Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Molecular basis of biocide resistance and susceptibility in bacteria

Yezli, Saber 2007. Molecular basis of biocide resistance and susceptibility in bacteria. PhD Thesis, Cardiff University.

[img]
Preview
PDF - Accepted Post-Print Version
Download (41MB) | Preview

Abstract

The molecular basis of biocide resistance and susceptibility in Serratia and mycobacteria was investigated using transposon mutagenesis approach. The killing and growth inhibitory effects of four biocides (triclosan, cetylpyridinium chloride, chlorhexidine diacetate and alkaline orf/io-phthalaldehyde) on Serratia marcescens Dbll, Mycobacterium smegmatis mc2155, M. chelonae type strain NCTC 946, M. abscessus type strain ATCC 19977, and Escherichia coli NCTC 1048 were studied using minimal inhibitory concentration determination, biocide killing, and potassium leakage tests. Transposon mutagenesis using a mariner system did not produce any M. smegmatis mc2155 mutants with altered biocide sensitivity. In contrast mutagenesis of S. marcescens Dbll using the mini-Tn5Km2 transposon system led to the isolation of 26 biocide mutants. Increased resistance, susceptibility and mixed biocide phenotypes were observed in the mutants. Alteration in antibiotic susceptibility was also noted. The locations of transposon insertion in all but two of the mutants were determined, and 14 putative genes coding for putative proteins with diverse functions were found to be disrupted. These functions included anabolism and catabolism, gene regulation, cell envelope biosynthesis, porin, energy production, and virulence. Two mutants, one deficient in the outer membrane protein A (OmpA), and another deficient in the nucleoid-associated protein (NdpA), were complemented. Complementation of the ndpA mutant which showed increased resistance to cetylpyridinium chloride and chlorhexidine diacetate, but was sensitive to triclosan, lead to restoration of the wild type phenotype. Complementation of the ompA mutant, which showed multiple sensitivity to chlorhexidine diacetate, triclosan, and or/Zio-phthalaldehyde however, did not restore the wild type phenotype. The cloned ompA gene was shown to be transcribed but not translated in the complemented mutant. In summary, the genetic basis for biocide resistance in S. marcescens Dbll is multi-factorial and encoded by several novel loci worthy of further study.

Item Type: Thesis (PhD)
Status: Unpublished
Schools: Biosciences
Subjects: Q Science > Q Science (General)
ISBN: 9781303213151
Date of First Compliant Deposit: 30 March 2016
Last Modified: 28 Apr 2016 15:17
URI: http://orca-mwe.cf.ac.uk/id/eprint/54713

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics