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Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG), which are two
of a number of neuroimaging techniques, are scalp recordings of the electrical activity
of the brain. EEG and MEG (E/MEG) have excellent temporal resolution, they
are easy to acquire, and have a wide range of applications in science, medicine and
engineering. These valuable signals, however, suffer from poor spatial resolution and
in many cases from very low signal to noise ratios. In this study, new computational
methods for analyzing and improving the quality of E/MEG signals are presented.
We mainly focus on single trial event-related potential (ERP) estimation and E/MEG
dipole source localization. Several methods basically based on particle filtering (PF)
are proposed.

First, a method using PF for single trial estimation of ERP signals is considered.
In this method, the wavelet coefficients of each ERP are assumed to be a Markovian
process and do not change extensively across trials. The wavelet coeflicients are then
estimated recursively using PF. The results both for simulations and real data are
compared with those of the well known Kalman Filtering (KF) approach. In the next
method we move from single trial estimation to source localization of E/MEG signals.
The beamforming (BF) approach for dipole source localization is generalized based
on prior information about the noise. BF is in fact a spatial filter that minimizes the
power of all the signals at the output of the filter except those that come from the
locations of interest. In the proposed method, using two more constraints than in the
classical BF formulation, the output noise powers are minimized and the interference

activities are stopped.

Xvi



Xvil

PF is also introduced for E/MEG dipole source localization. PF, which can deal
with the nonlinearity of the inverse problem, is capable of localizing and tracking
E/MEG sources. This method is also combined with the BF approach and the re-
sults are compared with those of BF and recursive applied and projected MUSIC
(RAP-MUSIC) techniques, which are well-established methods in E/MEG source lo-
calization. The final work is devoted to spatiotemporal separation and identification
of ERP subcomponents. This method simultaneously estimates the single trial ERP
signals and localizes the sources. Variational Bayes implies that the ERP subcom-
ponent parameters can be estimated separately. Therefore, ERP source locations are
estimated using PF, source amplitudes and noise covariance matrices are estimated
using a maximum likelihood (ML) approach, and latency and width of ERP subcom-
ponents are estimated using the Newton-Raphson technique. The method is verified
via simulations and also applied to an oddball paradigm to show its potential use in

practical applications.
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Chapter 1

Introduction

Functional brain imaging is a relatively new and multidisciplinary research field
that encompasses techniques devoted to a better understanding of the human brain
through noninvasive imaging of the electrophysiological, hemodynamic, metabolic,
and neurochemical processes. These imaging techniques are powerful tools for study-
ing neural processes in the normal and pathological brain functions. Clinical appli-
cations include improved understanding and treatment of serious neurological and
neuropsychological disorders such as intractable epilepsy, schizophrenia, depression,
and Parkinson’s and Alzheimer’s diseases.

Images of dynamic changes in the spatial distribution of brain metabolism and
neurochemistry can be formed using positron emission tomography (PET). These
images have spatial resolutions as high as 2mm. Temporal resolution, however, is
limited to several minutes because of the dynamics of the processes being studied and
photon-counting noise. For more direct studies of neural activity, local hemodynamic
changes may be investigated. As neurons become active, they induce very localized
changes in blood flow and oxygenation levels that can be imaged as a correlate of

neural activity. Hemodynamic changes can be detected using PET [16], functional



magnetic resonance imaging (fMRI) [113], and transcranial optical imaging [44] meth-
ods. Of these, fMRI is currently the most widely used and can be readily performed
using a 1.5-7T clinical MRI magnet. fMRI studies are capable of producing spatial
resolutions as high as 1-3mm, however, temporal resolution is limited by the relatively
slow hemodynamic response, compared to electrical neural activity. In addition to
limited temporal resolution, interpretation of fMRI data is hampered by the rather
complex relationship between the blood oxygenation level dependent (BOLD) changes
and the underlying neural activity. Regions of BOLD changes in fMRI images do not
necessarily correspond one-to-one with regions of electrical neural activity.

Among the available functional imaging techniques, electroencephalogram (EEG)
and magnetoencephalogram (MEG) uniquely have temporal resolutions below lms.
This temporal precision allows us to explore dynamics of neural networks or cell as-
semblies that occur at typical time scales in the order of tens of milliseconds [83]. EEG
and MEG (E/MEG) are two complementary techniques that measure, respectively,
the scalp electric potentials and the magnetic induction outside the head produced
by electrical activity in neural cell assemblies. They directly measure the electrical
brain activity and offer the potential for superior temporal resolution when compared
to PET or fMRI. Sampling of electromagnetic brain signals at millisecond intervals is
readily achieved and is limited only by the multichannel analog-to-digital conversion

rate of the measurements.

1.1 Aim and Objectives

There are drawbacks, however, that limit the application of E/MEG. One of the

main drawbacks is the low spatial resolution. This is because of the fact that the



E/MEG resolution is limited by both the number of spatial measurements and their
location over the scalp. The only way to localize the putative electric sources in the
brain is through the solution of the inverse problem, a problem that can only be
solved by introducing a priori assumptions on the generation of E/MEG signals. The
more appropriate these assumptions are the more trustable are the source estima-
tions. During the last two decades different such assumptions have been formulated
and implemented in inverse solution algorithms. They range from single equivalent
current dipole estimations to the calculation of three-dimensional (3D) current den-
sity distributions. Each approach uses different mathematical, biophysical, statistical,
anatomical or functional constraints.

The main shortcoming of the current source localization methods is that the signal
should be stationary during the time of processing. Here, using particle filtering (PF)
new methods that can be applied to the non-stationary signals are proposed. The
conventional beamforming (BF) approach for source localization is also extended
when the location and covariance matrix of the noise is known. Furthermore, a new
model for analyzing event-related potentials (ERP) is given and its parameters are
estimated separately using different methods. In fact, this method is a single trial
estimation that can also localize the source activities.

Another main drawback of E/MEG is its low signal to noise ratio. Conventional
methods to improve ERP signal quality involve averaging time-locked segments of the
EEG signals over many trials. These methods assume that the statistical parameters
of the ERP waves of a given kind remain the same over time and the background EEG
is a random process that is attenuated by averaging over trials. There is evidence,

nevertheless, that ERP waves may vary considerably over time. Hence, along with



many approaches for estimation of single trials, novel methods to investigate the
variability of ERPs across trials are proposed.
Several techniques are proposed in this study and in the following, a brief overview

of them is presented.

1.2 Thesis Outline

The layout of the thesis is as follows. In Chapter 2, an introduction to EEG and its
acquisition and specifications is presented followed by a brief introduction to ERP
and its application focussing on the P300 component. This chapter ends with an
overview of MEG and its comparison with the EEG signals.

Bayesian filtering and mathematical frameworks for Kalman filtering (KF) and
PF, which are the main bases of different proposed approaches in this study, are
presented in Chapter 3.

In Chapter 4, an approach for estimation of single trial event-related potentials
(ST-ERPs) using PF is presented. The method is based on recursive Bayesian mean
square estimation of ERP wavelet coefficients, which are estimated sequentially by
their previous estimates as prior information. To enable a performance evaluation
for this approach in the Gaussian and non-Gaussian distributed noise conditions,
Gaussian white noise (GWN) and real electroencephalogram (EEG) signals is added
to the simulated ERPs and the results are compared to that of KF approaches.

In Chapter 5, a deflation scheme based on BF for multiple dipole source local-
ization of surface E/MEG data is considered. Two more constraints are added to
the conventional BF formulation and a closed-form solution is given. The first con-

straint minimizes the power of the noise at the output of the BF. The solution can



be considered as a generalization of pseudo-inverse, maximum likelihood, and loading
factor methods which have been applied effectively for E/MEG source localization.
By adding another constraint to the BF formulation, the identified dipoles are de-
flated and, simultaneously, the location of the next dipole is identified. This method
is called deflation BF and is capable of detecting highly correlated sources, as well as
sources with small power that are dominated by other sources. An iterative deflation
and localization method is also proposed to improve the accuracy of the method.

In addition, in Chapter 6, a method based on Rao-Blackwellized particle filtering
(RBPF) and BF for E/MEG dipole source localization and tracking is presented.
The localization problem is formulated in state space and PF is employed to pro-
vide a recursive nonlinear and non-Gaussian Bayesian solution. The use of Rao-
Blackwellization in combination with PF improves the performance and reduces the
computational costs. In this approach, the nonlinear part of the model (location) is
estimated by PF and the linear part of the model (the moments) is marginalized out
and estimated using KF. Further performance improvement can be obtained via joint
beamforming-RBPF (B-RBPF). In this approach, it is assumed that the data is sta-
tionary within a window around the current time sample. RBPF and B-RBPF were
applied to different kinds of simulated data and the results were compared with those
obtained by using RAP-MUSIC and BF algorithms, which are two well-established
methods for dipole source localization.

Finally, in Chapter 7 a novel method for the detection and tracking of ERP sub-
components from trial to trial is proposed. The ERP subcomponent sources are

assumed to be electric current dipoles (ECDs) and their locations and parameters



(amplitude, latency, and width) are estimated and tracked from trial to trial. Vari-
ational Bayes implies that the parameters can be estimated separately using the
likelihood function of each parameter. Estimations of dipole locations, which have
nonlinear relation to the measurement, are given by PF, estimations of amplitude and
noise covariance matrix of the measurement are optimally given by maximum likeli-
hood (ML) approach, and estimations of latency and width of the Gaussian functions
are given by Newton-Raphson technique. New recursive methods are introduced for
both ML and Newton-Raphson approaches to prevent the divergence of the filtering
in the presence of very low signal to noise ratio (SNR). The main advantage of the

method is the ability to track the varying dipole locations.



Chapter 2

Introduction to EEG and MEG

In this chapter, an introduction to EEG and its acquisition is given first and then
a brief review of ERPs focusing on the P300 component is presented. In the final

section, MEG is introduced and compared with EEG.

2.1 Electroencephaloghy

EEG is the recording of electrical activity from over the scalp produced by firing
the neurons within the brain. These el_ectrical activities can provide records of brain
activity at any reasonable scale of temporal resolution. In comparison with the other
neuroimaging techniques, EEG can be acquired easily and inexpensively. Because of
these advantages, it has been widely employed in human monitoring and research by
workers from different fields. For instance, EEG has been used for clinical diagnosis
of epilepsy. It has also attracted engineers to provide a method for interfacing brain
and machine, which can improve the life style of disabled people. In addition to the
medical applications, EEG has been recently employed in game industries and many

commercial products based on EEG have been produced.



2.1.1 EEG Advantages and Limitations

EEG has several advantages as a tool for investigation of the brain activities. For
instance, EEG is non-invasive, convenient to acquire and inexpensive. EEG also
has a high temporal resolution compared to other techniques such as fMRI and is
capable of detecting changes in electrical activity in the brain in a millisecond time
scale. Furthermore, EEG measures the brain’s electrical activity directly, while other
methods record the changes in blood flow (e.g., SPECT, fMRI) or metabolic activity
(e.g. PET), which are indirect markers of brain electrical activity.

EEG has several limitations. The most important one is its poor spatial resolution
which is limited by the number and location of the electrodes. Another important
limitation is that some particular sets of neurons make more contribution to EEG
signals (those which are located in the superficial layers of cortex and generate radial
currents toward the skull) than the others (those which are located in deep structures

such as the hippocampus and produce currents tangential to the skull).

2.1.2 EEG Acquisition

In conventional scalp EEG, the recording is obtained by placing silver/silver chloride
electrodes on the scalp using a conductive gel or paste, usually after preparing the
scalp area by light abrasion to reduce the impedance. Electrode locations and names
are specified by the international 10-20 system in most clinical and research applica-
tions. An example of the electrode locations and names in a two-dimensional map
has been shown in Fig. 2.1.

Extra electrodes are sometimes used for the measurement of EOG, ECG, and EMG

of the eyelid and eye surrounding muscles. In the available recording, two electrodes



were placed above and below the eye for vertical EOG (VEOG) and two others placed
left and right of the eye for horizontal EOG (HEOG). VEOG and HEOG usually are

used as a cue to remove eye blink and movement related artifacts from the signals.
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Figure 2.1: Scalp electrode positions in a 10-20 system used for recording the available
data set.

As an example in epilepsy surgery, it may be necessary to insert electrodes near the
surface of the brain. This is referred to as electrocorticography (ECoG), intracranial
EEG (I-EEG) or subdural EEG (SD-EEG). The ECoG signal is processed in the
same manner as digital scalp EEG, with a couple of caveats. ECoG is typically
recorded at higher sampling rates than scalp EEG because of the requirements of
Nyquist theorem - the subdural signal is composed of a higher predominance of higher
frequency components. Also, many of the artifacts which affect scalp EEG do not
impact ECoG, and therefore the linear filtering in preprocessing stage is often not

needed.
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2.1.3 Referencing

Electric potentials are defined only with respect to a reference, i.e., an arbitrarily
chosen zero level. The choice of the reference may differ depending on the purpose of
the recording and has to be selected in advance. In referential montage, each channel
represents the difference between a certain electrode and a predefined reference elec-
trode. There is no standard position at which this reference is always placed. Midline
positions are often used since they do not amplify the signal in one hemisphere versus
the other. In this work, the Fz (midline frontal) site as the reference is used in on-
line recording. This referencing was changed (off-line) to another popular reference
called linked mastoids - a mathematical average of electrodes attached to both left
and right mastoids. With digital EEG, all signals are typically digitized and stored
usually w.r.t a particular referential montage and the signals using other montages
can be mathematically constructed.

Another type of montage is average reference montage, which is especially useful
for localization of the sources. In this montage, the outputs of all of the channels are

averaged, and the averaged signal is used as a common reference for each channel.

2.1.4 Preprocessing

A linear bandpass filter is usually used to remove the noise. Typical settings for the
highpass and lowpass cut-off frequencies are 0.5-1 Hz and 35-70 Hz, respectively. The
highpass part typically filters out the slow artifacts, such as electrogalvanic signals
and movement-related artifact, whereas the lowpass part filters out the high-frequency
artifacts, such as electromyogram signals. An additional notch filter is sometimes

used to remove the artifact caused by electrical power lines (50Hz in Europe). In
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the available recording, the frequency bandwidth of the linear bandpass filter was
0.03-40Hz and the sampling rate was set to 250Hz. The data are digitized using a 16
bit analog to digital convertor with 250Hz sampling rate which satisfies the Nyquist
theorem for an EEG with a bandwidth within 0.03-40Hz.

During the recording, EEG signals undergo slow shifts over time such that the
zero level might differ considerably across channels. These signal shifts can be due
to brain activity, but can also be caused by sweating (in the case of EEG), muscle
tension, or other noise sources. It would be therefore desirable to have a time range
where one can reasonably assume that the brain is not producing any stimulus related
activity, and that any shift from the zero line is likely due to noise. In most studies,
this baseline interval is defined as several tens or hundreds of milliseconds preceding
the stimulus - in the available data set, a 0.15sec pre-stimulus interval was used for
baseline correction. For each recorded channel, the mean signal over this interval
is computed, and subtracted from the signal at all time points. This procedure is
usually referred to as baseline correction.

Eye blink is one of the major artifacts in a laboratory environment. In many
applications of ERP, the recorded trials are visually inspected and those containing
eye blink are removed from analysis. Another useful and semi automatic method,
which has been used in the available data set, is independent component analysis
(ICA) [112]. In this method, after applying ICA, the component(s) including eye
blink are set to zero and they are back projected to obtain a set of eye blink-free

EEG signals.
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2.2 Event-Related Potentials

ERP is any measured brain response that is directly the result of a thought or percep-
tion. More formally, it is any stereotyped electrophysiological response to an internal
or external stimulus. ERP experiments usually involve a subject being provided a
stimulus to which s/he reacts either overtly or covertly. There are often at least two
conditions that vary in some manner of interest to the researcher. As this stimulus-
response is going on, an EEG is being recorded from the subject. The ERP is obtained
by segmenting and averaging the EEG signal for each of the trials within a certain
condition; averages from one stimulus-response condition can then be compared with
averages from the responses from other stimulus.

There is considerable interest in the EEG techniques concerned with ERP record-
ing and analysis since they deal with brain functional and mental abnormalities and
can be used as indicators of cognitive processes and dysfunctions which are not ac-

cessible in behavioral testings.

2.2.1 P300

In this section P300 which is a well-known ERP component is explained. This com-
ponent is used to validate the proposed methods in this thesis. P300 is a positive
wave that occurs approximately 300ms after a rare or task-relevant stimulus, which
can be auditory, visual, or somatosensory. P300 is the most widely used ERP because
of the relatively large amplitude (5 — 20uV') and easy acquisition.

The paradigm used to elicit a P300 is the presentation of unexpected and infre-
quent stimuli randomly interspersed between frequent stimuli to an attentive sub-

ject [104]. In this paradigm, labeled as oddball, the subject usually has to classify the
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stimuli, i.e. to count the infrequent target, or to press a button whenever an infre-
quent stimulus occurs. An example of auditory oddball paradigm in which frequent

and infrequent tones are presented to participants has been shown in Fig.2.2.

ODDBALL
P300

Easy Stimulus
Discrimination

A

llllllllll
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Figure 2.2: Oddball paradigm. Left: auditory sequences in which S refers to frequent
tones and T refers to infrequent tones. Right: thick line is the result of averaging for
the infrequent tones and thin line for the frequent tones.

The amplitude of P300 is inversely related to the stimulus occurrence probability
and directly related to the task difficulty. The latency of P300 correlates to some
extent with categorization or evaluation of the stimulus and consequently is related
to the task difficulty. Concerning subject parameters, the latency of P300 shows
a positive correlation with age and negative correlation with level of attention and
vigilance. For more detailed information on P300 the reader may refer to a number
of comprehensive reviews [18, 28, 50].

The topography of P300 recorded by surface electrodes shows a maximum over
the midline of centro-parietal regions (Pz site). The generator sites of the P300 are
not known with certainty, but the available data leads to the conclusion that several
cortical and sub-cortical structures contribute to this positive wave [87].

In clinical studies a prolongation of the latency has been reported in dementia [36],
Parkinson’s disease [105], Huntington’s disease [43] as well as in patients with chronic

renal failures and head injuries. In addition, a diminution of amplitude has been
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reported in schizophrenics [93], in depressed patients, and in chronic alcoholics [17).
Note that many of these findings are restricted to the group of patients and they can

not be used to detect individual dysfunctions.

P300 subcomponent

The origin and number of responsible sources of P300 are unknown, however, it
is assumed P300 has two subcomponents: P3a and P3b. There is good evidence to
believe that P300 subcomponents arise from interactions between frontal and parietal
neural sources - P3a is in frontal and P3b is in parietal loci. There is also localization
work which justifies this assumption that the P300 data can be modeled accurately

by sources placed in anterior and in posterior-parietal cortex [42].

2.3 Magnetoencephalogram and its Comparison with

EEG

MEG is an imaging technique used to measure the magnetic fields produced by elec-
trical activity in the brain via extremely sensitive devices such as super conducting
quantum interference devices (SQUIDs). These measurements are commonly used
in both research and clinical settings. There are many uses for the MEG, including
assisting surgeons in localizing a pathology, assisting researchers in determining the
function of various parts of the brain, neuro-feedback, and many others.

Although EEG and MEG are generated by the same neurophysiologic processes,
there are important differences concerning the neurogenesis of MEG and EEG [17].

In contrast to electric fields, magnetic fields are less distorted by the resistivity of
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the skull and scalp, which results in a better spatial resolution of the MEG. As
electric and magnetic fields are oriented perpendicular to each other, the directions of
highest sensitivity, usually the directions of the field maxima, are orthogonal to each
other. Whereas scalp EEG is more sensitive to radial than tangential components of
a current source in a spherical volume conductor, MEG detects only its tangential
components. This shows that MEG selectively measures the activity in the sulci,
whereas scalp EEG measures activity both in the sulci and at the top of the cortical
gyri but appears to be dominated by radial sources.

Scalp EEG is sensitive to extracellular volume currents produced by postsynaptic
potentials, MEG primarily detects intracellular currents associated with these synap-
tic potentials because the field components generated by volume currents tend to
cancel out in a spherical volume conductor [7]. The decay of magnetic fields as a
function of distance is more pronounced than for electric fields. MEG is therefore
more sensitive to superficial cortical activity, which should be useful for the study of
neocortical epilepsy. Finally, MEG is reference-free which is in contrast to scalp EEG
where an active reference can lead to serious difficulties in the interpretation of the
data.

Despite the above differences between EEG and MEG data, the mathematical
formulation of both data provided in this thesis is the same, and the proposed method
can similarly be applied to both data. Throughout this thesis, therefore, E/MEG
abbreviation which stands for both EEG and MEG data is used. Depending on the
application, however, the proposed methods are applied either to the real EEG or
MEG data.



Chapter 3

Single Trial Estimation and Dipole
Source Localization for E/MEG: a

Literature Survey

This chapter is devoted to the literature survey of two major approaches for E/MEG
signal processing. The first approach is single trial estimation and the next is dipole
source localization. In addition, in Section 3.3 mathematical theory of KF and PF,
as the foundations of proposed approaches in the following chapters, are presented.
Throughout this thesis, plain italics indicate scalars, lowercase boldface italics indicate
vectors, uppercase boldface indicates matrices and tiled uppercase boldface indicates

higher order matrices.

16
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3.1 Single Trial Estimation of ERPs

Conventional methods for analyzing ERPs typically involve time-locked averaging
over many trials. The assumption underlying this approach is that the background
EEG as a random process is attenuated by averaging, if the results of averaging is to
be an accurate reflection of the activity elicited on individual trials, the positive- and
negative-going ERP modulations (components) for all the trials must have the same
onset latencies, durations, and amplitudes. Recent studies have indicated that there is
single-trial variability in ERPs due to environmental and cognitive factors that might
include fatigue, habituation, and changes in levels of attention [51]. These factors are
of course not mutually exclusive, but the key point here is that the ST-ERP enables
capturing the changes in the signals of interest due to neurophysiological changes,
which are lost when using conventionally averaged measures. Therefore, researchers
in the signal processing community have proposed a number of mathematical meth-
ods to extract the ERP information as much as possible. The proposed approaches
for detection of ERP parameters (basically amplitude and latency) can generally be
categorized into single- and multi-channel based methods. In the following sections

an overview of major approaches in each category is presented.

3.1.1 Single-Channel Single Trial Estimation

There are numerous studies reporting approaches in the past three decades for ERP
detection and tracking using only one channel. Several of these approaches are cate-

gorized below based on the models used in their estimation.
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The simplest model for the ERP can be

Yk =Sk + Vi (3.1)

where y; and si are the measured EEG and the ERP at the kth trial, respectively,
and vi is the additive noise. If it is assumed that s; remains constant from trial
to trial and the noise v, is Gaussian zero mean, the result of ensemble averaging of
yr over a number of trials is an optimum solution for s, and also can be considered
as the ML estimation. However, in the laboratory environment, vy is generally the
background EEG which is a non-stationary and non-Gaussian noise.

Pioneering studies such as [70] employed a time-invariant linear minimum mean
squared error filter to estimate s, in equation (3.1) based on the auto- and cross-
covariance values of the background EEG (as noise) and ERPs (as signals of interest).
Time-varying [122] and Wiener [13] filtering are the other approaches that have been
widely utilized. The fundamental problem in these methods, however, is obtaining
an estimator for the cross-covariance matrix between the data s; and the noise vy.
Another intensively studied technique for estimation of sy based on equation (3.1)
is adaptive filtering. Most attention has been paid to the use of least mean square
(LMS) algorithm in the filtering problem (e.g. [14] and [106]).

The pitfall of such approaches, however, lies in considering the ERP signal as
a stationary process: ERPs are superpositions of transient responses with changing
temporal and spectral components.

The next model for ERP is

Yi =8(t + 7k) + Vi (3.2)
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Here only the latency 74 is varying and shape of ERPs are constant. Equation (3.2)
is the most utilized model in analyzing ERPs after the model in equation (3.1).

Peak picking [9] is a straightforward method for finding the latency variability
(jitter). This method simply looks for the largest positive peak in the ERP component
time interval in the lowpass filtered trials. The latency of this peak is then considered
to be the single-trial latency.

A well-known approach for ST-ERP estimation based on equation (3.2) has been
proposed by Woody [118]. His approach was to cross correlate a predetermined tem-
plate against a sequence of samples of the response in order to estimate the signal
latency. The individual responses were then corrected for their average latency varia-
tions and an average response computed. The Woody technique results in an average
signal which is obtained by removing the estimated latency variation before aver-
aging. Although this method of analysis represents a significant step forward over
conventional averaging, some information inherent in the signal, such as independent
shifts in latency and amplitude in the components of the individual responses are still
buried in the noise.

Similarly, in [86] the ML estimator of the model in equation (3.2) in the frequency
domain was formulated yielding estimators for latency variability.

In [48] the performances of the above three methods ([9, 118, 86]) as well as an
extension of the latter method were studied. Performance of all methods critically
depended on the signal-to-noise ratio, however, there was some advantage for the
more sophisticated methods (particularly [86] and its extension), when signal-to-noise

ratios were in the realistic range.






















































































































































































































































































































































































































































