s, 3'-CH$_3$), 1.42 (2H, t, J=8.6, 2'-CH$_2$), 1.71 (2H, d, J=6.3 NH$_2$), 1.95 (3H, s, CH$_3$CO), 2.04 (3H, s, Ar-CH$_3$), 2.08 (3H, s, Ar-CH$_3$), 2.45 (2H, t, J=8.6, 1'-CH$_2$), 2.79 (1H, br s, OH), 2.93 (1H, br s, OH), 3.30-3.36 (2H, m, 4'-CH$_2$), 3.49 (3H, s, OCH$_3$), 7.89 (1H, s, NH); δ_{C} (CD$_3$OD) 11.0 (CH$_3$), 12.3 (CH$_3$), 23.2 (Ar-CH$_3$), 24.1 (Ar-CH$_3$), 24.7 (2'-CH$_2$), 39.5 (1'-CH$_2$), 60.9 (OCH$_3$); 70.6 (CH$_2$OH), 74.1 (3'-C), 115.6 (Ar-C), 119.3 (Ar-C), 119.8 (Ar-C), 139.0 (Ar-C), 142.8 (Ar-C), 158.0 (Ar-C), 174.0 (C=O); m/z (APCI) 311 (M$^+$ +H, 100%), HRMS (FAB) calcd, for C$_{16}$H$_{27}$N$_2$O$_4$ [M+H]$^+$ 311.1965, found 311.1963.
(±)-1-Acetyl-7-(3', 4'-dihydroxy-3'-methylbutan-1-yl)-4,6-dimethyl-5-
methoxybenzotriazole 241

To a solution of the aniline 162 (0.17 g, 0.55 mmol) in methanol (1.5 ml) at ambient
temperature was added a solution of sodium nitrite (0.11 g, 1.65 mmol) in distilled water (0.3
ml). This solution was then added slowly to a stirred solution of concentrated hydrochloric
acid (10 M, 0.5 ml) in distilled water (0.6 ml) maintained at 0°C. Stirring at this temperature
was continued for 0.5 h. Water (6 ml) was then added and the aqueous solution was extracted
with dichloromethane (3 x 10 ml). The combined organic extracts were dried and evaporated
to yield the benzotriazole 241 as a colourless solid (0.133 g, 73%). The crude product was
sufficiently pure for further use without purification and showed m.p. 99-102°C, $\nu_{\text{max}}\text{cm}^{-1}$
3270, 2919, 2862, 2361, 2332, 1745, 1459, 1366, 1309, 1266, 1130, 1094; δ_{H} 1.24 (3H, s, 3'-
CH$_3$), 1.72 (2H, t, $J=8.8$, 2'-CH$_2$), 2.38 (3H, s, COCH$_3$), 2.49-2.54 (2H, m, 2 × OH), 2.66
(3H, s, Ar-CH$_3$), 2.96 (3H, s, Ar-CH$_3$), 2.99-3.15 (2H, m, 1'-CH$_2$), 3.41 (1H, dd, $J=5.9$ and
11.3, 4'-H$_a$), 3.54 (1H, dd, $J=5.9$ and 11.3, 4'-H$_b$), 3.70 (3H, s, OCH$_3$); δ_{C} 9.6 (CH$_3$), 12.0
(CH$_3$), 22.1 (Ar-CH$_3$), 24.3 (Ar-CH$_3$), 24.9 (2'-CH$_2$), 37.3 (1'-CH$_2$), 59.5 (OCH$_3$), 68.2
(CH$_2$OH), 71.8 (3'-C), 118.9 (Ar-C), 123.4 (Ar-C), 126.8 (Ar-C), 133.6 (Ar-C), 145.4 (Ar-
C), 154.4(Ar-C), 169.6 (C=O); m/z (APCI) 322 (M$^+$ +H, 100%), HRMS (FAB) calcd. for
C$_{16}$H$_{24}$N$_3$O$_4$ [M+H]$^+$ 322.1761, found 322.1763.
(±)-7-(3', 4'-dihydroxy-3'-methylbutan-1-yl)-4, 6-dimethyl-5-methoxybenzotriazole 161

![Chemical Structure](image)

The benzotriazole 241 (50.0 mg, 0.16 mmol) was stirred in methanol (1 ml) at ambient temperature. Potassium carbonate (86.0 mg, 0.47 mmol) was added with 2 drops of water. The mixture was stirred at this temperature and the hydrolysis followed by tlc until complete (~4 h). Removal of most of the methanol by evaporation gave a residue which was treated with dichloromethane (10 ml). The resulting mixture was dried and filtered and the solid residue washed with distilled methanol to remove the product attached to the potassium carbonate and magnesium sulphate. Evaporation of the filtrate gave the NH-benzotriazole 161 as a colourless solid (44 mg, 99 %), m.p. 250-252°C, ν max/cm⁻¹ 3376, 2248, 1621, 1434, 1140, 1071, 998, 880; δH (CD₃OD) 1.17 (3H, s, 3'-CH₃), 1.64-1.73 (2H, m, 2'-CH₂), 2.23 (3H, s, Ar-CH₃), 2.45 (3H, s, Ar-CH₃), 2.97-3.03 (2H, m, 1'-CH₂), 3.36 (1H, d, J=11.3, 4'-Hₐ), 3.41 (1H, d, J=11.3, 4'-Hₐ), 3.62 (3H, s, OCH₃); δC (CD₃OD) 11.8 (3'-CH₃), 12.6 (Ar-CH₃), 24.4 (Ar-CH₃), 24.6 (2'-CH₂), 39.6 (1'-CH₂), 61.3 (OCH₃), 70.3 (4'-CH₂), 74.4 (3'-C), 115.3 (Ar-C), 124.6 (Ar-C), 127.8 (Ar-C), 142.7 (Ar-C), 145.0 (Ar-C), 153.9 (Ar-C); m/z (APcI) 280 (M+ +H, 100%), HRMS (FAB) calcd. for C₁₄H₂₂N₃O₃ [M+H]+ 280.1656, found 280.1652.
tert-Butyl 2,2,2-trichloroethylidenecarbamate 288

\[
\text{Ph}_3\text{P} = \text{N} - \text{O} = \text{O} \quad \text{+} \quad \text{Cl}_3\text{C} \quad \rightarrow \quad \text{O} \quad \text{N} = \text{C} = \text{C}_{\text{Cl}_3}
\]

To a solution of triphenylphosphine 287 (21.5 g, 58.9 mmol) in dry toluene (47 ml) was added freshly distilled anhydrous chloral (7.9 ml, 81.8 mmol) dropwise. The resulting yellow solution was refluxed for 3 hours under nitrogen before cooling to room temperature. After evaporation of the toluene, triphenylphosphine oxide was precipitated by the addition of dry hexane and filtered off. Evaporation of the filtrate gave the crude *trichloroethylidenecarbamate 288* (14.44 g, 99 %) as a yellow oil. \(\delta_H 1.51 \text{ (9H, s, C(CH}_3)_3}\), 8.03 \(\text{ (1H, s, CH)}\); \(\delta_C 27.6 \text{ (C(CH}_3)_3}\), 84.5 \(\text{ (C(CH}_3)_3}\), 92.7 (C\(_{\text{Cl}_3}\)), 159.0 (CH), 160.8 (C=O). These data are identical to those recorded in the literature.\(^{56}\)

tert-Butyl 3-trichloromethyl-2-oxaziridinecarboxylate 280

\[
\text{O} = \text{N} = \text{C} = \text{C}_{\text{Cl}_3}\]

A solution of oxone (35.5 g) in chilled water (352 ml) was added at 0 °C to a vigorously stirred mixture of the crude *trichloroethylidenecarbamate 288* (14.5 g, 58.9 mmol) in chloroform (180 ml), potassium carbonate (28.0 g, 202.2 mmol) and water (212 ml). After 1 hour stirring, the aqueous phase was discarded and replaced by fresh chilled solutions of potassium carbonate and oxone in water. A total of 8 such cycles was carried out. The organic phase was washed with water (3 \(\times\) 60 ml), dried and evaporated (bath temperature < 30 °C). The crude product was purified by silica gel column chromatography (dichloromethane) to give the *oxaziridine 280* (11.0 g, 71%) as a foul-smelling colourless oil; \(\nu_{\text{max, cm}}^{-1} 2984, 2937, 2359, 1779, 1478, 1396, 1372, 1300, 1248, 1150, 1076, 993, 914, 836, 816, 780, 754, 735\).
796, 740; \(\delta_H \) 0.93 (9H, s, C(CH\(_3\))\(_3\)), 3.06 (1H, s, CH); \(\delta_C \) 27.6 (C(CH\(_3\))\(_3\)), 81.1 (C(CH\(_3\))\(_3\)), 87.0 (CH), 93.6 (CCl\(_3\)), 158.0 (C=O). These data are identical to those recorded in the literature.\(^{56}\)

\((\pm)-1-(\text{tert-Butoxycarbonylamino})-7-[3', 4'-\text{hydroxy}-3'-\text{methylbutan-1'-yl}]-4,6-\text{dimethyl-5-methoxy-benzotriazole} \ 71\)

\[\text{161} \rightarrow \text{71} \]

To the NH-benzotriazole 161 (30.0 mg, 0.1 mmol) in dry dichloromethane (0.8 ml) at room temperature was added the oxaziridine 280 (52.5 mg, 0.2 mmol) dropwise, and the resulting mixture stirred overnight at this temperature. The solvent was evaporated and the crude product separated by flash column chromatography (silica gel, 5% methanol/chloroform) give the N-Boc-benzotriazole 71 (40.0 mg, 94%) as a yellow oil, \(\nu_{\max} \text{cm}^{-1} \) 3274, 2930, 1739, 1452, 1362, 1248, 1158, 1110, 1050, 906, 834, 732; \(\delta_H \) 1.23 (3H, s, 3'-CH\(_3\)), 1.32-1.75 (9H, br s, C(CH\(_3\))\(_3\)), 1.78 (2H, t, \(J \approx 8.6 \), 2'-CH\(_2\)), 2.30 (3H, s, Ar-CH\(_3\)), 2.56 (3H, s, Ar-CH\(_3\)), 2.99-3.02 (2H, m, 1'-CH\(_2\)), 3.54 (1H, d, \(J \approx 11.3 \), 4'-H\(_a\)), 3.65 (1H, d, \(J \approx 11.3 \), 4'-H\(_b\)), 3.69 (3H, s, OCH\(_3\)); \(\delta_C \) 7.9 (3'-CH\(_3\)), 10.9 (Ar-CH\(_3\)), 21.9 (Ar-CH\(_3\)), 24.9 (2'-CH\(_2\)), 27.1 (C(CH\(_3\))\(_3\)), 37.1 (1'-CH\(_2\)), 59.5 (CH\(_2\)OH), 59.6 (OCH\(_3\)), 72.1 (3'-C), 82.4 (C(CH\(_3\))\(_3\)), 109.0 (Ar-C), 124.9 (Ar-C), 126.0 (Ar-C), 129.5 (Ar-C), 139.4 (Ar-C), 152.7 (Ar-C), 156.7 (C=O); \(m/z \) (APCl) 395 (M\(^+\) +H, 100%), HRMS (FAB) calcd. for C\(_{19}\)H\(_{31}\)N\(_4\)O\(_5\) [M+H]\(^+\) 395.2289, found 395.2295.
General deprotection/cyclisation procedure:

The N-terZ-butoxycarbonylamino-benzotriazole (n mmol) was dissolved in dichloromethane (10 ml mmol⁻¹) containing trifluoroacetic acid (2 ml mmol⁻¹) and the resulting solution stirred at ambient temperature until tlc analysis showed disappearance of the starting material (ca. 45 minutes). The volatiles were then evaporated and the residue was put under high vacuum to remove residual trifluoroacetic acid, then dissolved in dichloromethane (10 ml mmol⁻¹). Anhydrous potassium carbonate (13 eq.) was then added to basify this solution, after which the solid was filtered off and washed with warm dichloromethane. The filtrate was concentrated to 10 ml mmol⁻¹ before solid N-iodosuccinimide (2.5 eq.) was added in the dark. The resulting purple solution was stirred for a further 1h then washed with saturated aqueous sodium thiosulfate, dried and evaporated to give the crude product, column chromatography of which in petrol / ethyl acetate (2:1) gave the pure product.

(±)-8-Iodo-6-methoxy-2,5,7-trimethyl chroman-2-methanol 44

Following the general deprotection/ cyclisation procedure, a crude sample of the N-Boc benzotriazole 71 (220.6 mg, 0.56 mmol) was treated with trifluoroacetic acid (1.1 ml) and N-iodosuccinimide (378 mg, 1.7 mmol) to give the iodochroman 44 as a yellow gum (43 mg, 21% from NH-benzotriazole 161). ν max/cm⁻¹ 3390, 2936, 1450, 1390, 1219, 1058, 8821; δH 1.21 (3H, s, 2-CH₃), 1.67 (1H, ddd, J=4.8, 6.0, 13.6, 3-Ha), 1.80-1.90 (1H, m, 3-Hb), 2.08 (3H, s, Ar-CH₃), 2.35 (3H, Ar-CH₃), 2.56-2.60 (2H, m, 4-CH₂), 3.57 (5H, s, CH₂OH and OCH₃); δC 11.0 (2-CH₃), 19.2 (Ar-CH₃), 20.9 (Ar-CH₃), 19.4 (3-CH₂), 26.9 (4-CH₂), 59.5
(OCH₃), 68.2 (CH₂OH), 77.5 (2-C), 90.0 (C-I), 117.8 (Ar-C), 128.4 (Ar-C), 132.3 (Ar-C), 146.8 (Ar-C), 149.1 (Ar-C); m/z (APcI) 345 (M⁺ -OH, 100%), HRMS (FAB) calcd. For C₁₄H₂₃NO₃[M+NH₄]⁺ 380.0717, found 380.0714.

\(\pm\)-2-Acetoxymethyl-8-iodo-6-methoxy-2,5,7-trimethylchroman 311

Iodochroman 44 (30.0 mg, 0.08 mmol) was stirred in dry dichloromethane (1.5 ml) with acetyl chloride (0.02 ml, 0.24 mmol) and 4-dimethylaminopyidine (DMAP) (2.0 mg, cat.) was added. The resulting solution was stirred for 18 h before being diluted with dichloromethane (5 ml). The resulting solution was washed with water (2 ml), saturated copper sulphate (2 ml) and saturated potassium carbonate (2 ml) then dried. The crude product was purified by column chromatography using diethyl ether / hexane (1/3) as the eluent to give the pure \textit{acetoxy-chroman} 311 (23.0 mg, 75%) as a yellow gum. v max/cm⁻¹ 2959, 1744, 1450, 1390, 1260, 1057, 800; δ_H 1.28 (3H, s, 2-CH₃), 1.72-1.88 (2H, m, 3-CH₂), 2.05 (3H, s, Ar-CH₃), 2.06 (3H, s, Ar-CH₃), 2.34 (3H, s, COCH₃), 2.53 (2H, app. t, J=6.9, 4-CH₂), 3.56 (3H, OCH₃), 4.02 (1H, d, J≈11.3, 1'-Hₐ), 4.09 (1H, d, J≈11.3, 1'-Hₖ); δ_C 11.0 (2-CH₃), 19.4 (Ar-CH₃), 20.0 (Ar-CH₃), 20.9 (COCH₃), 20.1 (3-CH₂), 28.7 (4-CH₂), 59.5 (-OCH₂), 67.2 (OCH₃), 74.3 (2-C), 89.1 (C-I), 117.2 (Ar-C), 128.3 (Ar-C), 133.0 (Ar-C), 147.1 (Ar-C), 149.0 (Ar-C), 169.9 (C=O); m/z (APcI) 277 (M⁺ -I, 100%), HRMS (EI) calcd. For C₁₄H₂¹IO₄ [M⁺] 404.0479, found 404.0483.
1-Acetyl-benzotriazole 252

To a solution of acetyl chloride (3.6 ml, 50 mmol) and 1-H-benzotriazole 2 (5.95 g, 50 mmol) in dry dichloromethane (300 ml) cooled in an ice bath was added a mixture of triethylamine (5.5 g, 55.0 mmol) and dry dichloromethane (25 ml) dropwise over 30 minutes. The mixture was refluxed for 4 h and then cooled to room temperature. The resulting mixture was washed with water (50 ml), saturated aqueous ammonium chloride (25 ml) and 10% aqueous sodium bicarbonate (25 ml). The organic layer was then dried, evaporated and the residue crystallized from methanol to give the pure acetyl benzotriazole 252 (4.78 g, 60%) as colourless crystals showing m.p. 48-50°C, [lit.50 m.p. 51-52 °C] δ\textsubscript{H} 2.95 (3H, s, CH\textsubscript{3}), 7.43 (1H, dt, J=0.9, 8.3, Ar-CH), 7.58 (1H, dt, J=0.9, 8.3, Ar-CH), 8.06 (1H, d, J=8.3, Ar-CH), 8.23 (1H, d, J=8.3, Ar-CH). These data are identical to those recorded in the literature.50

(±)-2-Hydroxy-2-methyl-3-butyryl-1-yl benzoate 220

Benzoyl chloride (0.03 ml, 0.22 mmol) was added to a well stirred solution of the diol 69 (20.0 mg, 0.2 mmol) in dry dichloromethane (1.6 ml) containing triethylamine (0.03 ml, 0.22 mmol). The resulting solution was stirred overnight before being diluted with dichloromethane (5 ml) followed by washing with water (3 ml), 1 M hydrochloric acid (2 ml) and brine. The organic solution was then dried and evaporated and the residue purified on a silica column using petrol ether / ethyl acetate (4 / 1) as the eluent to give the pure benzoate 220 (29.0 mg, 71%) as a colourless oil, \(\nu_{max}\text{cm}^{-1} 3456, 3284, 2989, 2360, 1722, 1452, 1371, 1244, 1192, 1070, 1049, 982, 855, 764\).
1274, 1116, 710; δ_H 1.53 (3H, s, CH₃), 2.43 (1H, s, CH), 2.92 (1H, br. s, OH), 4.23 (1H, d, J~11.1, 1-Hₐ), 4.36 (1H, d, J~11.1, 1-Hₖ), 7.36 (2H, t, J~7.6, 2 × Ar-CH), 7.49 (1H, t, J~7.6, Ar-CH), 8.00 (2H, dd, J~1.0, 7.6, 2 × Ar-CH); δ_C 26.4 (CH₃), 67.3 (CH₂), 71.6 (2-C), 73.1 (4-CH), 85.1 (3-C), 128.9 (Ar-CH), 130.0 (Ar-C), 130.2 (Ar-CH), 133.7 (Ar-CH), 166.8 (C=O).

2-Methyl-4-(tert-butyldiphenylsilyl)-1-buten-3-yne 315

Butyllithium (2.5M solution in hexane) (24 ml) was added dropwise to a well-stirred solution of the butenyne 205 (4.0 g, 60.0 mmol) in dry tetrahydrofuran (45 ml) cooled in an ice-bath. The solution was stirred for 15 minutes before tert-butyldichlorodiphenylsilane (16.8 g, 72.0 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 2h. The solvent was then removed after warming to room temperature and the residue was treated with water (10 ml) and ether (10 ml). The separated aqueous layer was extracted with ether (3 × 30 ml) and the combined organic solution were dried and evaporated to give the crude silane 315 (17.7 g, 86%) as a light yellow gum, which was suitable for the bis-hydroxylation step without further purification, and which showed ν_max/cm⁻¹ 3428, 3070, 2929, 2856, 2154, 1682, 1589, 1471, 1428, 1390, 1361, 1192, 1110, 1008, 908, 820, 738, 701; δ_H 0.99 (9H, s, C(CH₃)₃), 1.92 (3H, s, 2-CH₃), 5.27 (1H, d, J~1.7, 1-Hₐ), 5.41 (1H, d, J~1.7, 1-Hₖ), 7.27-7.33 (6H, m, 6 × Ar-CH), 7.63-7.67 (4H, m, 4 × Ar-CH); δ_C 19.1 (C(CH₃)₃), 25.4 (2-CH₃), 26.6 (C(CH₃)₃), 88.5 (4-C), 109.0 (3-C), 123.2 (CH₂), 127.8 (Ar-CH), 129.7 (Ar-CH), 134.8 (Ar-CH), 135.2 (2-C), 135.6 (Ar-C); m/z (APcI) 305 (M⁺ +H, 100%).
4-(tert-Butyldiphenylsilyl)-2-methylbut-3-yn-1,2-diol 316

Following the general procedure of the AD-mix reaction, treatment of the silyl-butenyne 315 (580 mg, 1.7 mmol) with AD-mix-β (2.4 g), yielded the silyl diol 316 (440 mg, 70%) as a colourless oil, νmax/cm⁻¹ 3426, 2928, 2359, 1635, 1110, 908, 700; δH 1.01 (9H, s, C(CH₃)₃), 1.51 (3H, s, 2-CH₃), 3.56 (1H, d, J=11.0, 1-Ha), 3.70 (1H, d, J=11.0, 1-Hb), 7.29-7.35 (6H, m, 6 × Ar-CH), 7.68 (4H, d, J=7.1, 4 × Ar-CH); δC 18.5 (C(CH₃)₃), 24.1 (2-CH₃), 27.0 (C(CH₃)₃), 58.9 (2-C), 70.7 (CH₂), 84.1 (4-C), 111.6 (3-C), 127.8 (Ar-CH), 129.7 (Ar-CH), 132.9 (Ar-C), 135.5 (Ar-CH).

4-(tert-Butyldiphenylsilyl)-2-hydroxy-2-methylbut-3-yn-1-yl acetate 317

The silyl diol 316 (20.0 mg, 0.05 mmol) was stirred in pyridine (0.5 ml) at room temperature when acetic anhydride (2 drops) was added. The resulting solution was stirred at this temperature for 18 h before being diluted with ether (1 ml). Water (1 ml) was also added and the resulting mixture extracted with ether (3 × 5 ml). The combined extracts were dried and evaporated to afford a crude product which was purified by chromatography using ethyl acetate / petrol ether (20%) as the eluent. The pure acetate 317 (19.0 mg, 90%) was obtained as a colourless oil, ee=12.7%, νmax/cm⁻¹ 3438, 3070, 2930, 2857, 2173, 1959, 1888, 1745,
To a well-stirred solution of the silyl butyne 315 (600 mg, 1.73 mmol) in dichloromethane (9 ml) was added meta-chloroperoxybenzoic acid (m-CPBA) (600 mg, 3.46 mmol). The resulting suspension was stirred for 2 h at room temperature before saturated aqueous sodium bicarbonate (10 ml) was added. The resulting mixture was extracted with ether (3 × 15 ml) and the combined extracts dried and evaporated to give the crude product which was purified by chromatography using ether/hexane (10%). The pure oxirane 321 (590 mg, 95%) was obtained as a yellow oil, \(\nu_{\text{max}}/\text{cm}^{-1} \) 3429, 3070, 2958, 2857, 2156, 1958, 1887, 1702, 1589, 1471, 1428, 1362, 1256, 1193, 1111, 1009, 907, 820, 741, 700; \(\delta_{\text{H}} \) 0.99 (9H, s, C(CH₃)₃), 1.57 (3H, s, CH₃), 2.71 (1H, d, J=5.6, 3-Hₐ), 3.03 (1H, d, J=5.6, 3-Hₐ), 7.26-7.35 (6H, m, 6 × Ar-CH), 7.62-7.69 (4H, m, 4 × Ar-CH); \(\delta_{\text{C}} \) 19.0 (C(CH₃)₃), 23.3 (C-CH₃), 27.0 (C(CH₃)₃), 48.0 (2-C), 56.1 (CH₂), 83.2 (C), 109.2 (C), 128.2 (Ar-CH), 130.5 (Ar-C), 135.2 (Ar-CH), 136.0 (Ar-CH).
N-Methoxy-N-methyl methacrylamide 324

![Chemical Structure](attachment:structure.png)

Methacryloyl chloride 327 (4.6 ml, 47.8 mmol) and N,O-dimethylhydroxylamine hydrochloride 328 (5.1 g, 52.6 mmol) was dissolved in ethanol free chloroform (480 ml) at room temperature. The solution was cooled to 0°C and pyridine (8.5 ml, 105.2 mmol) was added. The mixture was stirred at ambient temperature for 1 h then the volatiles carefully evaporated. The residue was partitioned between brine and a 1:1 mixture of ether and dichloromethane. The separated organic layer was dried and concentrated to afford the crude amide 324 which was purified by silica gel chromatography using ethyl acetate / petrol ether (50%). The pure amide 324 (6.1 g, 47.1 mmol, 99%) was obtained as light yellow oil, \(\nu_{\text{max/cm}}^{-1} \) 3593, 3476, 2934, 1820, 1726, 1656, 1460, 1379, 1177, 1115, 998, 928; \(\delta_{H} \) 1.92 (3H, s, C(CH\(_3\))), 3.18 (3H, s, N-CH\(_3\)), 3.59 (3H, s, OCH\(_3\)), 5.18 (1H, app. s, CH\(_{a}\)), 5.24 (1H, app. s, CH\(_{b}\)); \(\delta_{C} \) 18.9 (C(CH\(_3\))), 60.2 (N-CH\(_3\)), 116.3 (OCH\(_3\)), 139.2 (CH\(_2\)), 170.1 (C(CH\(_3\))), 170.5 (C=O); \(m/z \) (APcI) 130 (M\(^{+} + \text{H}\), 100%).

(+)-(R)-2,3-Dihydroxy-2, N-dimethyl-N-methoxy propionamide (R)-325

Following the general procedure of AD-mix reaction, treatment of methacrylamide 324 (6.1 g, 47.1 mmol) with AD-mix-\(\alpha \) yielded the dihydroxypropionamide (R)-325 (7.00 g, 91%) as a yellow oil. \([\alpha]_D^{26} = +4.3\) (c 2.0 g/100ml, MeOH), \([\text{lit}^{101}]\ [\alpha]_D^{25} = +4.7\) (c 1.80 g/100ml, MeOH); \(\nu_{\text{max/cm}}^{-1} \) 3440, 3143, 2930, 1636, 1458, 1364, 1181, 1054, 993, 934, 866; \(\delta_{H} \) 1.31 (3H, s, C(CH\(_3\))), 3.24 (3H, s, N-CH\(_3\)), 3.47 (2H, br. s, 2 \times \text{OH}), 3.54 (1H, d, \(J \sim 11.5 \), 3-H\(_{a}\)), 3.58 (1H, d, \(J \sim 11.5 \), 3-H\(_{b}\)).
3.70 (3H, s, OCH₃), 3.75 (1H, d, J=11.5, 3-H₆); δC 21.8 (C(CH₃)), 61.4 (N-CH₃), 68.0
(OCH₃), 76.4 (CH₂), 77.7 (C(CH₃)), 174.8 (C=O); m/z (APcI) 164 (M⁺+H, 70%).

(R)-N-Methoxy-N-methyl-2,2,5-trimethyl-1,3-dioxolane-5-carboxamide 340

![Chemical Structure](image)

A solution of the dihydroxypropionamide (R)-325 (3.25 g, 19.9 mmol), 2,2-
dimethoxypropane (12.3 ml, 99.5 mmol) and p-toluenesulphonic acid (76.1 mg, 0.4 mmol) in
toluene was heated under reflux (~105 °C) for 2 h. The reaction mixture was cooled to room
temperature and the solvent was evaporated to give a yellow oil, which was purified by
column chromatography (ethyl acetate / petrol ether, 50%) to give the pure acetal 340 (3.60
g, 87%) as a pale yellow oil, νmax/cm⁻¹ 3612, 2983, 2936, 1658, 1456, 1372, 1247, 1211,
1118, 1062, 1000, 918, 874, 848; δH 1.16 (3H, s, 5-CH₃), 1.25 (3H, s, 2-CH₃), 1.31 (3H, s, 2-
CH₃), 3.10 (3H, br res., N-CH₃), 3.53 (3H, s, OCH₃), 3.56 (1H, d, J=8.3, 4-H₆), 4.37(1H, d,
J=8.3, 4-H₆); δC 23.4 (5-CH₃), 26.1 (2-CH₃), 27.3 (2-CH₃), 60.7 (N-CH₃), 61.1 (OCH₃), 73.0
(4-CH₂), 77.7 (5-C), 110.7 (2-C), 171.4 (C=O); m/z (APcI) 204 (M⁺+H, 100%).

(R)-2,2,5-Trimethyl-1,3-dioxolane-5-carboxaldehyde 341

![Chemical Structure](image)

To a solution of the acetal 340 (3.60 g, 17.7 mmol) in dry tetrahydrofuran (180 ml) was
added diisobutylaluminium hydride (1 M solution in THF, 53.2 ml, 53.2 mmol) at 0°C. The
reaction mixture was stirred at this temperature for 1 h, then poured into 5% hydrochloric
acid in ethanol (50 ml) at 0°C and the resulting mixture partitioned between brine (20 ml) and
ether (100 ml). The organic extract was washed with water (15 ml) and then carefully evaporated to give the crude aldehyde 341 (2.80 g, 100%) as a yellow oil which was ready for the dichlorination step. $\nu_{\text{max/cm}^{-1}}$ 3424, 2937, 2358, 1725, 1458, 1373, 1260, 1209, 1104, 1061, 858; δ_H 1.29 (3H, s, CH$_3$), 1.39 (6H, br res., C(CH$_3$)$_2$), 3.66 (2H, s, CH$_2$), 9.59 (1H, s, CH); δ_C 18.2 (CH$_3$), 25.4 (C(CH$_3$)$_2$), 25.8 (C(CH$_3$)$_2$), 69.8 (CH$_2$), 76.3 (C(CH$_3$)), 83.6 (C(CH$_3$)$_2$), 201.4 (C=O); m/z (APcI) 145 (M$^+$+H, 100%).

(5)-5-(2',2'-Dichloroethen-1'-yl)-2,2,5-trimethyl-1,3-dioxolane 358

To a stirred solution of trichloroacetic acid (4.20 g, 25.4 mmol) and the aldehyde 341 (2.27 g, 15.9 mmol) in N,N-dimethylformamide (12 ml) at room temperature was added sodium trichloroacetate (4.70 g, 25.4 mmol) in portions. The internal temperature was kept below 35°C by addition control. After the addition was completed, the mixture was stirred at room temperature for 4 h with continuous evolution of CO$_2$. The solution was then cooled to 5°C and acetic anhydride (3.0 ml, 31.8 mmol) was carefully added. Strong CO$_2$ evolution was observed. The mixture was allowed to warm to room temperature and stirred for an additional hour, then diluted with acetic acid (15 ml) and cooled to 0°C. To the resulting solution, zinc powder (2.1 g, 31.8 mmol) was added in one portion. The solution was stirred for 1 h at 60°C then cooled to room temperature, diluted with water (10 ml) and extracted with hexanes (3 \times 30 ml). The combined organic extracts were washed with water (10 ml) and brine (10 ml) before being dried and carefully concentrated by rotary evaporation. The crude dichloro alkene 358 (1.89 g, 57%) was obtained as a pale yellow oil, $\nu_{\text{max/cm}^{-1}}$ 2988, 2878, 1613, 1451, 1372, 1261, 1210, 1111, 1063, 991, 883, 810; δ_H 1.30 (3H, s, CH$_3$), 1.36 (3H, s, CH$_3$), 1.42 (3H, s, CH$_3$), 3.88 (1H, d, J=8.6, 4-H$_a$), 4.09 (1H, d, J=8.6, 4-H$_b$), 6.20
(1H, s, 1'-H); δC 24.3 (CH₃), 26.0 (CH₃), 27.2 (CH₃), 73.9 (CH₂), 80.6 (5-C), 109.5 (2-C), 120.2 (CCl₂), 136.0 (1'-CH).

(S)-5-Ethynyl-2,2,5-trimethyl-1,3-dioxolane 352

![Chemical structure of 352](image)

To a stirred solution of dichloro alkene 358 (1.64 g, 7.8 mmol) in dry tetrahydrofuran (10 ml) at -30°C was added butyllithium (9.4 ml of a 2.5 M solution) dropwise via a syringe. After the addition was completed, the solution was allowed to slowly warm to 0°C over a one hour period. The reaction was quenched with saturated aqueous ammonium chloride (10 ml) and diluted with ether (30 ml). The aqueous phase was extracted with diethyl ether (3 x 30 ml) and the combined ether solution washed with brine (10 ml) and water (10 ml) to give the crude acetylene 352 as a yellow oil (1.1 g, 99%). δH 1.28 (3H, s, 5-CH₃), 1.39 (3H, s, 2-CH₃), 1.43 (3H, s, 2'-CH₂), 2.35 (1H, s, 2'-H), 3.65 (1H, d, J~8.2, 4-Hₐ), 4.05 (1H, d, J~8.2, 4-Hₖ).

(R)-N-Methoxyl-N-methyl-(2,2-bis(1,1-dimethylethyl)-5-methyl-1,3-dioxa-2-silacyclopent-5-yl)-carboxamide 370

![Chemical structure of 370](image)

To a stirred solution of the diol (R)-325 (500 mg, 3.0 mmol) and 2,6-lutidine (1.0 ml, 9 mmol) in chloroform (30 ml) at 0°C was added di-tert butylsilyl bis-(trifluoromethanesulfonate) (1.6 g, 3.6 mmol). The resulting solution was warmed to room temperature and then stirred for another 18 h. Water (5 ml) was added then the solution extracted with dichloromethane (3 x 30 ml). The combined organic extracts were dried and...
the crude product was taken to a florisil column using petrol ether as the eluent to give the pure silyl ether 370 as a colourless oil (395 mg, 53 %), δH 0.97 (18H, s, 2 × C(CH₃)₃), 1.48 (3H, s, C-CH₃), 3.62 (1H, d, J=6.8, 4-Hₙ), 3.65 (1H, d, J=6.8, 4-Hₜ), 3.67 (3H, s, OCH₃), 3.73 (3H, s, N-CH₃);

Dimethyl diazoketophosphonate 348

![Diagram](image)

A solution of dimethyl (2-oxopropyl)phosphonate 351 (6.1 g, 36.7 mmol) in dry benzene (38 ml) was added to a stirred suspension of NaH (60%, 15 g, 36.7 mmol) in a mixed solvent of dry benzene (114 ml) and dry tetrahydrofuran (19 ml) at 0-5°C. The reaction mixture was stirred for 1 h at 0°C before tosyl azide 350 (7.20 g, 36.7 mmol) in benzene (20 ml) was added. The reaction mixture was warmed to room temperature and stirred for addition 2 h. The solution was filtered and concentrated before purification by flash column chromatography using ethyl acetate / petrol ether (50%) as eluent to give the pure diazophosphonate 348 (4.20 g, 60%) as a pale yellow oil, ν max/cm⁻¹ 3516, 2959, 2857, 2401, 2221, 2123, 1658, 1458, 1366, 1276, 1183, 1025, 971, 838, 906, 785; δH 2.21 (3H, s, CH₃), 3.77 (3H, s, OCH₃), 3.80 (3H, s, OCH₃); δC 27.1 (CH₃), 53.6 (OCH₃), 53.6 (OCH₃), 143.0 (C=N₂), 189.8 (C=O); m/z (APcI) 193 (M⁺ +H, 100%). These data are identical to those previously recorded.¹⁰²
(+)-(R)-2,3-Di-(tert-Butyldimethylsilyloxy)-2,N-dimethyl-N-methoxypropionamide 374

\[
\begin{align*}
\text{(R)-325} & \quad \rightarrow \quad \text{374}
\end{align*}
\]

\(t\)-Butyldimethylsilyl chloride (23.0 g, 152.0 mmol) was added to a stirred solution of dihydroxypropionamide (R)-325 (10.30 g, 63.3 mmol), imidazole (21.50 g, 316.5 mmol) in \(N, N\)-dimethylformamide (40 ml). The solution was heated to 35°C and stirred overnight under nitrogen. Water (10 ml) was then added and the reaction mixture was cooled to room temperature before extracting with dichloromethane (3 × 50 ml). The combined organic extracts were washed with brine (20 ml) and dried evaporated. The crude product was purified by silica gel chromatography using ethyl acetate/ petro ether (5%) as eluent. The pure bis-silylether 374 (23.2 g, 94%) was obtained as a colourless oil, \([\alpha]_D^{26} = +3.2 (c 2.0 \text{ g/100ml, chloroform})\); \(\nu_{\text{max}}/\text{cm}^{-1} 2934, 2856, 1670, 1472, 1387, 1361, 1251, 1214, 1109, 1033, 837, 778, 723, 682\); \(\delta_{\text{H}} 0.00 (3\text{H, s, Si-CH}_3), 0.01 (3\text{H, s, Si-CH}_3), 0.08 (3\text{H, s, Si-CH}_3), 0.11 (3\text{H, s, Si-CH}_3), 0.83 (9\text{H, s, C(CH}_3)_3), 0.84 (9\text{H, s, C(CH}_3)_3), 1.39 (3\text{H, s, 2-CH}_3), 3.25 (3\text{H, s, N-CH}_3), 3.65 (3\text{H, s, OCH}_3), 3.67 (1\text{H, d, J=9.9, 3-CH}_3), 3.73 (1\text{H, d, J=9.9, 3-CH}_3); \delta_{\text{C}} -5.9 (\text{Si-CH}_3), -5.8 (\text{Si-CH}_3), -2.5 (\text{Si-CH}_3), -2.3 (\text{Si-CH}_3), 18.3 (\text{C(CH}_3)_3), 18.5 (\text{C(CH}_3)_3), 25.8 (\text{C(CH}_3)_3), 26.1 (\text{C(CH}_3)_3), 27.7 (2-\text{CH}_3), 36.1 (\text{N-CH}_3), 60.3 (\text{OCH}_3), 69.7 (3-\text{CH}_2), 80.2 (2-\text{C}), 172.7 (\text{C=O}), \text{m/z (APci) } 392 (M^+H, 100\%).

(R)-2,3-Di(tert-butyldimethylsilyloxy)-2-methylpropanal 375

\[
\begin{align*}
\text{374} & \quad \rightarrow \quad \text{375}
\end{align*}
\]

A solution of the bis-silylether 374 (10.1 g, 25.9 mmol) was stirred in dry ether (260 ml) at \(-78^\circ\text{C}\). Lithium aluminium hydride (80 ml of a 1M solution in diethyl ether, 77.7 mmol) was
added dropwise. The reaction mixture was then stirred at this temperature for 40 minutes before being treated with 2M aqueous sodium hydroxide (40 ml). The mixture was then warmed to ambient temperature before being extracted with ether (3 × 100 ml). The combined organic phases were dried and carefully evaporated. The crude aldehyde 375 (7.50 g, 88%) was obtained as a pale yellow liquid which was ready for the next step without further purification, \(\nu_{\text{max/cm}^{-1}} 2955, 2858, 2359, 1740, 1472, 1388, 1362, 1255, 1156, 1108, 1040, 836, 777, 668; \delta_{\text{H}} -0.08 (3\ H, \text{s, Si-CH}_3), -0.06 (3\ H, \text{s, Si-CH}_3), 0.01 (3\ H, \text{s, Si-CH}_3), 0.02 (3\ H, \text{s, Si-CH}_3), 0.80 (9\ H, \text{s, C(CH}_3)_3), 0.82 (9\ H, \text{s, C(CH}_3)_3), 1.12 (3\ H, \text{s, 2-CH}_3), 3.53 (1\ H, \text{app. s, 3-H}_a), 3.54 (1\ H, \text{app. s, 3-H}_b), 9.51 (1\ H, \text{s, CHO}); \delta_{\text{C}} -5.8 (\text{Si-CH}_3), -5.7 (\text{Si-CH}_3), -3.6 (\text{Si-CH}_3), -3.2 (\text{Si-CH}_3), 15.2 (2-CH_3), 18.1 (C(CH}_3)_3), 18.2 (C(CH}_3)_3), 25.7 (C(C}_3H)_3), 68.4 (3-CH_2), 80.7 (2-C), 204.6 (C=O); m/z (APci) 333 (M^+H, 95%).

\((+)-(S)-1,1\text{-Dibromo-3,4-di-(tert-butyldimethylsilyloxy)-3-methyl-but-1-ene 380}\)

\[
\begin{align*}
375 & \xrightarrow{} & 380
\end{align*}
\]

Triphenylphosphine (44.0 g, 167.7 mmol) was added to a well stirred solution of carbon tetrabromide (27.8 g, 83.8 mmol) in dry dichloromethane (200 ml).\(^{103}\) An orange solution was obtained. The aldehyde 375 (13.9 g, 41.9 mmol) was added caused fading of the colour. The solution was stirred at room temperature and followed by tlc (~ 4 h). The reaction mixture was then washed with water (30 ml), the solvent evaporated, and the residue separated by silica gel chromatography using pentane/hexane (50%). The pure dibromoalkene 380 (15.2 g, 74%) was obtained as a colourless oil, \([\alpha]_D^{25} = +2.7 (c 1.90 \text{ g/100ml, chloroform}); \nu_{\text{max/cm}^{-1}} 2955, 2857, 2361, 1607, 1472, 1388, 1361, 1255, 1108, 1036, 938, 836, 776, 669; \delta_{\text{H}} -0.01 (3\ H, \text{s, Si-CH}_3), 0.00 (3\ H, \text{s, Si-CH}_3), 0.04 (3\ H, \text{s, Si-CH}_3), 0.05 (3\ H, \text{s, Si-CH}_3), 0.81 (9\ H, \text{s, C(CH}_3)_3), 0.84 (9\ H, \text{s, C(CH}_3)_3), 1.38 (3\ H, \text{s, 3-CH}_3), 3.42 (1\ H, d J=9.1, 4-CH_a), 3.52 (1H, d J=9.1, 4-CH_b), 6.64 (1H, s, 2-H); \delta_{\text{C}} -5.6 (\text{Si-CH}_3), -3.0 (\text{Si-})
\]

174
CH₃), -2.3 (Si-CH₃), -2.2 (Si-CH₃), 18.2 (Si-C), 18.3 (Si-C), 22.6 (3-CH₃), 25.8 (C(CH₃)₃), 25.9 (C(CH₃)₃), 69.7 (4-CH₂), 87.3 (3-C), 143.5 (2-CH), 204.5 (1-C); m/z (APcI) 279 (M⁺-TBDM-S-Br-Me+H, 100%).

1,1-Dibromo-2-phenylethene 379

![1,1-Dibromo-2-phenylethene](image)

Following the foregoing procedure, benzaldehyde 378 (1.30 g, 12.0 mmol) was stirred with triphenylphosphine (12.6 g, 48.0 mmol) and carbon tetrabromide (8.0 g, 24 mmol) in dry dichloromethane (60 ml) to afford a crude product which was purified by stirring with hexane, filtering and evaporation. The pure dibromo-alkene 379 (1.60 g, 50%) was obtained as a yellow oil, ν_max/cm⁻¹ 3055, 3023, 1594, 1493, 1444, 1337, 1268, 1198, 1119, 1075, 1030, 920, 863, 778, 745, 721, 692; δ_H 7.24-7.30 (3H, m, 3 × Ar-CH), 7.39 (1H, s, 2-H), 7.43 (2H, dd, J = 1.1, 7.3, 2 × Ar-CH); δ_C 54.0 (1-C), 90.1 (2-CH), 128.9 (Ar-CH), 129.1 (Ar-CH), 135.7 (Ar-C), 137.4 (Ar-CH). These data are identical to those previously recorded.¹⁰⁴

(+)-(S)-3,4-Di-(tert-butyldimethylsilyloxy)-3-methyl-1-butyne 381

![(+)-(S)-3,4-Di-(tert-butyldimethylsilyloxy)-3-methyl-1-butyne](image)

To a stirred solution of the dibromo-alkene 380 (5.25 g, 10.8 mmol) in dry tetrahydrofuran (175 ml) at -30°C was added butyllithium (13 ml of a 2.5 M solution in hexane, 32.5 mmol) dropwise via a syringe. After the addition was complete, the solution was allowed to slowly warm to 0°C during one hour. The reaction was quenched with saturated aqueous ammonium chloride (10 ml) and diluted with ether (50 ml). The separated aqueous phase was extracted
with further ether (3 x 50 ml). The combined solutions were washed with brine (20 ml) and water (20 ml) and then dried and evaporated. The crude product was separated using silica gel chromatography using pentane as the eluent. The pure alkyne 381 (2.60 g, 59%) was obtained as a colourless oil, [α]_D^26 = +3.5 (c 1.0 g/ 100 ml, chloroform); ν_{max}/cm^{-1} 3311, 2929, 2857, 1472, 1389, 1361, 1254, 1190, 1119, 1032, 939, 836, 777; δ_H 0.00 (3H, s, Si-CH₃), 0.01 (3H, s, Si-CH₃), 0.10 (3H, s, Si-CH₃), 0.11 (3H, s, Si-CH₃), 0.80 (9H, s, C(CH₃)₃), 0.84 (9H, s, C(CH₃)₃), 1.36 (3H, s, 3-CH₃), 2.32 (1H, s, 1-H), 3.35 (1H, d, J~ 9.5, 4-Hₐ), 3.47 (1H, d, J~ 9.5, 4-Hₖ), δ_C -5.34 (Si-CH₃), -5.32 (Si-CH₃), -3.0 (Si-CH₃), -2.9 (Si-CH₃), 18.0 (Si-C), 18.3 (Si-C), 25.7 (C(CH₃)₃), 25.9 (C(CH₃)₃), 27.4 (3-CH₃), 69.9 (2-C), 71.6 (4-CH₂), 72.3 (1-CH), 87.2 (2-C); m/z (APci) 329 (M⁺+H, 100%).

(-)-(S)-3, 4-Dihydroxy-3-methyl-1-butyne (S)-69

Tetra-n-butylammonium fluoride (7.6 ml of a 1M solution in THF) was added dropwise to a stirred solution of the bis-silyl ether 381 (1.00 g, 3.0 mmol) in tetrahydrofuran (30ml) at ambient temperature. The reaction mixture was stirred at this temperature for 2 h. The solvent was then evaporated and the residue was purified by silica gel chromatography with petrol ether / ethyl acetate (5%) as eluent. The purified diol (S)-69 (0.25 g, 82%) was then obtained as a yellow oil, [α]_D^26 = -0.7 (c 20 g/ 100 ml, chloroform); ν_{max}/cm^{-1} 3430, 2938, 2113, 1622, 1511, 1376, 1244, 1060, 953, 891; δ_H 1.40 (3H, s, CH₃), 2.42 (1H, s, CH), 3.42 (1H, d, J~7.2, 4-Hₐ), 3.57 (1H, d, J~7.2, 4-Hₖ); δ_C 25.6 (CH₃), 68.6 (3-C), 70.7 (2-CH₂), 72.6 (1-CH), 86.3 (2-C); m/z (APci) 100 (M⁺, 100%). These data are identical to those of 69 (racemic) except for optical rotation (p.154).
Following the general procedure of Sonogashira coupling, nitroiodide 164 (364.0 mg, 1.0 mmol) was refluxed with triethylamine (3.6 ml, 26 mmol), tetrakis(triphenylphosphine)palladium(0) (578.0 mg, 0.5 mmol), copper (I) iodide (95.0 mg, 0.5 mmol) along with diol (S)-69 (200.0 mg, 2.0 mmol) in dry tetrahydrofuran (10 ml) at 75°C to afford the diol (S)-163 (260 mg, 77%) as a colourless solid, $[\alpha]_D^{26} = +3.5$ (c 1.9 g / 100ml, methanol) m.p. 173-174.5°C. These data are identical to those of the racemate diol 163 (p.155).

4-Amino-2,6-dimethyl-5-iodo-3-nitroanisole 388

The nitro-iodide 164 (320 mg, 0.88 mmol) was dissolved in methanol before concentrated sulfuric acid (0.18 ml) was added. The resulting yellow solution was heated under reflux for 16 h before being cooled to room temperature. The mixture was poured onto ice (~25 ml) and extracted with dichloromethane (3 x 10 ml) and the combined extracts was dried with MgSO$_4$ and evaporated. Chromatography of the crude product using ethyl acetate / petrol ether (10%) as eluent gave pure nitroanisole 388 (180 mg, 64%) as a bright yellow solid, m.p. 214-215°C; ν_{max} cm$^{-1}$
3375, 2925, 2361, 1602, 1455, 1047, 799, 650; δ_H 2.24 (3H, s, Ar-CH_3), 2.40 (3H, s, Ar-CH_3), 3.58 (3H, s, Ar-OCH_3), 5.25 (2H, br s, NH_2).

(S)-4-Amine-2,6-dimethyl-5-[(3’S)-3’,4’-dihydroxy-3’-methylbut-2’-yn-1-yl]-3-nitroanisole 389

Follow the general procedure of Sonogashira coupling, nitroanisole 388 (180 mg, 0.55 mmol) was refluxed with triethylamine (2 ml, 14.3 mmol), tetrakis(triphenylphosphine)palladium(0) (324.0 mg, 0.28 mmol), copper(I) iodide (53.0 mg, 0.28 mmol) along with diol (S)-69 (110 mg, 1.1 mmol) in dried and degassed tetrahydrofuran (6 ml) to afford diol 389 (82 mg, 51%) as a yellow solid, m.p. 173-174.5°C; ν_max/cm⁻¹ 3377, 2936, 2221, 1603, 1509, 1452, 1376, 1330, 1260, 1198, 1153, 1116, 1054, 998, 912, 873, 767, 733; δ_H 1.50 (3H, s, 3’-CH_3), 2.26 (3H, s, Ar-CH_3), 2.28 (3H, s, Ar-CH_3), 3.05 (2H, br res., 2 × OH), 3.55 (3H, s, OCH_3), 3.56 (1H, d, J=11.0, 4’-H_a), 3.69 (1H, d, J=11.0, 4’-H_b), 5.62 (2H, br res., NH_2); δ_C 13.9 (3’-CH_3), 15.8 (Ar-CH_3), 25.9 (Ar-CH_3), 60.9 (OCH_3), 69.7 (CH_2), 71.2 (3’-C), 78.5 (2’-C), 102.5 (1’-C), 108.8 (Ar-C), 128.9 (Ar-C), 134.8 (Ar-C), 140.2 (Ar-C), 141.0 (C-NH_2), 148.1 (C-NO_2); m/z (APci) 277 (M⁺-OH, 100%).
1,4-Dimethoxy-3,5,6-trimethylbenzene 296

Hydroquinone 295 (1.50 g, 10.0 mmol) was stirred in dry acetone (30 ml) containing anhydrous potassium carbonate (3.0 g, 22 mmol). The resulting solution was stirred vigorously and reflux under nitrogen. Dimethyl sulfoxide (2 ml, 21 mmol) in dry acetone (2 ml) was added slowly. The reaction mixture was refluxed overnight before cooling to room temperature. The solution was filtrated and the filtrate evaporated. The residue was treated with water (15 ml) and ether (15 ml) and the water layer separated. The ether solution was washed with 2M aqueous KOH (2 x 3 ml), 2M ammonia (5 ml), water (5 ml) and brine (5 ml) then dried to give the crude dimethoxy-benzene 296 (1.70 g, 94%) as a colourless gum which was ready for the iodonation step without further purification, δ_H 1.94 (3H, s, CH₃), 2.02 (3H, s, CH₃), 2.10 (3H, s, CH₃), 3.47 (OCH₃), 3.60 (OCH₃), 6.35 (1H, s, CH). These data are identical to previously recorded. ²⁵

1,4-Dimethoxy-2-iodo-3,5,6-trimethylbenzene 195

N-Iodosuccinimide (2.36 g, 10.5 mmol) was stirred in acetic acid (25 ml) at room temperature. To the solution was added dimethoxy-benzene 296 (1.30 g, 7 mmol) and the resulting mixture refluxed for 1 h then cooled to room temperature. The mixture was basified with aqueous 2M sodium hydroxide until pH >10 was achieved. Solid sodium chloride was added and the solution extracted with dichloromethane (3 x 70 ml). The combined organic phases were washed with aqueous 2 M sodium hydroxide (50 ml), water (50 ml) before being
dried and evaporated. The crude product was recrystallized from ether / hexane to give the pure *iodo-benzene 195* (1.07 g, 50%) as brown amorphous crystals. m.p. 68-71°C, $\nu_{\text{max}}/\text{cm}^{-1}$ 2933, 1453, 1381, 1311, 1222, 1086, 1038, 1003, 977, 933, 831, 742; δ_{H} 2.10 (CH$_3$), 2.18 (CH$_3$), 2.34 (CH$_3$), 3.57 (OCH$_3$), 3.64 (OCH$_3$); δ_{C} 13.3 (CH$_3$), 14.3 (CH$_3$), 22.5 (CH$_3$), 60.70 (OCH$_3$), 60.73 (OCH$_3$), 96.4 (C-I), 129.1 (C(CH$_3$)), 131.5 (C(CH$_3$)), 132.9 (C(CH$_3$)), 153.3 (C-OCH$_3$), 154.4 (C(CH$_3$)).

1,4-Dimethoxy-2,3,5,6-tetramethylbenzene 309

![Diagram](image)

To a dry two-necked round bottom flask containing a solution of iodobenzene 195 (155 mg, 0.5 mmol) in 1-methyl-2-pyrrolidinone (NMP) (2.5 ml) at ambient temperature was added triphenylphosphine (13.0 mg, 0.05 mmol), tris-(dibenzylideneacetone)dipalladium(0) chloroform (13.0 mg, 0.0125 mmol) and copper(I) iodide (4.8 mg, 0.025 mmol) under a flow of nitrogen. The mixture was degassed under nitrogen for 20 minutes before the addition of diethylamine (0.16 ml, 1.5 mmol) and tetramethyltin (250 mg, 1.5 mmol) in NMP (1 ml). The solution was heated to 100°C and the stirring continued for 24 hours at this temperature. The resulting suspension was cooled and treated with 10% aqueous sodium sulfite solution (13 ml). The mixture was washed with 10% aqueous potassium fluoride (13 ml) and extracted with ether (3 x 25 ml). The combined organic extracts were dried and evaporated to yield a colourless solid. Chromatography of this residue using ethyl acetate / hexane (10%) as the eluent gave the pure tetramethyl-benzene 309 (57 mg, 59%) as a colourless solid, m.p. 102-103 °C; $\nu_{\text{max}}/\text{cm}^{-1}$ 801, 1008, 1087, 1453, 2935; δ_{H} 2.09 (12H, s, 4 x CH$_3$), 3.55 (6H, s, 2 x OCH$_3$); δ_{C} 11.6 (4 x CH$_3$), 59.2 (2 x OCH$_3$), 126.6 (Ar-C), 151.7 (Ar-C); m/z (APcI) 193 (M$^+$-H, 100%).
Diethyl 2-((2'-nitro-6'-methylphenyl)hydrazono)propanedioate 397id

![Chemical Structure](image)

To a three-necked round bottom flask containing concentrated hydrochloric acid (10 M, 50 ml) at ambient temperature was added portionwise 2-methyl-6-nitroaniline 395 (26.0 g, 0.17 mol) over a period of 0.5 h, with stirring being allowed to continue for a further 0.5 h after addition was complete. Deionized water (100 ml) was then added, with the resulting suspension being cooled to 0°C prior to the dropwise addition of a solution of sodium nitrite (13.4 g, 0.19 mol) in deionized water (25 ml) over a period of 1 h. The resulting solution was filtered, and the filtrate added dropwise over a period of 1 h to a vigorously stirred emulsion of diethyl malonate (26 ml, 0.17 mol) in deionized water (100 ml) at 5°C. Anhydrous sodium acetate (50.0 g) was added portionwise during the addition of the solution, and stirring was allowed to continue for a further period of 1 h once addition of the solution was complete. The resulting orange-red suspension was filtered. Flash column chromatography of the solid using ethyl acetate / petrol ether (20%) followed by recrystallization from methanol yielded the iminomalonate 397 (27.4 g, 50%) as a yellow crystal, m.p. 68.0-69.3°C (lit.92 m.p. 70-71°C), $\nu_{\text{max/cm}^{-1}}$ 3188, 2984, 1727, 1687, 1513, 1343, 1293, 1192, 1018, 1091, 802, 739; δ_{H} 1.28 (3 H, t, J=7.1, CH$_2$CH$_3$), 1.34 (3 H, t, J=7.1, CH$_2$CH$_3$), 2.51 (3 H, s, Ar-CH$_3$), 4.20 (2 H, q, J=7.1, CH$_2$), 4.33 (2 H, q, J=7.1, CH$_2$), 7.04 (1 H, t, J=8.9, 4'-H), 7.47 (1 H, d, J=8.9, Ar-H), 7.81 (1 H, d, J=8.9, Ar-H), 13.45 (1 H, br s, NH); δ_{C} 14.5 (2 × CH$_3$), 21.5 (Ar-CH$_3$), 61.7 (CH$_2$), 62.3 (CH$_2$), 123.7 (C), 124.0 (Ar-CH), 124.4 (Ar-CH), 132.4 (Ar-C), 135.8 (Ar-C), 138.2 (Ar-CH), 140.7 (C-NO$_2$), 163.2 (C=O), 163.1 (C=O); m/z (APCI) 324 (M$^+$+H, 100%).
Diethyl 2-((2'-nitrophenyl)hydrazono)propanedioate 397a

Following the above procedure for making iminomalonate 397, treatment of nitroaniline 395a (47.0 g, 0.34 mol) with sodium nitrite (26.9 g, 0.38 mol) and diethyl malonate (55.0 g, 0.34 mol) gave the iminomalonate 397a (74.5 g, 74%) as brown yellow crystals; m.p. 70.1-72.6°C (lit.2 m.p.72-74°C); νmax/cm⁻¹ 3192, 2985, 2360, 1727, 1679, 1611, 1580, 1496, 1370, 1342, 1320, 1278, 1180, 1092, 1016, 859, 810, 783, 743; δH 1.32-1.38 (6H, m, 2 × CH₃), 4.29 (2H, q, J=7.1, CH₂), 4.36 (2H, q, J=7.1, CH₂), 7.06 (1H, dt, J=1.0, 7.6, Ar-H), 7.58 (1H, t, J=7.6, Ar-H), 8.00 (1H, d, J=7.6, Ar-H), 8.15 (1H, dd, J=1.0, 7.6, Ar-H), 14.10 (1H, br. s., NH); δC 14.5 (CH₃), 14.6 (CH₃), 62.2 (CH₂), 62.6 (CH₂), 117.6 (Ar-CH), 123.1 (Ar-CH), 126.2 (Ar-CH), 126.6 (C), 134.9 (Ar-C), 136.3 (Ar-CH), 139.2 (C-NO₂), 161.6 (C=O), 163.2 (C=O); m/z (APci) 310 (M⁺+H, 100%).

Diethyl 2-((2'-amino-6'-methylphenyl)hydrazono)propanedioate 398ld

To a suspension of 10% palladium on carbon (1.5 g) in ethanol (77 ml) at ambient temperature was added portionwise the iminomalonate 397 (9.97 g, 31 mmol) and cyclohexene (18.7 ml, 185.4 mmol). The mixture was refluxed for 16h, then allowed to cool to ambient temperature before being filtered through Celite, with the filter cake being washed with further portions of warm ethanol. The combined filtrates were evaporated and the
residue crystallized from ethanol to give the aniline 398 (6.62 g, 73%) as orange crystals, m.p. 103-104°C (lit. m.p. 103-104°C); $\nu_{\text{max}}/\text{cm}^{-1}$ 3370, 2982, 1738, 1488, 1370, 1274, 1096, 1021, 765; δ_{H} 1.27 (3H, t, J=7.1, CH$_2$CH$_3$), 1.34 (3H, t, J=7.1, CH$_2$CH$_3$), 2.29 (3H, s, Ar-CH$_3$), 4.19 (2H, q, J=7.1, CH$_2$), 4.29 (2H, q, J=7.1, CH$_2$), 5.47 (2H, br s, NH$_2$), 6.48 (1H, d, J=7.4, 5'-H), 6.54 (1H, d, J=8.0, 3'-H), 6.81 (1H, t, J=7.7, 4'-H), 13.42 (1H, br s, NH); δ_{C} 14.6 (CH$_2$CH$_3$), 14.7 (CH$_2$CH$_3$), 18.3 (Ar-CH$_3$), 61.1 (CH$_2$), 61.6 (CH$_2$), 115.6 (1-C), 116.6 (Ar-CH), 120.0 (Ar-CH), 124.7 (6'-C), 126.2 (4'-C), 127.5 (C-N), 138.4 (C-N), 163.3 (C=O), 164.7 (C=O); m/z (APci) 294 (M$^+$+H, 100%).

Diethyl 2-((2'-aminophenyl)hydrazono)propanedioate 398a

Following the above procedure of hydrogenation on iminomalonate 397, reflux of iminomalonate 397a (5.0 g, 16.8 mmol) with 10% palladium on carbon (200 mg) and cyclohexene (8.0 g, 97.6 mmol) in ethanol (40 ml) gave the aniline 398a (3.9 g, 87%) as orange yellow crystals, m.p. 82°C (lit. m.p. 82°C); δ_{H} 1.33 (3H, t, J=7.1, CH$_3$), 1.38 (3H, t, J=7.1, CH$_3$), 4.28 (2H, q, J=7.1, CH$_2$), 4.36 (2H, q, J=7.1, CH$_2$), 5.12 (2H, br s., NH$_2$), 6.72-6.77 (2H, m, 2× Ar-H), 6.97 (1H, d, J=7.1, Ar-H), 7.02 (1H, d, J=7.1, Ar-H), 13.15 (1H, br s., NH); m/z (APci) 280 (M$^+$+H, 100%).
Diethyl 2-(7'-methyl-1H-benzotriazol-1'-iminy1)propanedioate 400

\[
\begin{align*}
\text{398} & \quad \text{NH}_{2} \quad \text{NH} \\
& \quad \text{CO}_{2}\text{CH} \quad \text{CO}_{2}\text{CH}_{3} \\
\end{align*}
\]

\[
\begin{align*}
\text{400} & \quad \text{CO}_{2}\text{CH}_{2}\text{CH}_{3} \quad \text{CO}_{2}\text{CH}_{2}\text{CH}_{3} \\
& \quad \text{NH} \quad \text{NH} \\
& \quad \text{C} \quad \text{C} \quad \text{O} \quad \text{O} \\
\end{align*}
\]

To a suspension of the aniline 398 (6.60 g, 22.6 mmol) in methanol (63 ml) at ambient temperature was added a solution of sodium nitrite (2.0 g, 29.0 mmol) in deionized water (4.5 ml), and the resulting suspension added to a stirred, ice-cold solution of concentrated hydrochloric acid (10 M, 7.4 ml) in water (13.5 ml). The resulting solid was filtered off and recrystallized from aqueous methanol to give the benzotriazole malonate 400 (6.20 g, 91%) as light yellow crystals, m.p. 67.0-68.0°C (lit. m.p. 64-65°C); \(\nu_{\text{max}}/\text{cm}^{-1}\) 2984, 1742, 1626, 1445, 1367, 1306, 1240, 1161, 1138, 1080, 1007, 863, 788, 746; \(\delta_{\text{H}}\) 1.36 (6H, t, \(J=7.2\), 2 \(\times\) CH\(_3\)), 2.73 (3H, s, 7'-CH\(_3\)), 4.36 (2H, q, \(J=7.2\), CH\(_2\)), 4.45 (2H, q, \(J=7.2\), CH\(_2\)), 7.26-7.33(2H, m, 5',6'-CH), 7.80 (1H, d, \(J=7.8\), 4'-CH); \(\delta_{\text{C}}\) 14.2 (CH\(_2\)CH\(_3\)), 14.4 (CH\(_2\)CH\(_3\)), 17.7 (7'-CH\(_3\)), 63.5 (CH\(_2\)CH\(_3\)), 63.5 (CH\(_2\)CH\(_3\)), 118.4 (Ar-CH), 123.9 (1-C), 126.3 (Ar-CH), 130.8 (7'-C), 131.9 (4'-C), 140.6 (C-N), 145.4 (C-N), 161.0 (C=O), 162.7 (C=O); \(m/z\) (APcI) 305 (M\(^+\)+H, 100%). [Found: C, 55.01; H, 5.20; N, 18.27. C\(_{14}\)H\(_{16}\)N\(_4\)O\(_4\) requires C, 55.26; H, 5.30; N, 18.41%].
Diethyl 2-(benzotriazol-1'-iminyI)propanedioate 400a

Following the above procedure of diazotisation, aniline 398a (17.0 g, 63.8 mmol) was treated with sodium nitrite (4.9 g, 70.6 mmol) and hydrochloric acid (10 M, 20 ml) to give the benzotriazole malonate 400a (16.8 g, 95%) as brown yellow crystals, m.p. 97.0-99.0°C (lit. 2 m.p. 99-100°C); v_{max}/cm$^{-1}$ 3482, 2983, 2330, 2252, 1748, 1623, 1493, 1448, 1386, 1368, 1234, 1154, 1080, 1212, 919.2, 861, 831, 782, 747, 699; δ_1 1.32-1.36 (6H, m, 2 x CH$_3$), 4.36 (2H, q, J=7.1, CH$_2$), 4.44 (2H, q, J=7.1, CH$_2$), 7.36 (1H, dt, J=0.8, 7.1, Ar-H), 7.52 (1H, t, J=7.1, Ar-H), 7.78 (1H, d, J=7.1, Ar-H), 7.95 (1H, d, J=7.1, Ar-H); δ_C 13.7 (CH$_3$), 14.0 (CH$_3$), 63.2 (CH$_2$), 63.3 (CH$_2$), 110.8 (Ar-CH), 120.4 (Ar-CH), 125.9 (Ar-CH), 123.0 (Ar-CH), 131.7 (C), 141.2 (Ar-C), 144.8 (Ar-C), 160.4 (C=O), 162.1 (C=O); m/z (APcl) 291 (M$^+$+H, 100%).

7-Methyl-benzotriazol-1-amine 401ad

To a stirred solution of the benzotriazole malonate 400 (4.2 g, 14.0 mmol) in methanol (100 ml) maintained at 50°C was added concentrated hydrochloric acid (10 M, 25 ml). After stirring at this temperature for 5h, the solvent was removed under reduced pressure and the residue taken up into 2 M hydrochloric acid (150 ml). The resulting solution was washed with ether (3 x 10 ml), neutralized with solid sodium carbonate and extracted with ether (3 x 25 ml). The combined organic extracts were dried and evaporated to yield a white solid as
the aminobenzotriazole 401 (1.6 g, 79%). The crude product was sufficiently pure for further use without purification and showed m.p. 116.0-118.0°C (lit. m.p. 116-118°C), \(\nu_{\text{max}}/\text{cm}^{-1} \) 3308, 3194, 2359, 1655, 1146, 789, 748; \(\delta_{\text{H}} \) 2.73 (3H, s, CH$_3$), 5.66 (2H, br s, NH$_2$), 7.14-7.19 (2H, m, 5,6-H), 7.74 (1H, dd \(J \sim 1.8 \), 7.0, 4-H); \(\delta_{\text{C}} \) 17.3 (CH$_3$), 117.4 (Ar-CH)$_2$, 122.1 (7-C), 124.4 (Ar-CH), 128.9 (Ar-CH), 131.1 (C-N); \(m/z \) (APcI) 149 (M$^+$+H, 100%).

1-Aminobenzotriazole 9

Following the above procedure of deprotection, benzotriazole malonate 400a (5.00 g, 18.0 mmol) was heated with hydrochloric acid (10M, 25 ml) in methanol (100 ml) at 50 °C to give the amine 9 (1.40 g, 57%) as colourless crystals after recrystallization from toluene, m.p. 82-84°C (lit. m.p. 84°C); \(\nu_{\text{max}}/\text{cm}^{-1} \) 3316, 1638, 1452, 1241, 1169, 1103, 948, 891, 784, 766, 742; \(\delta_{\text{H}} \) 5.76 (2H, br s, NH$_2$), 7.31 (1H, dt, \(J \sim 0.8 \), 8.4, Ar-CH), 7.46 (1H, dt, \(J \sim 0.8 \), 8.4, Ar-CH), 7.61 (1H, d, \(J \sim 8.4 \), Ar-CH), 7.95 (1H, d, \(J \sim 8.4 \), Ar-CH); \(\delta_{\text{C}} \) 110.3 (Ar-CH), 120.2 (Ar-CH), 124.6 (Ar-CH), 128.2 (Ar-CH), 132.9 (Ar-C), 144.9 (Ar-C). These data are identical to those previously recorded.\(^2\)
To a solution of the aminobenzotriazole 401 (1.3 g, 8.8 mmol), triethylamine (1.90 g, 19.3 mmol) and 4-dimethylaminopyridine (65.0 mg, 0.5 mmol) in dry dichloromethane (50 ml) maintained at 0°C, was added dropwise via syringe a solution of di-tert-butyl dicarbonate (4.20 g, 19.3 mmol) in dry dichloromethane (1.3 ml). Following stirring for 48h at ambient temperature, the mixture was poured into saturated aqueous sodium hydrogencarbonate (10 ml), and the separated organic layer washed with deionized water (10 ml) and brine (10 ml). Evaporation of the dried organic phase afforded a brown gum. Chromatography of this residue using ethyl acetate / petrol (25%) as the eluent gave the bis-Boc aminobenzotriazole 402 (2.60 g, 85%) as a pale yellow solid, m.p. 112.0-113.0°C (lit1d m.p. 113.0-115.0°C), v_{max}/cm⁻¹ 3431, 2933, 1758, 1613, 1458, 1122, 748.5; δ_H 1.35 (18H, s, 2 × C(CH₃)₃), 2.46 (3H, s, 7-CH₃), 7.19-7.25 (2H, m, 5, 6-H), 7.80-7.86 (1H, m, 4-H); δ_C 16.0 (Ar-CH₃), 27.7 (C(CH₃)₃), 85.9 (C(CH₃)₃), 118.2 (Ar-CH), 120.0 (7-C), 124.8 (Ar-CH), 129.8 (Ar-CH), 131.0 (C-N), 144.4 (C-N), 148.8 (C=O); m/z (APCI) 349 (M⁺+1, 100%).
1-(tert-Butoxycarbonylamino)-7-methylbenzotriazole 390^{1d}

To a stirred solution of the bis-Boc aminobenzotriazole 402 (16.20 g, 46.5 mmol) in methanol (290 ml), maintained at 50°C, was added 2M aqueous sodium hydroxide (38 ml). After stirring at this temperature for 40 min, the solvent was removed under reduced pressure to yield a brown residue, which was taken up in dichloromethane (400 ml) and washed with water (30 ml) and brine (30 ml). The the aqueous phase was neutralised with 2M HCl and extracted with dichloromethane (3 x 100 ml). The organic solutions were combined, dried and evaporated to yield a brown oil. Chromatography of this residue using methanol/chloroform (5%) as the eluent gave an yellow oil which was crystallized from hexane/ether (50%) to give amorphous, pale yellow crystals of the N-Boc amine 390 (5.20 g, 45%), m.p. 105.0-106.0°C (lit^{1d} m.p. 105.0-106.0°C); ν_{max}/cm⁻¹ 3171, 2979, 2251, 1749, 1610, 1502, 1457, 1395, 1370, 1253, 1160, 1127, 1065, 912, 870, 819, 791, 733; δ_h 1.53 (9H, br s, C(CH₃)₃), 2.63 (3H, s, Ar-CH₃), 7.22-7.30 (2H, m, 5, 6-H), 7.86-7.89 (1H, m, 4-H), 8.41 (1H, br s, NH); δ_c 16.6 (Ar-CH₃), 28.4 (C(CH₃)₃), 84.1 (C(CH₃)₃), 118.2 (Ar-CH), 121.3 (7-C), 125.1 (Ar-CH), 130.1 (Ar-CH), 131.8 (C-N), 144.9 (C-N), 154.0 (C=O); m/z (APCI) 249 (M⁺+H, 100%).
A solution of di-tert-butyl dicarbonate (7.20 g, 33.0 mmol) in dry acetonitrile (5 ml) was added during 10 minutes to a stirred solution of 1-aminobenzotriazole 9 (2.00 g, 14.9 mmol) and 4-dimethylaminopyridine (DMAP) (36 mg) in dry acetonitrile (16 ml) maintained at 0 °C. The cooling bath was removed and the solution stirred for 1 h before heating to 50 °C. The solution was then treated with 2M aqueous sodium hydroxide (10.3 ml) and stirred vigorously at this temperature for 1 h. The reaction mixture was allowed to cool to room temperature and the bulk of the volatiles evaporated. The residue was cooled in an ice-bath and carefully neutralised using ice-cold 2M hydrochloric acid. The resulting solution was extracted with ether (5 x 5 ml) and the combined extracts washed with saturated aqueous sodium bicarbonate (3 ml), water (3 ml) and brine (3 ml) then dried and evaporated to give the crude product. Chromatography of this residue using petrol ether / ether (25%) afforded pure amine 19 (1.8 g, 51%) as a colourless solid, m.p. 108.0-111.0°C (lit107 m.p. 102-104°C); νmax/cm⁻¹ 3264, 2976, 2387, 2252, 1731, 1619, 1456, 1369, 1254, 1156, 1100, 1020, 999, 912, 820, 738; δH 1.43 (9H, br res., C(CH₃)₃), 7.32 (1H, dt, J=1.2, 8.1, Ar-H), 7.44-7.51 (2H, m, 2 × Ar-H), 7.97 (1H, d, J=8.1, Ar-H), 8.16 (1H, br s, NH); δC 28.3 (C(CH₃)₃), 83.9 (C(CH₃)₃), 109.5 (Ar-CH), 120.3 (Ar-CH), 124.9 (Ar-CH), 129.0 (Ar-CH), 133.0 (Ar-C), 144.3 (Ar-C), 153.9 (C=O); m/z (APCl) 235 (M⁺+H, 100%).
Preparation of anhydrous cerium (III) chloride from cerium (III) chloride heptahydrate (CeCl₃·7H₂O)

A 250 ml two-necked, round bottomed flask was equipped with a glass stopper and a three-way stopcock, the flask is connected to a trap that is cooled at -78°C in a dry ice-acetone bath and attached to a vacuum pump. The flask is charged with powdered cerium (III) chloride heptahydrate (CeCl₃·7H₂O) (1.38 g, 3.70 mmol) and evacuated to 0.1-0.2 mm. After gradual warming to 90 °C over 30 min with an oil bath, the flask is heated at 90-100 °C for 2h with intermittent shaking. The system is filled with dry N₂ and cooled to room temperature. The solid is transferred to a mortar and quickly pulverized with a pestle. The resulting white powder and a magnetic stirring bar are placed in the original flask. Gradual warming to 90 °C at 0.1-0.2 mm over 30 minutes, followed by further evacuating at 90-100 °C for 1.5 h with intermittent shaking, gives cerium(III) chloride monohydrate (CeCl₃·H₂O). The cerium(III) chloride monohydrate is gradually warmed to 140 °C over 30 min under reduced pressure (0.1-0.2 mm) without stirring. Heating at 140-150 °C / 0.1-0.2 mm for 2 h with gentle stirring affords a fine, white powder of anhydrous cerium(III) chloride. While the flask was still hot, the area was not immersed in the oil bath was heated by the use of a heat gun in order to remove traces of water. After introduction of nitrogen gas into the flask, the resulting anhydrous cerium(III)chloride was cooled to room temperature. One of the glass stoppers was replaced by a rubber septum under dry nitrogen.
Butyl lithium (4.6 ml of a 2.5 M solution in hexane) was added to a stirred solution of dry N,N,N',N'-tetramethylethlenediamine (TMEDA) (2.5 ml, 16.8 mmol) in dry tetrahydrofuran (34 ml) maintained at -78°C under dry nitrogen. Stirring was continued for 0.5 h, after which a solution of amine 19 (0.79 g, 3.4 mmol) in dry tetrahydrofuran (30 ml) was added slowly via a syringe. The resulting deep purple dianion solution was stirred for 0.5 h at -78°C. Concurrently, a suspension of anhydrous cerium(III) chloride in tetrahydrofuran (100 ml) was cooled to -78°C and titrated with butyl lithium (2.5 M solution in hexane) until the first faint but permanent orange end point (~ 0.34 ml). The dianion solution was then rapidly transferred via syringe to the anhydrous cerium(III) chloride suspension. The reaction mixture was stirred at -78°C for 3 h, before the rapid addition of 1,2-diiodoethane (1.0 g, 3.7 mmol) in tetrahydrofuran (4 ml). The reaction mixture was slowly warmed to room temperature and stirred continued for 16 h, then quenched with saturated aqueous ammonium chloride (30 ml) followed by careful acidification with 2M hydrochloric acid, and extracted with ether (3 × 100 ml). The combined extracts were washed with saturated aqueous sodium bicarbonate (30 ml), water (30 ml) and brine (30 ml) then dried and evaporated to give crude material which was subjected to chromatography using diethyl ether / petrol ether (20 %) to give the iodide 23 (0.68 g, 56%) as light brown solid, m.p. 140.0-143.0°C (lit 107 142-144°C); \(v_{\max } \text{cm}^{-1} \) 3264, 2979, 2251, 1727, 1621, 1576, 1487, 1456, 1394, 1370, 1253, 1157, 1098, 1040, 936, 911, 842, 791, 737; \(\delta_H \) 1.23 (9H, br res., C(CH₃)₃), 7.03 (1H, t, J=7.7, Ar-H), 7.85 (1H, d, J=7.7, Ar-H), 7.94 (1H, d, J=7.7, Ar-H), 8.76 (1H, br. s, NH); \(\delta_C \) 28.7 (C(CH₃)₃), 71.0
(C(CH$_3$)$_3$), 84.1 (C-I), 121.0 (Ar-CH), 126.6 (Ar-CH), 132.8 (Ar-C), 139.8 (Ar-CH), 144.9 (Ar-C), 153.5 (C=O).

General Procedure for metallation and functionalisation of 7-methyl-1-(N-tert-butoxycarbonylamino)benzotriazole 390:

Butyllithium (1.6 M solution in hexanes, 2.2 equivalents) was added dropwise to a stirred solution of dry, distilled N$_2$N$_2$N$_2$N'-tetramethylethylenediamine (TMEDA) (2.2 equivalents) in dry tetrahydrofuran (THF) (10 ml mmol$^{-1}$) maintained at -78°C. Stirring was continued for 0.25 h, after which a solution of the aminobenzotriazole 390 (1 equivalent) in dry THF (1 ml mmol$^{-1}$) was added dropwise via syringe. The resulting burgundy red dianion solution was stirred for 5 minutes at -78°C, allowed to warm gradually to 0°C and maintained at this temperature for 0.5h, then recooled to -78°C before the rapid addition of a solution of the electrophile (1.1 equivalents) in dry tetrahydrofuran (1 ml mmol$^{-1}$). The reaction was allowed to stir at -78°C for 1h, upon which saturated aqueous ammonium chloride (10 ml mmol$^{-1}$) was added, the cooling bath removed and the reaction allowed to warm gradually to ambient temperature. The resulting layers were separated and the aqueous layer acidified with 2 M HCl and extracted with ether (3 \times 30 ml mmol$^{-1}$). The combined organic extracts were dried and evaporated to give crude material which was subjected to column chromatography using hexane / diethyl ether mixtures to obtain the purified product.
Following the general procedure of metallation and functionalisation, treatment of dianion 391 from the aminobenzotriazole 390 (300 mg, 1.2 mmol) with freshly distilled crotyl bromide 403 (0.13 ml, 1.32 mmol) yielded the pentene 404 as a yellow gum (350 mg, 97%), \(\nu_{\text{max/cm}^{-1}} \) 3166, 2932, 1750, 1606, 1455, 1394, 1370, 1252, 1160, 1050, 966, 910, 749; \(\delta_H \) (rotameric) 1.30-1.53 (9H, br res., C(CH\(_3\))\(_3\)), 1.54-1.58 (3H, m, 5'-CH\(_3\)), 2.24-2.38 (2H, m, 2'-CH\(_2\)), 2.94 (2H, t, J=8.3, 1'-CH\(_2\)), 5.39-5.41 (2H, m, 3', 4'-H), 7.20-7.23 (2H, m, 2 x Ar-H), 7.75-7.79 (1H, m, Ar-H), 8.59 (1H, br s, NH); \(\delta_C \) 11.9 (5'-CH\(_3\)), 27.0 (C(CH\(_3\))\(_3\)), 29.3 (2'-CH\(_2\)), 32.7 (1'-CH\(_2\)), 82.7 (C(CH\(_3\))\(_3\)), 117.0 (Ar-CH), 123.7 (Ar-CH), 124.3 (=CH), 125.2 (=CH), 127.9 (Ar-CH), 129.8 (7-C), 143.7 (C-N), 152.5 (C-N), 177.2 (C=O); \(m/z \) (APCI) 302 (M\(^+\), 100%); HRMS (FAB) calcd. for C\(_{16}\)H\(_{23}\)N\(_4\)O\(_2\) [M+H]\(^+\) 303.1816, found 303.1816.

Following the general procedure for an AD-mix reaction, treatment of the pentene 404 (273 mg, 0.9 mmol) with AD-mix-\(\beta \) at room temperature for 42 hours yielded the diol 405 (196 mg, 65%) as a yellow gum, \(\nu_{\text{max/cm}^{-1}} \) 3252, 2974, 2361, 1749, 1508, 1456, 1370, 1254, 1159, 912, 733; \(\delta_H \) (rotameric) 1.08 (3H, d, J=6.3, 5'-CH\(_3\)), 1.22-1.52 (9H, br s, C(CH\(_3\))\(_3\)),
1.71-1.80 (2H, m, 2'-CH₂), 2.75 (1H, br s, OH), 3.00-3.13 (2H, br res., 1'-CH₂), 3.13 (1H, br s, OH), 3.35-3.48 (1H, br res, 3'-H), 3.56 (1H, dq, J=6.0 and 6.3, 4'-H), 7.22-7.25 (2H, m, 2 x Ar-H), 7.81-7.85 (1H, m, Ar-H), 9.16 (1H, br s, NH); δC 18.5 (CH₃), 26.9 (C(CH₃)₃), 33.8 (2'-CH₂), 52.2 (1'-CH₂), 69.4 (CH), 73.8 (CH), 82.4 (C(CH₃)₃), 117.0 (Ar-CH), 123.6 (Ar-CH), 124.2 (7-C), 127.8 (Ar-CH), 129.8 (C-N), 143.7 (C-N), 152.9 (C=O); m/z (APCI) 336 (M⁺, 100%), HRMS (FAB) calcd. for C₁₆H₂₅N₄O₄ [M+H]⁺ 337.1868, found 337.1868.

(-)-(1'R,2R)-2-(1-Hydroxyethyl)-8-iodochroman 407

Following the general deprotection/cyclisation procedure, treatment of the diol 405 (74.0 mg, 0.22 mmol) with trifluoroacetic acid (0.44 ml) and N-iodosuccinimide (124.0 mg, 0.55 mmol) gave the chroman 407 as a yellow gum (20.0 mg, 40%), [α]_D = -7.36, (c 6.25 g/100ml, chloroform); v_max/cm⁻¹ 3367, 2921, 1776, 1454 and 1261; δ_H 1.26 (3H, d, J=6.0, CH₃), 1.45-1.61 (1H, br s, OH), 1.67-1.78, (1H, m, 3-H_a), 1.93-1.98 (1H, m, 3-H_b), 2.67 (1H, ddd, J=2.7, 5.4, 16.3, 4-H_a), 2.77 (1H, ddd, J=5.9, 12.1, 16.3, 4-H_b), 3.78-3.84 (2H, m, 2-H and 1'-H), 6.56 (1H, t, J=7.7, 6-H), 7.02 (1H, d, J=7.7, 7-H), 7.49 (1H, d, J=7.7, 5-H); δ_C 18.5 (CH₃), 23.9 (CH₂), 24.8 (CH₂), 70.0 (CH), 81.6 (CH), 85.8 (C-I), 122.2 (Ar-CH), 123.1 (4a-C), 130.3 (Ar-CH), 136.9 (Ar-CH) and 142.9 (8a-C); m/z (APCI) 286 (M⁺-H₂O, 100%), HRMS (NH₄Cl) calcd. for C₁₁H₁₁I₄NO₂ [M+NH₄]⁺ 322.0298, found 322.0296.
1-(tert-Butoxycarbonylamino)-7-(3-butene-1-yl)-benzotriazole 414

Following the general procedure of metallation and functionalisation, treatment of dianion 391 from the am inobenzotriazole 390 (600 mg, 2.4 mmol) with freshly distilled allyl bromide (0.24 ml, 2.7 mmol) yielded the butene 414 as a yellow gum (558 mg, 80%), νmax/cm⁻¹ 3260, 2928, 1749, 1456, 1370, 1252, 1159, 1022, 913, 749; δH 1.34-1.56 (9H, br res., C(CH₃)₃), 2.38 (2H, dt, J=6.7, 7.3, 2'-CH₂), 3.01 (2H, t, J=7.3, 1'-CH₂), 4.95 (1H, dd, J=1.5, 10.3, 4'-Hₐ), 4.99 (1H, dd, J=1.5, 17.4, 4'-Hₐ), 5.75 (1H, tdd, J=6.7, 10.3, 17.4, 3'-H), 7.19-7.26 (2H, m, 2 x Ar-H), 7.79-7.85 (1H, m, Ar-H), 8.08 (1H, br s, NH); δC 28.1 (C(CH₃)₃), 29.6 (2'-CH₂), 34.8 (1'-CH₂), 84.0 (C(CH₃)₃), 115.4 (3'-CH), 115.9 (4'-CH₂), 118.3 (Ar-CH), 124.7 (Ar-CH), 129.1 (Ar-CH), 132.3 (7-C), 144.9 (C-N), 153.3 (C-N), 167.7 (C=O), m/z (APCI) 289 (M⁺ +H, 100%).

1-(N, N-bis-tert-Butoxycarbonylamino)-7-(3-butene-1-yl)-benzotriazole 428

To a solution of the mono-Boc benzotriazole 414 (150 mg, 0.52 mmol), triethylamine (0.08 ml, 0.57 mmol) and 4-dimethylaminopyridine (4.0 mg, 0.033 mmol) in dichloromethane (3 ml) maintained at 0°C was added dropwise via a syringe a solution of di-tert-butyl dicarbonate (124.4 mg, 0.57 mmol) in dichloromethane (0.4 ml). Following stirring for 48h at ambient temperature, the mixture was poured into saturated aqueous sodium hydrogen
carbonate (1 ml), and the separated organic layer washed with water (1 ml) and brine (1 ml). Evaporation of the dried organic phase afforded the crude product which was subjected to chromatography using ethyl acetate/ petrol ether (15%) to give the bis-Boc derivative 428 (117 mg, 58%) as a yellow gum, \(\nu_{\text{max/cm}^{-1}} \) 3283, 3166, 2980, 1747, 1641, 1609, 1458, 1371, 1252, 1160, 1124, 913, 863, 801, 750; \(\delta_{\text{H}} \) 1.36 (18H, s, 2\(\times \)C(CH\(_3\))\(_3\)), 2.32 (2H, dt, \(J=6.6, 8.0 \), 2'-CH\(_2\)), 2.84 (2H, t, \(J=8.0, 1\)'-CH\(_2\)), 4.96 (1H, dd, \(J=1.5, 10.3, 4\)'-H\(_\alpha\)), 4.99 (1H, dd, \(J=1.5, 17.1, 4\)'-H\(_\beta\)), 5.75 (1H, tdd, \(J=6.6, 10.3, 17.1, 3\)'-H), 7.21-7.28 (2H, m, 2 \(\times \) Ar-H), 7.82-7.88 (1H, m, Ar-H); \(\delta_{\text{C}} \) 27.7 (C(CH\(_3\))\(_3\)), 29.2 (2'-CH\(_2\)), 34.0 (1'-CH\(_2\)), 86.0 (C(CH\(_3\))\(_3\)), 115.9 (4'-CH\(_2\)), 118.4 (3'-CH), 124.7 (Ar-CH), 128.9 (Ar-CH), 136.9 (Ar-CH), 144.7 (C-N), 148.8 (C-N), 153.5 (C=O); \(m/z \) (APCI) 389 (M\(^+\) +1, 100%), HRMS (FAB) calcd. for C\(_{20}\)H\(_{29}\)N\(_4\)O\(_4\) \([\text{M+H}]^+\) 389.2183, found 389.2187.

1,6-Di-[1-Bis-(tert-butoxycarbonyl)aminobenzotriazole-7-yl]-3-hexene 429

The bis-Boc derivative 428 (117.0 mg, 0.30 mmol) was added to a stirred solution of Grubbs’ catalyst (PCy\(_3\))\(_2\)RuCl\(_2\)=CHPh (12.4 mg, 0.015 mmol) in dry dichloromethane (1.5 ml). The flask was fitted with a condenser and the red solution was refluxed at 45°C under N\(_2\) for 20 h. The solvent was then evaporated and the product was purified on a silica gel column, eluting with 25%, 30% and 50% ethyl acetate/ petrol ether. The olefin 429 was obtained as a colourless oil (50.0 mg, 45%), \(\nu_{\text{max/cm}^{-1}} \) 2925, 2356, 1768, 1457, 1371, 1343, 1243, 1123, 863; \(\delta_{\text{H}} \) 1.39 (36H, s, 4\(\times \)C(CH\(_3\))\(_3\)), 2.27-236 (4H, m, 2, 5-CH\(_2\)), 2.75 (2H, t, \(J=7.4, \) CH\(_2\)), 2.86
(2H, t, J~7.2, CH₂), 5.41-5.47 (2H, m, Ar-H), 7.17-7.28 (4H, m, Ar-H), 7.89-7.92 (2H, m, Ar-H); δC 27.6 (CH₂), 27.7 (C(CH₃)₃), 29.4 (CH₂), 29.9 (CH₂), 33.0 (CH₂), 85.9 (C(CH₃)₃), 86.0 (C(CH₃)₃), 118.5 (=CH), 124.0 (Ar-C), 124.7 (=CH), 129.1 (Ar-CH), 129.4 (Ar-CH), 130.1 (Ar-CH), 144.7 (Ar-C), 144.8 (Ar-C), 148.7 (C=O), 148.8 (C=O), m/z (APCI) 705 (M⁺-43, 100%), HRMS (FAB) calcd. for C₃₈H₅₉N₈O₈ [M+H]⁺ 749.3981, found 749.3973.

1, 6-Di-[1-Bis-(tert-butoxycarbonyl)aminobenzotriazole-7-yl]-3, 4-dihydroxy hexane 430

Following the general procedure of asymmetric dihydroxylation, treatment of the olefin 429 with AD-mix-α yielded the diol 430 (40.0 mg, 49%) as a yellow gum. ν max/cm⁻¹ 3293, 2924, 1768, 1458, 1371, 1251, 913, 842, 801, 734; δH 1.20 (2H, d, J~7.2, 2 × OH), 1.30 (36H, s, 4 × C(CH₃)₃), 1.68-1.81 (4H, br res., 2, 5-CH₂), 2.78-2.89 (2H, m, CH₂), 2.96-3.08 (2H, m, Ar-H), 7.84-7.86 (2H, m, Ar-H); δC 25.9 (CH₂), 26.0 (CH₂), 27.7 (C(CH₃)₃), 32.5 (CH₂), 34.4 (CH₂), 73.1 (CHOH), 73.4 (CHOH), 86.2 (C(CH₃)₃), 86.3 (C(CH₃)₃), 118.48 (Ar-CH), 118.54 (Ar-CH), 124.3 (Ar-C), 124.5 (Ar-C), 124.8 (2 × Ar-CH), 129.1 (Ar-CH), 129.2 (Ar-CH), 130.4 (C-N), 130.5 (C-N), 144.7 (C=O), 148.9 (C-N), 149.0 (C-N); m/z (APCI) 681 (M⁺-101, 100%), HRMS (NH₄Cl) calcd. for C₃₈H₅₈N₈O₁₀ [M+NH₄]⁺ 800.4301, found 800.4305.
(E)-1, 6-Di-(1-N-tert-butoxycarbonylamino-benzotriazole-7-yl)-3-hexene 427

Following the general procedure, treatment of the dianion generated from the aminobenzotriazole 390 (600.0 mg, 2.4 mmol) with (E)-1,4-dibromo-2-butene (311 mg, 1.5 mmol) yielded crude material which was subjected to chromatography using hexane / diethyl ether (25%) to obtain the dibenzotriazole 427 as a colourless solid (390 mg, 59%), m.p. 113.0-114.8°C, \(\nu_{\text{max}}/\text{cm}^{-1} \) 2964, 1744, 1454, 1369, 1252, 1155, 749; \(\delta_{\text{H}} \) (CD\(_3\)OD) 1.53-1.60 (18H, br res., 2×C(CH\(_3\))\(_3\)), 2.38-2.44 (4H, br res., 2,5-CH\(_2\)), 3.08-3.24 (4H, br res., 1,6-CH\(_2\)), 5.59-5.61 (2H, m, 3,4-H), 7.36 (2H, d, \(J \approx 7.0 \), 2 × Ar-H), 7.40 (2H, t, \(J \approx 7.0 \), 2 × Ar-H), 7.88 (2H, d, \(J \approx 7.0 \), 2 × Ar-H); \(\delta_{\text{C}} \) (CD\(_3\)OD) 25.5(C(CH\(_3\))\(_3\)), 28.4 (2,5-CH\(_2\)), 31.9 (1,6-CH\(_2\)), 80.9 (C(CH\(_3\))\(_3\)), 115.5 (3,4-CH), 123.1 (Ar-CH), 123.9 (Ar-C), 127.5 (Ar-CH), 128.4 (Ar-CH), 142.9 (C=O); \(m/z \) (APCI) 549 (M\(^+\) +H, 40%); HRMS (FAB) calcd. for C\(_{28}\)H\(_{37}\)N\(_3\)O\(_4\) [M+H]\(^+\) 549.2932, found 549.2934].
Following the general procedure, treatment of the olefin 427 with AD-mix-α reagent yielded the diol 432 (386 mg, 80%) as a pale yellow oil. ν_max/cm⁻¹ 3466, 2982, 2494, 2239, 1726, 1607, 1455, 1250, 1162, 1020, 978, 909, 801, 751; δ_H (CD₃OD) 1.51-1.60 (18H, s, C(CH₃)₃), 1.86-2.01 (4H, br s, 2,5-CH₂), 3.12-3.17 (4H, m, 1,6-CH₂), 3.31-3.38 (2H, dt, J=7.3, 6.9, 3,4-CHOH), 3.53 (2H, br s, 2xOH), 7.44-7.51 (4H, m, Ar-H), 7.97 (2H, dd, J~0.6, 8.0, Ar-H); δ_C (CD₃OD) 27.9 (CH₂), 28.9 (CH(CH₃)₃), 31.6 (CH₂), 35.6 (CH₂), 43.7 (CH₂), 75.0 (C(CH₃)₃), 84.4 (3,4-CH), 118.8 (Ar-CH), 126.7 (Ar-CH), 127.7 (Ar-C), 130.7 (Ar-CH), 132.6 (C-N), 146.3 (C-N), 156.5 (C=O); m/z (APCI) 583 (M⁺ +H, 100%), HRMS (FAB) calcd. for C₂₈H₃₀N₉O₆ [M+H]⁺ 583.2987, found 583.2981.
(E)-1-(tert-Butoxycarbonylamino)-7-(4'-phenyl-3'-butene-1'-yl)-benzotriazole 440

Following the general procedure, treatment of the dianion generated from the aminobenzotriazole 390 (918 mg, 3.7 mmol) with cinnamyl bromide (870 mg, 4.4 mmol) yielded the title compound 440 (1.05 g, 78%) as a colourless gum, \(\nu_{\text{max}}/\text{cm}^{-1} \) 3458, 2955, 1745, 1494, 1453, 1368, 1253, 1157, 966, 750; \(\delta_1 \) 1.35 (9H, br res., C(CH₃)₃), 2.41 (2H, dt, \(J=6.7, 7.1, 2''\text{-CH}_2 \)), 3.00 (2H, t, \(J=7.1, 1''\text{-CH}_2 \)), 6.10 (1H, dt, \(J=15.9, 6.7, 3''\text{-CH} \)), 6.28 (1H, d, \(J=15.9, 4''\text{-H} \)), 7.03-7.21 (7H, m, Ar-H), 7.66-7.72 (1H, br res., Ar-H), 9.32 (1H, br s, NH); \(\delta_C \) 28.1 (C(CH₃)₃), 30.1 (2''-CH₂), 34.0 (1''-CH₂), 83.6 (C(CH₃)₃), 118.1 (Ar-CH), 124.7 (Ar-C), 125.0 (Ar-CH), 126.0 (Ar-CH), 127.2 (Ar-CH), 128.5 (Ar-CH), 129.0 (Ar-CH), 137.4 (Ar-C), 144.7 (C-N), 153.9 (C-N), 154.1 (C=O); \(m/z \) (APel) 365 (M⁺ +H, 100%), HRMS (FAB) calcd. for C₂₁H₂₅N₄O₂ [M+H]⁺ 365.1972, found 365.1972.
(3S, 4S)-1-(t-Butoxycarbonylamino)-7-(3', 4'-dihydroxy-4'-phenyl-butane-1-yl)-
benzotriazole 441

Following the general procedure for an AD-mix reaction, treatment of the olefin 440 (737 mg, 2.0 mmol), with AD-mix-α (2.8 g) yielded the diol 441 (650 mg, 82%) as a yellow gum,

$\nu_{\text{max/cm}^{-1}} 3498, 2915, 1735, 1453, 1368, 1253, 1157; \delta_{\text{H}} 1.22-1.35 (9\text{H, br res., C(CH}_3)_3), 1.46-1.51 (1\text{H, m, OH}), 1.54-1.63 (1\text{H, m, OH}), 2.83 (1\text{H, app. br s, 2'-H}_a), 2.99 (1\text{H, app. br s, 2'-H}_b), 3.55 (1\text{H, app. br s, 3'-H}), 3.83 (2\text{H, app. br s, 1'-CH}_2), 4.30 (1\text{H, d, J=6.6, 4'-H}), 6.95 (1\text{H, d, J=7.0, Ar-H}), 7.05-7.19 (6\text{H, m, Ar-H}), 7.60 (1\text{H, d, J=6.1, Ar-H}), 9.70 (1\text{H, br s, NH}); \delta_{\text{C}} 25.7 (2'-CH}_2), 27.1 (C(C(CH}_3)_3), 33.4 (1'-CH}_2), 74.5 (3'-CH), 77.2 (4'-CH), 82.6 (C(CH}_3)_3), 116.9 (Ar-CH), 124.8 (Ar-CH), 126.0 (Ar-C), 126.7 (Ar-CH), 127.2 (Ar-CH), 127.8 (Ar-CH), 128.5 (Ar-CH), 130.8 (Ar-C), 142.0 (C-N), 144.4 (C-N), 154.7 (C=O); m/z (APCI) 399 (M$^+$+H, 100%), HRMS (FAB) calcd. for C$_{21}$H$_{27}$N$_4$O$_4$ [M+H]$^+$ 399.2027, found 399.2025.
(1'S,2S)-2-[1-Hydroxy-1-phenylmethy1]-8-iodochroman 442

Following the general procedure of benzyne cyclisation, treatment of the diol 441 (628 mg, 1.6 mmol) with TFA (6.3 ml) and NIS (900 mg, 4.0 mmol) generated the chroman 442 (142.0 mg, 24%) as a yellow gum, $\nu_{\text{max/cm}^-1}$ 3564, 2931, 1562, 1494, 1448, 1237, 1194, 1093, 1045, 905, 887, 761, 701; δ_H 1.53-1.70 (2H, m, 3-CH$_2$), 2.60-2.65 (2H, m, 4-CH$_2$), 3.12 (1H, br s, OH), 4.01 (1H, ddd, J=2.7, 7.8, 10.5, 2-H), 4.65 (1H, d, J=7.8, 1'-H), 6.54 (1H, t, J=7.6, Ar-CH), 6.91 (1H, d, J=7.6, Ar-CH), 7.24-7.39 (5H, m, Ar-CH), 7.49 (1H, d, J=7.6, Ar-CH); δ_C 23.5 (3-CH$_2$), 24.7 (4-CH$_2$), 77.5 (2-CH), 81.4 (1'-CH), 85.8 (C-I), 122.4 (Ar-CH), 123.2 (Ar-C), 127.4 (Ar-CH), 128.5 (Ar-CH), 128.6 (Ar-CH), 129.7 (Ar-CH), 137.0 (Ar-CH), 139.0 (Ar-C), 152.4 (Ar-C); m/z (APCI) 366 (M$^+$, 100%), HRMS (FAB) calcd. for C$_{16}$H$_{19}$INO$_2$ [M+NH$_4$]$^+$ 384.0455, found 384.0458.
References:

42. P.B. Little PhD dissertation, Cardiff University, 1999.

