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Abstract

The cell cycle, with its highly conserved features, is a fundamental driver for the temporal
control of cell growth and proliferation in tissues - while abnormal control and modulation
of the cell cycle are characteristic of cancer cells, particularly in response to therapy. A
central theme in cancer biology is to resolve and understand the origin and nature of
innate and induced heterogeneity at the cell population level. Cellular heterogeneity -
comprising structural, temporal and functional dimensions - is a confounding factor in the
analysis of cell population dynamics and has implications at physiological, pathological
and therapeutic levels.

There is an exceptional advancement in the applications of imaging and cell tracking
technologies dedicated to the area of cytometric research, that demand an integrated
bioinformatics environment for high-content data extraction and interrogation. Image-
derived cell-based analyses, where time is the quality parameter also demand unique
solutions with the aim of enabling image encoding of spatiotemporal cellular events
within complex cell populations. The perspective for this thesis is the complex yet poorly
understood nature of cancer and the opportunities offered by rapidly evolving cytometric
technologies. The research addresses the intellectual aspects of a bioinformatics
framework for cellular informatics that encompass integrated data encoding, archiving,
mining and analysis tools and methods capable of producing in silico cellular fingerprints
for the responses of cell populations to perturbing influences. The overall goal is to
understand the effects of anti-cancer drugs in complex and potentially heterogeneous
neoplastic cellular systems by providing hypothesis testing opportunities.

Cell lineage maps encoded from timelapse microscopy image sequences sit at the core
of the proposed bioinformatics infrastructure developed in the current work. Through a
number of data mining, analysis and visualisation tools the interactions and relationships
within and between lineages have provided dynamic patterns for the modulation of the
cell cycle in disease and under stress. The lineage data, accessible through databases
implemented during the current study, has provided a rich repository for
pharmacodynamic (PD) modelling and validation and has thus laid the foundation for
fabricating a comprehensive knowledge base for linking both cellular and molecular
behaviour patterns. These provide the foundation for meeting the aspirations of systems
biology and drug discovery.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Bioinformatics — turning biological information into
knowledge

With the completion of the human genome project (HGP 2003) and scientific advances
in the post-genomic era, the life sciences have witnessed an enormous volume of
information generated by both biotechnological research and instrumentation
development. Arising from the demand to apply information gathered to form knowledge
and understanding for clinical and other benefits - a new interdisciplinary science of
bioinformatics has evolved (Hagen 2000). The endeavour started in the early 1980s
with the methods of DNA sequencing (Simpson 2001) and now encompasses genomics
(Burley 2000; Lockhart and Winzeler 2000; McKusick and Ruddle 1987; Nadkarni 2002),
proteomics (Abbott et al. 1998; Dove 1999; Ho et al. 2002; Jensen 2006; Twyman 2004),
and in recent years metabolomics (Harrigan and Goodacre 2003; Joyce and Palsson
2006). The advancement has been coupled with a continual development of
experimental technology for the acquisition of molecular biology data quantitatively and
accurately (Abbott et al. 1998; Bruggeman et al. 2007; Lincoln 2001). In parallel,
information technology has also witnessed a major advancement in terms of data
management and data access, e.g. the public use of the internet (Castells 2001). These
parallel advancements have transformed bioinformatics from a data management
technology to a discipline where the ultimate goal is to transform experimentally derived
biological information into knowledge (Heidorn et al. 2007) and thus enable the
discovery of new biological insights as well as to create a wider perspective from which
unifying principles in biology can be discerned.

Until recent years, a significant part of bioinformatics was service-oriented (Foster 2005),
focussed towards the common needs of information technologies in large-scale
biological data. However, lately the drive towards transforming information into
knowledge is prevalent in all areas of bioinformatics (Kanehisa and Brok 2003). For
example, in the genomics area where primary databases like ‘Entrez Gene’ (Maglott et
al. 2005) archive all the gene-related information, whereas secondary databases, like
KEGG (Kanehisa 2002), integrate and cross-reference numerous databases in a multi-
species context and fabricate a better understanding about biological function from a
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genomic perspective. The same paradigm shift is also apparent in proteomics where,
for example, secondary databases like BIND (Bader 2003) have been introduced that
capture protein function, here defined at the molecular level as the set of other
molecules with which a protein interacts or reacts along with the molecular outcome.
Metabolomics is yet to keep pace with its other ‘-omic’ counterparts and encompasses
primary databases like the Human Metabolome Database (Wishart 2007), which provide
a comprehensive curated collection of human metabolite and metabolism information.
The list of databases is growing at a fast pace and presently the number of molecular
databases is over 1000 (Galperin 2008). These databases, with associated smart mining
and analytical tools, e.g. BLAST (Altschul et al. 1990) provide both information and
knowledge that directly contribute to our understanding of the molecular basis for
disease as well as the structural and functional complexity of cellular processes that
constitute the organ or organism.

1.2 Gene to organism — issues of scale and complexity

A molecular basis for understanding organism behaviour started with the premise that
organisms are assembly of different components which can be described in a
hierarchical fashion according to their functionality, size etc. From a size perspective, an
organism like a human can be described at many scales, and the lowest level is
represented by a defined atomic/molecular description - for example the genome. Thus
the genomic level can be assigned to the lowest level, which can define potential within
an organism’s specific structure and function. From this level upwards everything is the
product of causation from genes to cells, organs, systems and whole organism (Dawkins
1976)
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possible interactions to test (Figeys 2004). Knowledge from these interactions could
enable us to understand cellular and organismal phenotypes at the systems level (Wu
and Bonner 1981) . However, this understanding demands an unprecedented number of
hypotheses, experimental work, mathematical model simulation and assimilation, which
are largely beyond the capacity of present technologies (Allen et al. 2001).

Again from the experimental point of view, these large scale ‘-omic’ data are not bona
fide representations of the innate cellular conditions, due to the methods of collection
and exclusion of natural complexity and heterogeneity. For example, genomic and
proteomic data are usually collected after destruction of cell integrity and cell
environment in the original tissue, and the structural and functional parameters
measured at these conditions may not reflect the in situ condition (Valet 2005b).
Moreover the dependence of functionality on the context (such as experimental
condition, cell status and environment) at present are mostly ignored (Kanehisa 2000).
Last but not least, these data represent a snapshot or static interaction, which indeed is
an incomplete view of the dynamic condition where all interactions as well as events are
time-dependent. An example in this regard would be the failure of 3D protein structure
prediction (Aloy et al. 2003) from the known amino acid sequences, despite substantial
progress in computing potential and software development and intensive molecular
biology research for over 30 years (Valet 2005a). Regardless of the acknowledgement
that the bottom-up approach (Stransky et al. 2007), with its paradigm that the molecular
basis of knowledge is the key for understanding the disease process and biology at the
system level, has a biased and often limited view. For the past decade pharmaceutical
industries have introduced a molecular target-based drug discovery approach, where a
target is usually a single gene, gene product or molecular mechanism, in which the
process of drug discovery begins with identifying the function of a possible therapeutic
target and its role in disease (Kerns et al. 2003; Knowles and Gromo 2003; Lindsay
2003). This approach is different from the empirical physiology-based approach
(Erickson 2003), where compounds are screened and profiled based on the readouts of
the amelioration of a disease phenotype in an animal model or cell-based assay.
Identification of the drug target and the mechanism of action would follow in later stages
of the process by deduction based on the specific pharmacological properties of lead
compounds. Even though these two approaches are not mutually exclusive, this
paradigm shift not only caused a decrease in the number of new chemical entities (NCE)
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discovered but more importantly new drugs, found to be pharmacology active at their
molecular targets, impart toxicity through other targets at the system level (Sams-Dodd
2005). Two such classic examples are the low-density lipoprotein cholesterol lowering
anti-atherosclerosis drug cerivastatin (Lipobay) (Psaty et al. 2004) and the anti-
inflammatory cyclo-oxygenase 2 (COX2) inhibitors (Melnikova 2005). These experiences
may induce a shift of efforts (Schneider 2004) towards the search for drugs effective on
distributed targets as for example, salicylic acid acting on various molecular targets
simultaneously (Rainsford 2007). The limitations of a bottom-up approach and the
widening information gap — how genes and molecules specify the systems behaviour,
invoke the strong requirements for top-down views (Anderson et al. 2001): a living
system is more than the sum of its parts and it acquires emergent properties that its
individual components may not have (Zhang et al. 2002). Explaining these often
counterintuitive properties in terms of the underlying components requires the cell to be
placed as the irreducible and integrating unit that links molecular information with
behavioural information.

1.2.1 Understanding biology at cellular level

According to the cell theory, a cell is the smallest living unit in any organism (Schleiden
1838; Schwann 1839). The modern tenets of cell theory maintain that the cell is the
structural and functional unit of all living organisms and is generated from the pre-
existing cells by a reductive or non-reductive division, where in each division hereditary
information is passed from the mother cell to the daughter cells. According to
differentiation status, cells represent the elementary functional units of multicellular
organisms, and disease represents molecular alterations that impact upon the integrity
and functions of cellular systems determined by both genotype and external or internal
influences (Valet 2005a). Single cells thus integrate the structural and functional
information from molecular pathways and networks to underpin the often asynchronous
population (tissue) behaviour, which in turn generates physiological system function.
Thus cells can be viewed as the middle level between molecular and whole organism
behaviour, encapsulating all the molecular drivers (i.e. gene, proteins, metabolites and
the functional networks) in a minimally bounded system capable of integrating extra
cellular influences from neighbouring cells as well as environmental factors and
hereditary influences maintained in a pedigree structure. Thus, the cell provides an
opportunity for a middle-out-approach (Bray 2003; Brenner 2001; Noble 2002a; Noble
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relationship). In experimental terms, a cell lineage reflects the relationship between
descendents from a common progenitor that was exposed to a given influence for a
discrete period. The behaviour of both the progenitor and the evolving progeny reveals
the time-integrated response (e.g. variation of multi-cyclic behaviour) to an influence
such as a bioactive drug (i.e. the pharmacodynamic (PD) response). This would
therefore have a direct relevance, to how cellular populations, that represent resistant
fractions, might be maintained in drug-treated tumour cell populations. The third sub-
layer (L 3: Multi cellular relationship) addresses the multi-cellular system (cytome) that
illustrates the dynamic interactions between cellular systems or subsystems and
environment and provide opportunities to model and predict homogeneous and
heterogeneous behaviour of the cytome. Sensitive yet high throughput technology for
data acquisition of these multi-dimensional, multi-scalar dynamic data sets depicts an
insightful description of living systems (Anderson et al. 2001) and the relationship among
these data sets is a prerequisite for our understanding of biology at a systems level
including disease processes (Pollok 2005).

1.2.2 The depth and breadth of single cell information

Single cell analysis by image or flow cytometric methods has reached high throughput
capacity in recent years (Bullen 2008; Valet 2005b); High-throughput and indeed high-
content cell-based screening systems, incorporating elegant reporter assays, have been
effectively used to profile drugs based on simple stimulus-response readouts (Bullen
2008; Terstappen et al. 2007). These include high throughput single cell microscopy
(Bocsi et al. 2004a; Ecker et al. 2004a; Ecker et al. 2004b; Gerstner et al. 2004; Kantor
et al. 2004; Mittag et al. 2005b; Periman et al. 2004b; Schubert 2004) with data
reconstituted, to single cell molecular 3D tissue architectures (tissomics) (Ecker and
Tarnok 2005; Kriete and Boyce 2005; Schubert 1990, 2004). High throughput flow
cytometry (Edwards et al. 2004) or flow and image hybrid systems (George et al. 2004)
as well as chip-based flow systems (Palkova et al. 2004; Weston and Hood 2004; Wu et
al. 2004), cellular genomics (Taylor et al. 2004), cellular proteomics by
immunophenotyping (Casasnovas et al. 2003; Maynadié et al. 2002; Valet et al. 2003)
and chemical cytometry (Arkhipov et al. 2005; Dovichi and Hu 2003; Wu et al. 2004) as
well as cellular metabolomics (Dovichi and Hu 2003) constitute further facets of recent
extensions in molecular cytomics. However the design of current high-throughput
instrumentation discards biological heterogeneity, and most assays never contend with
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dynamic processes. In the absence of detailed kinetic information, simple snap-shot or
static high-content-assays provide an over-simplified and often skewed view of the
cellular system.

Encoding and organizing cytometric information, especially image cytometry-derived
kinetic information, and transforming that into pertinent knowledge within a
bioinformatics context is the core theme of the present research. Cell theory informed
levels of bio-complexity as outlined in figure 1-2 is the basis for this endeavour where the
cell cycle is an underlying and driving force for this complexity due to its ubiquitous and
dynamic nature and arguably the most fundamental process for eukaryotic cells (Nurse
2000a). The premise of the current work is that mammalian cell cycle can provide the
mechanistic driver (engine) for cellular dynamics and hence underpins the construction
and temporal complexity as outlined as levels 1 and 2 in figure 1-2. This approach
enables the incorporation of the important characteristics of proliferating cellular systems
including: checkpoint controls, alternative cell cycles, asymmetry of division, lineage
(multi-cycle) responses, cellular interactions and the evolution of drug resistance (innate
and acquired). The ambition is to connect the nature and probability of cellular
responses with the analysis of early molecular decision events — linking origins and
outcomes separated over wide timescales. The gap is considerable because of the
problems of data acquisition in providing both informative and standardized single cell
read outs and the bioinformatics challenges of encoding and interrogating the
spatiotemporal cellular perturbations.

By developing a bioinformatics framework, this research aims to provide benefits by
contributing to the current understanding of complex cellular dynamics and associated
mathematical model building. Models that attempt to fabricate predictive cell response
profiles will have use in pre-clinical drug screening, experimental therapeutics and
hypothesis-driven research, a common interest shared by a wide range of life scientists
(Carnero 2002; Malumbres and Barbacid 2001; Sampath and Plunkett 2001; Walker
2001). The cell cycle has been the subject of intense and varied study over the past 100
years (Nurse 2000b), and investigation of the basic molecular mechanisms is set to
continue apace providing a long-term demand for linked bioinformatics solutions (Nurse
2000Db).
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1.3 Cell cycle — the engine that drives population dynamics

In eukaryotes, the cell cycle involves numerous regulatory proteins that direct the
somatic cell through a specific sequence of events culminating in mitosis and the
production of two daughter cells while germ cell generation and gamete fusion are
modulations of this theme (Smith et al. 2008). The precision with which cell cycle events
are executed ensures the survival of living organisms, while loss of this precision
increases genomic instability, an important factor in the formation of cancer (Nurse
2000b). Various proteins regulate this progression through different stages of the cell
cycle which, from a morphological aspect, can be divided broadly into two phases:
interphase (1), during which the cell grows, accumulating nutrients needed for mitosis
and duplicating its DNA, and mitosis (M) phase, during which the cell normally divides
into two daughter cells.

1.3.1 Phases of the cell cycle

Soon after division each daughter cell begins the interphase of a new cycle, which again
divides into subphases. Although these subphases of interphase are not easily
distinguishable by morphology, each phase has a distinct set of specialized biochemical
processes that prepares the cell for quiescence or a potential cell division event. The
first subphase of interphase, which can be mapped from the previous M phase up to the
beginning of DNA synthesis, is called G1 (G indicating gap). This phase is marked by
synthesis of various enzymes required in for DNA replication in S phase. The duration of
G1 is highly variable, even among different cells of the same species (Smith and Martin
1973). The ensuing S phase starts when DNA synthesis commences; when it is
complete, all of the chromosomes have been replicated, i.e., each chromosome normally
having two (sister) chromatids. Thus, during this phase, the amount of DNA in the cell
has effectively doubled. Rates of RNA transcription and protein synthesis are relatively
low during this phase. An exception to this is histone production, most of which occurs
during the S phase (Nelson et al. 2002a; Wu and Bonner 1981). The duration of S phase
is relatively constant among cells of the same species (lvan and Greulich 1963). The
last subphase of interphase is G2, which lasts until the cell enters metaphase.
Significant amounts of protein synthesis occur during this phase, mainly involving the
production of microtubules, which are required during the process of mitosis. Inhibition of
protein synthesis during G2 phase prevents the cell from undergoing mitosis
(Stefansson and Brautigan 2007).



Chapter 1: Introduction

After interphase the next phase is M (Mitosis) phase which is again divided into four
subphases - prophase, metaphase, anaphase and telophase. During prophase, the
replicated chromosomes, each comprising two identical chromatids, are condensed into
compact packets and then released to the cytoplasm when the nuclear membrane
breaks down. During metaphase and anaphase, the chromosomes are sorted, and
each chromatid of a pair moves to opposite sides of the cell. The end of mitosis is
marked by a re-formation of a membrane around each set of chromosomes which is
designed as telophase. Division of cytoplasm, also known as cytokinesis, generates two
daughter cells, each with a 2n complement of genetic material (Lodish et al. 2004).

After mitosis (cell division) both daughter cells again enter to a G1 interphase and from
this phase not all "post-mitotic" cells may enter a subsequent S phase by respecting a
G1 cell cycle check point, thus providing a non-proliferative fraction of cells in a GO state.
GO cells may remain quiescent for long periods of time, possibly indefinitely (as is often
the case for neurons) particularly following full differentiation. Some cell types in mature
organisms, such as parenchymal cells of the liver and kidney, enter the GO phase semi-
permanently and can only be induced to begin dividing again under very specific
circumstances; other types, such as epithelial cells, continue to divide throughout an
organism's life. According to their location, state and function, cells may also be
destined for programmed disposal through apoptosis - a highly regulated process by
which an organism eliminates unwanted cells without eliciting an inflammatory response.
Apoptosis is involved in many physiological processes including tissue homeostasis,
embryonic development, and the immune response (Schwartzman and Cidlowski 1993).
The timing and order of cell cycle events are monitored during cell cycle checkpoints that
occur at the G1/S phase boundary, in S phase, and during the G2/M phases (Murray
and Hunt 1993). These checkpoints ensure that critical events in a particular phase of
the cell cycle are completed before a new phase is initiated, thereby preventing the
formation of genetically abnormal cells. These checkpoints ensure that critical events in
a particular phase of the cell cycle are completed before a new phase is initiated,
thereby preventing the formation of genetically abnormal cells (King and Cidlowski
1998).
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1.3.2 Regulation of the cell cycle

Because it is essential to identify and eliminate cells proliferating inappropriately,
apoptosis and proliferation are tightly coupled, and cell cycle regulators can influence
both cell division and cell death (Meikrantz and Schlegel 1995). Two key classes of
regulatory molecules, cyclins and cyclin-dependent kinases (CDKs), determine a cell's
progress and direction through the cell cycle (Nigg 1995) under the regulatory influence
of CDK inhibitory molecules and processes that provide for specific activation and
destruction. CDKs are serine/threonine protein kinases, with a wide range of target
molecules involved in cell cycle progression, being activated through phosphorylation at
specific points in the cell cycle. There are at least seven CDKs in mammalian cells
(Pines 1995). The CDKs are critical for progression through the cell cycle because their
inactivation prevents mitosis (Devault et al. 1991; Parker and Piwnica-Worms 1992; Van
den Heuvel and Harlow 1993). Cyclins form the regulatory subunits and CDKs the
catalytic subunits of an activated heterodimeric holoenzyme; cyclins have no catalytic
activity and CDKs are inactive in the absence of a partner cyclin. When activated by a
bound cyclin, CDKs perform a phosphorylation that activates or inactivates target
proteins to orchestrate co-ordinated entry into the next phase of the cell cycle. There
are several types of cyclins and most of them bind to a particular type of CDKs and are
active at different phases of the cell cycle. However, there are several “orphan” cyclins
which have no CDK partner, for example cyclin F is an orphan cyclin which is essential
for G2>M transition (Fung and Poon 2005; Karp 2007; Lee and Zaho 2006).
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