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ABSTRACT

Machine learning has been studied intensively during the past two decades. One
motivation has been the desire to automate the process of knowledge acquisition during
the construction of expert systems. The recent emergence of data mining as a major
application for machine learning algorithms has led to the need for algorithms that can
handle very large data sets. In real data mining applications, data sets with millions of
training examples, thousands of attributes and hundreds of classes are common.
Designing learning algorithms appropriate for such applications has thus become an

important research problem.

A great deal of research in machine learning has focused on classification learning.
Among the various machine learning approaches developed for classification, rule
induction is of particular interest for data mining because it generates models in the form
of IF-THEN rules which are more expressive and easier for humans to comprehend. One
weakness with rule induction algorithms is that they often scale relatively poorly with
large data sets, especially on noisy data. The work reported in this thesis aims to design
and develop scalable rule induction algorithms that can process large data sets efficiently

while building from them the best possible models.

There are two main approaches for rule induction, represented respectively by CN2 and
the AQ family of algorithms. These approaches vary in the search strategy employed for
examining the space of possible rules, each of which has its own advantages and
disadvantages. The first part of this thesis introduces a new rule induction algorithm for
learning classification rules, which broadly follows the approach of algorithms
represented by CN2. The algorithm presents a new search method which employs several
novel search-space pruning rules and rule-evaluation techniques. This results in a highly

efficient algorithm with improved induction performance.

Real-world data do not only contain nominal attributes but also continuous attributes. The

ability to handle continuously valued data is thus crucial to the success of any general
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purpose learning algorithm. Most current discretisation approaches are developed as pre-
processes for learning algorithms. The second part of this thesis proposes a new approach
which discretises continuous-valued attributes during the learning process. Incorporating
discretisation into the learning process has the advantage of taking into account the bias
inherent in the learning system as well as the interactions between the different attributes.

This in turn leads to improved performance.

Overfitting the training data is a major problem in machine learning, particularly when
noise is present. Overfitting increases learning time and reduces both the accuracy and
the comprehensibility of the generated rules, making learning from large data sets more
difficult. Pruning is a technique widely used for addressing such problems and
consequently forms an essential component of practical learning algorithms. The third
part of this thesis presents three new pruning techniques for rule induction based on the
Minimum Description Length (MDL) principle. The result is an effective learning
algorithm that not only produces an accurate and compact rule set, but also significantly

accelerates the learning process.

RULES-3 Plus is a simple rule induction algorithm developed at the author’s laboratory
which follows a similar approach to the AQ family of algorithms. Despite having been
successfully applied to many learning problems, it has some drawbacks which adversely
affect its performance. The fourth part of this thesis reports on an attempt to overcome
these drawbacks by utilising the ideas presented in the first three parts of the thesis. A
new version of RULES-3 Plus is reported that is a general and efficient algorithm with a

wide range of potential applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent developments in information technology have facilitated the collection and
storage of massive amounts of data. It is no longer practical to rely on traditional manual
data analysis due to the large amount of data involved. To utilise this abundant data
resource effectively, a way of distilling information and knowledge from the data has to

be found. There is a need for effective techniques to refine such data.

Statistics is a powerful tool in data analysis. From a modelling perspective, it mainly
focuses on finding a model to fit the available data. However, this model is usually
determined a priori and comes from a restricted set, e.g. a linear model, or additive
Gaussian model. There are also computational and theoretical difficulties in applying
statistical methods to data having high dimensions and large volumes. Furthermore, it is
not easy for a user to employ statistical modelling techniques without a deep knowledge

of statistics and the underlying domain.

Machine learning helps this work by finding patterns, trends and dependencies hidden in
the data and inducing models that have predictive power. Machine learning techniques
have greatly extended and enhanced traditional statistical data analysis. However, they

also have limitations. First, the volume of data these techniques can handle is usually




small. Second, they concentrate on simulating the reasoning intelligence of human beings
while ignoring important practical issues such as how to prepare the data. Consequently,
the applications of these techniques are generally limited to particular areas, e.g. medical

diagnosis.

The new field of data mining (DM) has attracted research efforts from the domains of
databases, enterprise information systems, statistics, machine learning, artificial
intelligence and pattern recognition with the aim of transferring the rich data possessed
by enterprises into rich knowledge for better decision making. Data mining includes all
the activities involved in finding interesting patterns in data. A clear definition of data

mining is given in (Fayyad et al., 1996a).

“Data mining, which is also referred to as knowledge discovery in databases
(KDD), means a process of nontrivial extraction of implicit, previously unknown
and potentially useful information, such as rules, constraints, regularities from

data in databases”.

The most important step in data mining concerns applying appropriate data mining
algorithms to the prepared data. There are many different kinds of algorithms, such as
those for association rule discovery (Agrawal et al., 1993; Megiddo and Srikant, 1998),
classification learning (Quinlan, 1993; Cohen, 1995; Mehta et al., 1996; Shafer et al.,

1996; Rastogi and Shim, 1998), and clustering (Zhang et al., 1997; Guha et al., 1998).



Classification learning is the most common data mining technique. It employs a set of
pre-categorised examples to develop a model that can classify new examples from the
same population. Classification learning has a wide range of applications, including
scientific experimentation, manufacturing, telecommunications, medical diagnosis, fraud
detection, credit approval and target marketing (Braha, 2001; Monostori, 2002; Pham et
al., 2002; Lavra¢ et al., 2004; Pham and Afify, 2004). Among the techniques developed
for classification leaming, popular ones include inductive learning algorithms such as
decision tree induction and rule induction, instance-based learning, neural networks,
genetic algorithms and Bayesian learning algorithms (Han and kamber, 2001; Witten and
Frank, 2000; Giudici, 2003). Among these techniques, inductive learning techniques are
particularly suited to data mining (Apté and Weiss, 1997; Pham and Afify, 2002). They
are simple and fast. Another advantage is that they generate models that are easy to
understand. Finally, inductive learning classifiers are more accurate compared with other

classification techniques.

Inductive learning algorithms have proven to be valuable, practical tools for
classification, but run into difficulties in their application to large, complex problems.
Most existing algorithms are prohibitively inefficient when it comes to dealing with large
data sets (Aronis and Provost, 1997). One of the defining challenges for the knowledge
discovery and data mining community is to develop inductive learning algorithms that
can scale up to large data sets (Fayyad et al., 1996; Fayyad et al.,, 1996b; Piatetsky-
Shapiro et al., 1996; Mitchell, 1999a; Provost and Kolluri, 1999; Klésgen and Zytkow,

2002). “Scalability” means the ability of an algorithm to process large data sets



efficiently, while building from them the best possible models. However, the existence of
very large data sets is not the only reason for scalability. The most cited reason for
scaling up is that increasing the size of the training set often improves the accuracy of
learned classification models (Catlett, 1991a). Another reason is that scaling up to very
large data sets implies, in part, that fast learning algorithms must be developed. There are,
however, other motivations for fast learning. For example, interactive induction, in which
an inductive learner and a human analyst interact in real time, requires very fast learning
algorithms in order to be practical. Wrapper approaches, which for a particular problem
and algorithm iteratively search for feature subsets or good parameter settings (Provost,
1992; Kohavi, 1995a; Provost and Buchanan, 1995; Kohavi and John, 1997), also require
very fast learning because such systems run the learning algorithms multiple times,
evaluating them under different conditions. Furthermore, each evaluation may involve
multiple runs to produce performance statistics (e.g., using cross-validation). As a final
example, the popular practice of learning multiple models and combining their

predictions also multiplies the execution time.

Different techniques have been proposed and implemented for scaling up inductive
learning algorithms. Several scalable decision tree learning algorithms have been
developed, which are considerably faster than their predecessors (Mehta et al., 1996;
Shafer et al., 1996; Rastogi and Shim, 1998). However, due to its representation of rules
and its strategy for induction, decision tree learning has a number of problems. The first
problem is called the replication problem (Pagallo and Hausseler, 1990). It often happens

that 1dentical subtrees have to be learned at various places in a decision tree. Another



problem is known as the redundancy problem (Cendrowska, 1987). By minimising the
average entropy of a set of instances, a decision tree algorithm, such as ID3, disregards
the fact that some attributes or attribute values may be irrelevant to a particular
classification. Rule induction algorithms, on the other hand, do not suffer from these
problems. They have the advantage that the knowledge of domain experts can be
incorporated into the rule learning process. Also, rule induction algorithms can be
extended naturally to the first-order inductive logic programming framework (Fiirnkranz,
1999). One weakness with rule induction algorithms, however, is that they often scale
relatively poorly with the sample size, particularly on noisy data. Given the prevalence of

large noisy data sets in real-world applications, this problem is of critical importance.

1.2 Research Objectives

The overall aim of this research was to design and develop scalable rule induction
algorithms suitable for data mining applications. These algorithms should be able to
handle large noisy data sets in an efficient and effective way. Moreover, they should be
able to deal properly with both continuous and nominal attributes. Finally, their generated
models should be comprehensible to users without machine learning expertise.
Accordingly, they would be able to achieve good accuracy, compact rule sets and fast
execution times. To achieve the overall aim of the research, the following objectives were
set:

¢ To perform a detailed analysis of existing machine learning techniques for
classification learning, with particular emphasis on inductive learning, and to assess their

appropriateness for data mining applications.



¢ To develop computationally efficient rule induction algorithms that can scale up well

to larger and more complex problems.

¢ To design a fast and effective on-line discretisation method for use in rule induction

algorithms.

¢ To develop new pruning techniques for rule induction algorithms that can significantly

reduce rule-set sizes and execution times, and also improve accuracy.

1.3 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 defines the classification learning problem, presents a framework for viewing
approaches to it, discussing in some detail inductive learning algorithms and briefly
reviews other machine learning approaches. Current trends and recent developments in

machine learning research are also presented.

Chapter 3 presents a new rule induction algorithm which broadly follows the approach of
CN2-like learning algorithms. The proposed algorithm uses advanced search techniques
and rule-space pruning strategies to efficiently explore the exponential rule spaces
involved in many learning problems. These techniques and strategies are detailed and
analysed. A comprehensive empirical evaluation of the algorithm is also reported and

discussed.



Chapter 4 proposes a new method for discretising continuous-valued attributes during the
learning process. The chapter starts with a review of current discretisation approaches in
classification learning and is followed by a detailed description of the new discretisation
method. Finally, the chapter gives the results of experiments carried out to demonstrate

the performance of the proposed method.

Chapter 5 addresses the problem of handling noisy data by developing three novel
pruning techniques that can be used with rule induction systems. These techniques are
built on the theoretically sound Minimum Description Length (MDL) principle. The
chapter first reviews previous work on pruning in the context of inductive learning. The
principles of MDL as used in pruning and a modified coding scheme are then presented.
This 1s followed by a description of the complete pruning techniques. Finally, the

performance results are discussed.

Chapter 6 focuses on the improvement of a simple rule induction algorithm, RULES-3
Plus, based on the results of the last three chapters. RULES-3 Plus, which follows the
approach of AQ-like learning family of algorithms, is extended so that it works faster and
can effectively handle continuous attributes and noisy data. The chapter first gives a brief
description of the RULES-3 Plus algorithm. Then, extensions to the algorithm are

discussed. Finally, details of the various conducted experiments are provided.

Finally, chapter 7 summarises the contributions and conclusions of the thesis and

proposes directions for further research.




Appendix A describes all the data sets used in this work.

Appendix B contains a pseudo-code of the AQ15 algorithm.

Appendix C shows the control procedure of the CN2 algorithm for both ordered and

unordered rules as well as the beam search procedure.



CHAPTER 2

APPROACHES TO CLASSIFICATION LEARNING

2.1 Preliminaries

Artificial intelligence is a subfield of computer science, which is concerned with
designing intelligent computer systems, that is, systems that exhibit the characteristics
associated with intelligence in human behaviour — understanding language, learning,
reasoning, solving problems, and so on. Leamning is clearly one of the hallmarks of
intelligence and the subfield of artificial intelligence concerned with it is called machine
learning. The field of machine learning is concerned with enabling computer programs

automatically to improve their performance at some tasks through experience.

A great deal of research in machine learning has focused on concept learning or
classification learning, that is, the task of inducing the definition of a general category
from specific positive and negative examples of that category. Among the various
machine learning approaches developed for classification, inductive learning from
instances is perhaps the most commonly adopted in real-world application domains.
Inductive learning is the inference of general patterns from data. The study of inductive
learning is mainly motivated by the desire to automate the process of knowledge
acquisition during the construction of expert systems. Inductive learning has gained
attention recently in the context of data mining (DM) and knowledge discovery in

databases (KDD).



This chapter gives an overview of machine learning approaches to classification learning.
The chapter is organised as follows. Section 2 formally defines the classification learning
problem and presents a framework for viewing approaches to it. Section 3 describes in
some detail different techniques for inductive learning. Section 4 briefly reviews other
major machine learning approaches. Current trends and recent developments in machine
learning research are presented in Section 5. Section 6 concludes the chapter with a

summary of some of the key research issues in machine learning.

2.2 The Supervised Classification Learning Problem

In classification learning, a learning algorithm is given a sample of pre-classified
examples from the problem domain called the training set. Each example is described by
a vector of attributes. An attribute is either nominal or continuous. The algorithm learns a

model that is used to predict the class of future examples.

Learning methods can be divided into supervised and unsupervised schemes based on
whether or not a dedicated target function for prediction has been defined. In
unsupervised methods, such a function is not available and the goal is grouping or
clustering instances based on some similarity or distance measure. In supervised learning,
there is either a nominal or continuous-valued target function to be predicted. The former
case is referred to as classification and the latter as regression or continuous prediction. In

this thesis, only methods for supervised classification learning will be addressed.
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If the examples in the training set are presented and used all at once, learning is said to be
batch or off-line. If the examples are presented one at a time, and the concept definition
evolves over time as successive examples are incorporated, learning is said to be

incremental or on-line. This thesis concentrates on batch learning.

The main goal of a classification learning system is to produce a classifier that will assign
previously-unseen examples (i.e., examples not in the training set) to the corresponding
classes with high accuracy. The accuracy of a classifier is defined as the probability that
it will correctly classify a new, unlabelled example. This accuracy can be estimated by

presenting the classifier with unlabelled examples from a test set.

Ideally, given a complete description of an example (i.e., the values of all its attributes),
its class should be unambiguously determined. In practical tasks, however, the available
attributes will often not contain all the information necessary to do this. The training set
may contain examples with the same attribute values but in different classes. Also,
examples may appear with erroneous class values, or with erroneous attribute values, or
both. These errors may stem from a diversity of sources, including limitations of
measuring instruments, and human error while typing examples into a computer. All
these phenomena, referred to collectively as noise, limit the achievable accuracy in an
induction problem. The degree of robustness of a learning system with respect to noise is
one of its most important characteristics. It also occurs often in practice that the values of
certain attributes for certain examples are simply not available. These are called missing

values, and again a practical induction system must be able to handle them.
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2.3 Description of Inductive Learning Algorithms

A classification learning algorithm can be viewed as having three components:
representation, search, and evaluation (Fayyad et al, 1996a). The representation
component is the formal language in which concepts are described; the output of the
learning algorithm is a statement in this language. The search procedure is the process by
which the learning algorithm finds the concept description in the space of possible
descriptions defined by the representation language. The evaluation component takes a
candidate concept description and returns a measure of its quality. This is used to guide
the search, and possibly to decide when to terminate it. Often, different evaluation

procedures are used for these two purposes.

Inductive learning algorithms can be divided into two main categories, namely, decision
tree induction and rule induction. Each of these categories will be analysed in view of the

above three components.

2.3.1 Decision Tree Induction

There are a variety of algorithms for building decision trees. The most popular are:
CART (Breiman et al., 1984), ID3 and its descendants C4.5 and C5.0 (Quinlan, 1983;
1986; 1993; ISL, 1998; RuleQuest, 2001). These learning systems are categorised as
“divide-and-conquer” inductive systems. The knowledge induced by these systems is
represented as decision trees. A decision tree consists of internal nodes and leaf nodes.
Each internal node represents a test on an attribute and each outgoing branch corresponds

to a possible result of this test. For a nominal attribute 4, with n, possible values
1
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Vily Vizye-vs Vijsewnn, V;,,  there are n 4 different branches originating from an internal node.

»Vin,,
For a continuous attribute 4,, a binary test is carried out, and a corresponding branch 4; <
t, is created, with a second branch corresponding to 4, > #;, where ¢; is a threshold in the
domain of A4,. Each leaf node represents a classification to be assigned to an example.

Table 2.1 shows an example data set and Figure 2.1 displays a decision tree constructed

from this data.

To classify a new example, a path from the root of the decision tree to a leaf node is
identified based on values of the attributes of the example. The class at the leaf node

represents the predicted class for that example.

Decision trees are generated from training data in a top-down, general-to-specific
direction. The initial state of a decision tree is the root node that is assigned all the
examples from the training set. If it is the case that all examples belong to the same class,
then no further decisions need to be made to partition the examples, and the solution is
complete. If examples at this node belong to two or more classes, then a test is made at
the node, which will result in a split. The process is recursively repeated for each of the

new intermediate nodes until a completely discriminating tree is obtained.

CART 1is a binary decision tree algorithm that is extensively used. The evaluation
function used for splitting in CART is the Gini index. Given a labelled data set S with
classes, let k classes be C,, C,,...., C; and let P(C, S) be the proportion of instances in S

which are in class C,. Then the index is defined as:
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Vibration | Pressure | Temperature Fault Type
Present 30 65 A
Absent 23 15 B
Absent 40 75 B
Present 55 40 A
Absent 55 100 B
Present 45 60 A
Present 25 55 A
Absent 24 20 B

Table 2.1 An example of a data set.

>35 <=35
<>
Absent  Present <=50 >50
B A B A

Figure 2.1 A decision tree constructed from the data in Table 2.1.
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Gini (S)=1—Zk: P(C,,8)? 2.1)

Jj=1

For each candidate split, the “impurity” (as defined by the Gini index) of all the sub-
partitions is summed and the split that causes the maximum reduction in impurity is

chosen.

ID3 is a well-known decision tree system. It utilises the information gain criterion for
splitting nodes. The information gain is computed from the entropy measure that
characterises the impurity in a collection of training instances as explained below. For a

given data set S, the entropy is defined as:

Entropy (S)=—i P(C,;,S)log, P(C,,S) (2.2)

Jj=1

Let a test T with b outcomes partition the data set S into S, S,,....., S;. Then, the total
entropy of the partitioned data set is defined as the weighted sum of the entropy of the

subsets as described below:

Entropy (S,T)=)_ = Entropy (S,) (2.3)

y

s

1

where |S}| and |S] are the numbers of instances in S; and S respectively.

The information gained by partitioning in accordance with the test 7 is measured by:
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Gain(S,T) = Entropy(S) — Entropy(S,T) 24)

Gain (S,T) is therefore the expected reduction in entropy as a result of partitioning the
data set into mutually exclusive subsets based on test 7. The gain criterion selects a test to

maximise this information.

C4.5, a variant and extension of ID3, is another popular decision tree algorithm. It
employs the gain ratio criterion, because the information gain criterion has a strong bias
in favour of attribute tests with many values. To reduce the bias of the gain criterion, the

split information measure as defined by the following equation is employed:

oo 7y 151 1 (18]
plitinformation(S,T) Z ISI log, ISI (2.5)
i=1

The split information measure can be regarded as the cost of selecting a given attribute as

a test. Notice that it discourages the selection of attributes with many values.
The gain ratio is then given by:

GainRatio(T) = Gain(S,T) (2.6)
SplitInformation(S,T)

The gain ratio computation for a nominal attribute test is relatively straightforward. For

continuous attributes, the d possible values appearing in the subset associated with an
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internal node are sorted. Then, all d-1 possible splits on this continuous attribute are

examined. The one that maximises the gain ratio criterion is selected as a threshold.

A decision tree generated as described above is potentially an over-fitted solution, i.e., it
may have components that are too specific to noise and outliers that may be present in the
training data. To relax this overfitting, C4.5 uses a tree pruning method that tries to
simplify the tree by eliminating subtrees that seem too specific. Pruning is done by
examining each subtree and replacing it with one of its branches or leaf nodes if such a

replacement does not degrade the accuracy of the subtree.

The C4.5 inductive learning system can also transform the generated decision tree to a set
of IF-THEN rules. For the transformation to a rule set, every path from the root of the
unpruned tree to a leaf gives one initial rule, in which the left-hand side is the conjunction
of all attribute-based tests established by the path, and the right-hand side specifies the
class predicted at the leaf. If the path to each leaf node is transformed into a production
rule, the resulting collection of rules would classify examples exactly as the tree and, as a
consequence of their tree origin, the rules would be mutually exclusive and hence their
order would not matter. After producing a rule set from an unpruned tree, C4.5
implements a very complicated multiphase rule pruning procedure. First, each rule is
simplified by deleting some conditions based on the pessimistic-error estimate as adopted
in tree pruning. Second, the set of rules is partitioned into several groups according to the
rule consequent, with one group corresponding to one class. All possible subsets of rules

from each group are then examined and the best subset based upon the Minimum
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Description Length (MDL) principle is selected. In the third stage, all the rule subsets are
ordered, based on their classification error on the training data set. A default rule is then
chosen whose consequent is the class that contains the largest number of training
instances not covered by any rule. The pruning procedure then attempts to reduce the size
of the rule set further by eliminating rules, the removal of which does not cause a

deterioration in the accuracy of training data classification.

2.3.2 Rule Induction

As with decision tree learning, there are many rule induction algorithms. Among them
are AQ (Michalski, 1969; Michalski et al., 1986; Cervone et al., 2001; Michalski and
Kaufman, 2001), CN2 (Clark aﬁd Niblett, 1989; Clark and Boswell, 1991) and RIPPER

(Cohen, 1995) which can all be categorised as “separate-and-conquer” inductive systems.

In contrast to decision tree learning, rule induction directly generates IF-THEN rules.

Each rule can be represented in the following form: Cond, A...A Cond; A...A Condnc —-C,

where the antecedent consists of a conjunction of conditions Cond, Each condition takes
the form [4; = v;] or [#;, < 4; < t;,] depending on the property of the attribute 4,. If 4;1s a
nominal attribute, v; is a valid nominal value that 4, can take. If 4, is a continuous
attribute, #; and ¢, are two thresholds in the domain of attribute 4,. The consequent is the
class to which instances satisfying the antecedent can be assigned. Figure 2.2 displays a

rule set generated from the data set given in Table 2.1.
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If [Pressure > 35] [Vibration = Absent] — B
If [Pressure > 35] [Vibration = Present] —» A
If [Pressure < 35] [Temperature<50] — B

If [Pressure < 35] [Temperature >50] — A

Figure 2.2 A set of rules derived from the data in Table 2.1.
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Rule induction systems produce either an unordered set of IF-THEN rules or an ordered
set of IF-THEN rules, also known as decision lists (Rivest, 1987), both including a
default rule. To classify an instance in the case of ordered rules, the ordered list of rules is
examined to find the first whose antecedent is satisfied by the instance. The predicted
class is then the one nominated by this rule. If no rule antecedent is satisfied, the instance
is predicted to belong to the default class. In the case of unordered rules, it is possible for
some instances to be covered by more than one rule. To classify a new instance in this

case, some conflict resolution approach must be employed.

The general operation of separate-and-conquer rule induction algorithms is the same.
They create the rule set one rule at a time. After a rule is generated, the instances covered
by it are removed from the training data set and the same induction procedure is applied
to the remaining data set until all the instances are covered by at least one rule in the rule

set.

AQ15 (Michalski et al., 1986) is a well-known inductive learning system. It is based on
the AQ algorithm as originally described in (Michalski, 1969) and implements the STAR
method of inductive learning (Michalski and Larson, 1983). A pseudo-code listing of the

AQI15 algorithm is given in appendix B.
In AQ1S, decision rules are represented as expressions in the Variable-valued Logic

System 1 (VLI). VLI is a multiple-valued extension to propositional logic. In VL1, a

selector relates an attribute to an attribute value or disjunct of values using one of the
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relational operators <, <, =, !=, 2, or >. A selector or a conjunction of selectors forms a
complex. A cover is a disjunction of complexes describing all positive instances and none
of the negative instances of the concept. A cover defines the condition part of a
corresponding decision rule. AQ15 is able to implement a form of constructive induction

as well. An example of a decision rule with an internal disjunct is:

[Outlook = sunny v cloudy] A [Temperature > 60] v [Wind = true] A [Temperature

>70] — class [Nice]

When building a complex, AQ15 performs the general-to-specific beam search technique
to find the best complex. The algorithm considers specialisations that exclude some
particular covered negative instances from the complex, while ensuring some particular
“seed” positive instances remain covered, iterating until all negative instances are
excluded. As a result, AQ1S5 searches only the space of complexes that are completely
consistent with the data. Seeds are selected at random and negative examples are chosen
according to their distance from the seed (the nearest ones are picked first, where distance

is the number of attributes with different values in the seed and negative instances).

The AQI15 system can generate unordered and ordered rules. In the case of unordered
rules, a new instance is classified by finding which of the induced rules have their
complexes satisfied by the instance. If the instance satisfies only one rule, then the class
predicted by that rule is assigned to the instance. If the instance satisfies more than one

rule, a heuristic called Estimate of Probability (EP) is used to predict its class. With this
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method, each rule is weighted by the proportion of learning instances covered by it. The
weights of rules of the same class are probabilistically combined to form a weight for the
entire class and the class with the highest weight is taken as the predicted class of the test
example. If the instance is not covered by any rule, a heuristic called Measure of Fit (MF)
is used. In this case the instance belongs to a part of the decision space that is not covered
by any decision rule. The measure of best fit of a class can be interpreted as a
combination of “closeness” of the instances to a class and an estimate of the prior

probability of the class.

The AQI1S5 algorithm uses a post-pruning technique to remove redundant conditions from
the body of a rule and to remove unnecessary rules from the rule set. Simplification
generally leads to smaller, more accurate rule sets. This framework was later generalised
in the POSEIDON system (Bergadano et al., 1992). POSEIDON can simplify a complete
and consistent concept description, which has been induced by the AQ15 algorithm, by
removing conditions and rules, and by contracting and extending intervals and internal
disjunctions. POSEIDON successively applies the operator that results in the highest

coverage gain as long as the resulting rule set increases some quality criterion.

CN2 is a rule induction algorithm that incorporates ideas from both ID3 and AQ. The
representation of decision rules in CN2 is very similar to that of AQ15 and can be viewed
as a subset of VL1. The inductive learning system CN2 was developed by Clark and
Niblett (1987; 1989) and later modified by Clark and Boswell (1991). The objective

behind the design of CN2 was to modify the AQ algorithm by retaining its beam search
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through the space of complexes, but removing its dependency on specific training
instances during search. While the AQ algorithm searches only the space of complexes
that are completely consistent with the training data, CN2 extends its search space to
rules that do not perform perfectly on the training data by broadening the specialisation
process to examine all specialisations of a complex, in much the same way as ID3
considers all attribute tests when growing a node in a tree. A cut-off method similar to
decision tree pruning is applied to halt specialisation when no further specialisations are
statistically significant. The modified version of CN2 produces either an ordered set of
IF-THEN rules like the original CN2 version or an unordered set of IF-THEN rules. The
control procedure of the CN2 algorithm for both ordered and unordered rules as well as

the beam search procedure are given in appendix C.

The CN2 algorithm consists of two main procedures: a search algorithm performing a
beam search for a good rule and a control algorithm for repeatedly executing the search.
The control procedure of the CN2 algorithm for ordered rules iteratively calls the beam
search procedure to find the best complex, until no better complexes are found. It then
appends a rule to the rule set with this best complex as the condition and the most
common class among the instances covered by this complex as the prediction. The
instances covered by a rule are removed from the training set. The last rule in the rule list
is a default rule predicting the most common class among the training examples not
covered. The beam search procedure to find the best complex corresponds to the STAR
procedure of the AQ algorithm. The pruned general-to-specific search retains a size-

limited set or star of “best complexes found so far”. The system examines only
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specialisations of this set, carrying out a beam search for the space of complexes. A
complex is specialised by either adding a new selector to the conjunction or by removing

a disjunctive element in one of its selectors.

The CN2 algorithm can be easily modified to generate an unordered rule set by changing
only the control procedure, leaving the beam search procedure unaltered (apart from the
evaluation function, described below). The main modification to the algorithm 1is to
iterate the search for each class in turn, removing only covered instances of the current
class where a rule has been found. Unlike the case for ordered rules, the negative
instances remain because now each rule must independently stand against all negatives.
The covered positives must be removed to stop CN2 from repeatedly finding the same

rule.

The CN2 algorithm employs two types of heuristics in the search for the best complexes,
goodness and significance. Goodness is a measure of the quality of the complex that is
used for ordering complexes that are candidates for inclusion in the final cover. Like ID3,
the original CN2 version used the information-theoretic entropy measure to evaluate the
quality of the complex (the lower the entropy, the better the complex). This function
prefers complexes covering a large number of instances of a single class and few
examples of other classes, but it tends to select very specific rules covering only a few
training instances. The modified version of CN2 employs the Laplacian error estimate
instead. The expected accuracy, one minus the expected Laplacian error estimate, is

given by:
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where k is the number of classes, M 1ass is the number of positive instances covered by

the rule and o is the number of instances covered by the rule. This formula is a

ered
special case of the m-probability-estimate developed in (Cestnik, 1990). This estimate
avoids the downward bias of the entropy measure of favouring very specific complexes

in the general-to-specific search operation.

The second evaluation function fests whether a complex is statistically significant, 1.e.
whether it locates a regularity that is unlikely to have occurred by chance and thus
reflects a genuine correlation between attribute values and classes in the training data. To

test significance, CN2 uses the likelihood ratio statistic (Kalbfleish, 1979). This is given

by:

LikelihoodRatio(F,E)=2-)_ f, .1og£ (2.8)
i=] ei

where the distribution F = (f,, f5,...... , 1) is the observed frequency distribution of

instances among classes satisfying a given complex and £ = (e, e,,...... , e,) is the

expected frequency distribution of the same number of instances under the assumption
that the complex selects instances randomly from the training set. Thus the two functions,
the Laplacian error estimate and statistical significance serve to determine whether

complexes found during the search are both “good” (have high accuracy when predicting
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the majority class covered) and “reliable” (the high accuracy on the training data is not

just due to chance).

CN2 performs another check that can be viewed as a form of pre-pruning. It checks
whether the Laplace estimate of the best complex is greater than that of the default rule
predicting the class with the largest number of training instances. If this is not the case,
then the new complex does not contribute any new information and the generation of

complexes for the current class is terminated.

To apply unordered rules to classify a new instance, all rules are tried and those whose
conditions are all satisfied are collected. If a clash occurs, i.e., more than one class is
predicted by the collected rules, a probabilistic method is employed to resolve the clash.
Each rule is tagged with the distribution of covered instances among classes and these

distributions are summed to find the most probable class.

RULES (RULe Extraction System) is a set of inductive learning algorithms that follow a
similar approach to the AQ family. The first three algorithms in the RULES family of
algorithms (RULES-1, 2 and 3) were developed by Pham and Aksoy (1993; 1995a;
1995b). Later, Pham and Dimov (1997a) introduced a new algorithm called RULES-3
Plus. Compared to its immediate predecessor RULES-3, RULES-3 Plus has two new
strong features. First, it employs a more efficient search procedure instead of the
exhaustive search conducted in RULES-3. Second, it incorporates a metric for selecting

and sorting candidate rules according to their generality and accuracy. RULES-3 does not

26



employ any measure for assessing the information content of rules. The first incremental
learning algorithm in the RULES family was RULES-4 (Pham and Dimov, 1997b). It
allows the stored knowledge to be updated and refined rapidly when new examples are
available. RULES-4 employs a Short Term Memory (STM) to store training examples
when they become available. The STM has a user-specified size. When the STM is full,
the RULES-3 Plus algorithm is used to generate rules. In order to increase the efficiency
of the RULES family of algorithms, Pham et al. (2000) used a simple clustering
technique to select a good set of training examples that were representative of the overall
data set. The method was tested on different problems. The results showed that when the
algorithm was applied to clustered data sets, the execution time was reduced, as well as
the size of the generated rule sets. Pham et al. (2003) described a new algorithm, called
RULES-5, which overcomes some of the deficiencies of the RULES family. In particular,
RULES-5 employs a new method for handling continuous attributes and uses a simple
and more efficient search method. The test results obtained with RULES-5 showed that
the rule sets extracted were more accurate and compact than those obtained using its
immediate predecessor RULES-3 Plus. One of the main weaknesses of the RULES-5
algorithm is its inability to handle noisy data. Pham et al. (2004) proposed a new pruning
technique that improved significantly the performance of the RULES-S algorithm on data

sets containing noisy examples.
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2.4 Other Machine Learning Approaches to Classification Learning

Besides decision trees and rule induction, several other approaches to classification
learning exist. This section will briefly review some of the main alternatives: instance-

based learning, neural networks, genetic algorithms and Bayesian methods.

2.4.1 Instance-based Learning

Instance-based learning is based upon the idea of letting the examples themselves form
an implicit representation of the target concept (Aha et al., 1991; Aha, 1997). In contrast
to learning methods that construct a general, explicit description of the target concept
when training instances are provided, instance-based learning methods, such as those
using nearest-neighbour methods, simply store the training instances. Generalising
beyond these instances is postponed until a new instance must be classified. Because of
this, instance-based methods are sometimes referred to as “lazy” learning methods. A test
instance is classified by finding the nearest stored instance according to some similarity
function, and assigning the class of the latter to the former. Advantages of instance-based
methods include the ability to model complex target concepts and the fact that
information present in the training instances is never lost (because the instances
themselves are stored explicitly). One disadvantage of instance-based approaches is that
the cost of classifying new instances can be high. This is because nearly all the
computation takes place at classification time rather than when the training instances are
first encountered. Therefore, techniques for efficiently indexing training instances are a
significant practical issue in reducing the computation required at classification time. A

second disadvantage of many instance-based approaches, especially nearest-neighbour
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methods, is that they typically consider all attributes of the instances when attempting to
retrieve similar training instances from the memory. If the target concept depends on only
a few of the many available attributes, then the instances that are really most “similar”

may be a long distance apart.

2.4.2 Neural Networks

Neural networks provide a general practical method for learning real-valued and discrete-
valued target concepts in a way that is robust to noise in the training data (Haykin, 1994;
Michie et al., 1994; Chauvin and Rumelhart, 1995; Hassoun, 1995; Mitchell, 1997; Pham
and Liu, 1999). Neural network learning is well-suited to problems in which the training
data corresponds to noisy and complex sensor data, such as inputs from cameras and
microphones. The backpropagation algorithm is a common learning method adopted for
multi-layer perceptrons, the most popular type of neural networks. Neural networks have
been successfully applied to a variety of learning tasks, such as setting the number of
kanbans in a dynamic just-in-time (JIT) factory (Wray et al., 1997; Markham et al,,
2000), modelling and controlling dynamic systems including robot arms (Pham and Liu,
1999), identifying arbitrary geometric and manufacturing categories in CAD databases
(Ip et al., 2003) and minimising the makespan in a flow shop scheduling problem (Akyol,
2004). One of the chief advantages of neural networks is their wide applicability,
however, they also have two particular drawbacks. The first is the difficulty in
understanding the models they produce. The second is the often time-consuming training.

Recent years have seen much research in developing new neural network methods that
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effectively address these comprehensibility and speed issues (Towell and Shavlik, 1993;

Craven and Shavlik, 1997; Zhou et al., 2000; Jiang et al., 2002; Duch et al., 2004).

2.4.3 Genetic Algorithms

Genetic algorithms provide a learning method motivated by analogy with biological
evolution (Holland, 1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1996, Mitchell,
1996; Liu and Kwok, 2000; Pham and Karaboga, 2000; Freitas, 2002). Rules may be
represented by bit strings whose particular interpretation depends on the application. The
search for an appropriate rule begins with a population, or collection, of initial rules.
Members of the current population give rise to the next-generation population by means
of operations such as random mutation and crossover. At each step, the rules in the
current population are evaluated relative to a given measure of fitness, with the fittest
rules selected probabilistically as seeds for producing the next generation. The process
performs generate-and-test beam-search of the rules, in which variants of the best current
rules are most likely to be considered next. Genetic algorithms have been applied
successfully to a variety of learning tasks and to other optimisation problems. For
example, they have been used to form manufacturing cells and to determine machine
layout information for cellular manufacturing (Wu et al., 2002), to optimise the topology
and learning parameters for neural networks (Oztiirk and Oztiirk, 2004) and to solve job-
shop scheduling problems (Chryssolouris and Subramaniam, 2001; Pérez et al., 2003).
Genetic algorithms have a potentially greater ability to avoid local minima than is
possible with the simple greedy search employed by most learning techniques. On the

other hand, they have a high computational cost.
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2.4.4 Bayesian Approaches

Bayesian approaches employ probabilistic concept representations, and range from a
simple Bayesian classifier (Domingos and Pazzani, 1996) to Bayesian networks, which
learn the full joint probability distributions of the attributes and class, as opposed to just
the class description (Heckerman, 1996). Bayesian networks provide a natural platform
for combining domain knowledge and empirical learning. However, inference in
Bayesian networks can have a high time complexity, and as tools for classification
learning, they are not yet as mature or well-tested as other approaches. More generally, as
Buntine (1991) notes, the Bayesian paradigm extends beyond any single representation

and forms a framework in which many learning tasks can be usefully studied.

2.5 Current Trends in Machine Learning Research

Machine learning research has been making significant progress in many directions. This
section examines two of the most important directions and discusses some current
problems. The two directions are scaling up of machine learning algorithms and learning

multiple models.

2.5.1 Scaling up Machine Learning Algorithms

The first major research area concerns techniques for scaling up machine learning
algorithms so that they can process very large data sets efficiently, while building from
them the best possible models. The recent emergence of data mining as a major
application of machine learning algorithms has underlined the need for algorithms to be

able to handle large data sets that are currently beyond their scope. In data mining
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applications, data sets with millions of training examples, thousands of attributes and
hundreds of classes are common. Fayyad et al. (1996a) cited several representative
examples of databases containing many gigabytes (even terabytes) of data. Designing
learning algorithms appropriate for such applications has thus become an important

research problem.

Many approaches have been proposed and implemented for scaling up machine learning
algorithms (Dash and Liu, 1997; Fiirnkranz, 1998; Liu and Setiono, 1998; Moore and
Lee, 1998; Zaki, 1998; Opitz, 1999; Ye and Li, 2002; Blockeel and Sebag, 2003). The
most straightforward approach is to produce more efficient algorithms or increase the
efficiency of the existing algorithms. This approach includes a wide variety of algorithm
design techniques for optimising the search and representation, for finding approximate
instead of exact solutions, or for taking advantage of the inherent parallelism of the task.
A second approach is to partition the data, avoiding the need to run algorithms on very
large data sets. This approach involves breaking the data set up into subsets, learning
from one or more of the subsets, and possibly combining the results. Data partitioning is
useful to avoid memory management problems that occur when algorithms try to process
huge data sets in main memory. An approach orthogonal to the selection of example

subsets is to select subsets of relevant features upon which to focus attention.

In order to provide focus and specific details, the application of inductive learning

techniques to very large data sets is now reviewed; the issues and techniques discussed

generalise to other types of machine learning.
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Decision tree algorithms have been improved to handle large data sets efficiently and
several new algorithms have been proposed. Catlett (1991a; 1991b) proposed two
methods for improving the time taken to develop a classifier. The first method used data
sampling at each node of the decision tree, and the second method discretised continuous
attributes. These methods decrease classification time significantly but also reduce the
classification accuracy. Moreover, Catlett only considered data sets that could fit in the
main computer memory. Methods for partitioning the data set such that each subset fits in
main memory were considered in (Chan and Stolfo, 1993; 1997; Zhang and Wu, 2001).
Although these methods enable classification of large data sets, studies show that the
quality of the resulting decision tree is worse than that of a classifier that was constructed
by using the complete data set at once. Incremental learning methods, where the data are
classified in batches, have also been studied (Wu and Lo, 1998). However, the
cumulative cost of classifying data incrementally can sometimes exceed the cost of
classifying the entire training set once. The decision tree classifier in (Mehta et al., 1996),
called SLIQ, utilised the novel techniques of pre-sorting, breadth-first growth, and MDL-
based pruning to improve learning time for the classifier without loss of accuracy. At the
same time, these techniques allowed classification to be performed on large amounts of
disk-resident training data. However, due to the use of a memory-resident data structure
that scales with the size of the training set, SLIQ has an upper limit on the number of
examples it can process. Shafer et al. (1996) presented a classification algorithm called
SPRINT that removes all memory restrictions that limit existing decision tree algorithms,
and yet exhibits the same excellent behaviour as SLIQ. SPRINT efficiently allows

classification of virtually any sized data set. Also, the algorithm can be easily and
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efficiently parallelised. However, SPRINT has been criticised for several reasons. For
example, it utilises data structures called attribute lists that can be costly to maintain,
including a potential tripling of the size of the data set and an associated significant
increase in scan cost (Graefe et al., 1998). Like C4.5, both SLIQ and SPRINT are two-
stage algorithms which include building and pruning phases. Generating the decision tree
in two distinct phases could result in a substantial amount of wasted effort since an entire
subtree constructed in the first phase may later be pruned in the next phase. PUBLIC
(Rastogi and Shim, 1998) is a decision tree classifier that tightly integrates the pruning
phase into the building phase instead of performing them one after the other. Its tree-
growing phase is the same as that of SPRINT except that it uses entropy instead of the
Gini index. However, when a leaf node is generated, PUBLIC can immediately decide
whether there is a need to split it further by estimating a lower bound on the cost of
coding the subtree rooted at this leaf node. The integrated approach of PUBLIC can result
in substantial performance improvements compared to traditional classifiers such as
SPRINT. In recent work, Gehrke et al. (1998) proposed Rainforest, a framework for
developing fast and effective algorithms for constructing decision trees that gracefully
adapt to the amount of main memory available. Finally, Morimoto et al. (1998)
developed algorithms for decision tree construction for categorical attributes with large

domains. The emphasis of this work was to improve the quality of the resulting tree.

As with decision tree learning, there are a number of rule induction algorithms that can

scale up to large data sets. /JREP (Furnkranz and Widmer, 1994) is a rule learning

algorithm that can efficiently handle large sets of noisy data. The main reason for its

34



efficiency is the use of a technique called incremental reduced error pruning, which
prunes each rule immediately after it has been induced, rather than after all rules have
been generated. This speeds up the induction process as the pruned rules allow larger
subsets of the remaining positive instances to be removed at each iteration compared to
the non-pruned rules. Unfortunately, the accuracy of the class descriptions learned by
IREP is often lower than the accuracy of those learned with the C4.5rules algorithm
(Quinlan, 1993), a rule-inducing variant of C4.5. Cohen (1995) detailed several
modifications to improve the accuracy of IREP, including a different rule-evaluation
criterion, a different stopping criterion and a post-processing optimisation operation,
producing an algorithm called RIPPER. He showed that RIPPER is competitive with
C4.5rules in terms of error rates and that it maintains the efficiency of IREP. RIPPER
supports missing attributes, continuous variables and multiple classes. This makes it

applicable to a wider range of benchmark problems.

2.5.2 Learning Multiple Models

The second active research area concerns a particular method for improving accuracy in
supervised learning. The term multiple models or ensemble of classifiers is used to
identify a set of classifiers whose individual decisions are combined in some way
(typically by voting) to classify new examples (Dietterich, 1997). Ensembles have been
found to be more accurate than the individual classifiers that make them up (Pham and
Oztemel, 1996; Bauer and Kohavi, 1999; Dietterich, 2000; Fern and Givan, 2003;
Kuncheva and Whitaker, 2003), and also have substantial theoretical foundations

(Friedman, 1996; Madigan et al., 1996; Schapire et al., 1997; Schapire, 1999). An
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ensemble can be more accurate than any of its component classifiers only if the
individual classifiers are “accurate” and “diverse” (Hansen and Salamon, 1990). An
accurate classifier is one that performs at least better than random guessing. Two
classifiers are diverse if they make different errors on new data points. The reason why
ensembles improve performance can be intuitively explained in that taking a majority

vote of several hypotheses reduces the random variability of individual hypotheses.

Several methods have been proposed for generating multiple classifiers using the same
learning algorithm. Most of them manipulate the training set to generate multiple
hypotheses. The learning algorithm runs several times, each time using a different
distribution of the training instances. This technique works especially well for unstable
learning algorithms — algorithms whose output classifier undergoes major changes in

response to small changes in the training data.

Breiman (1996a) described a technique called bagging that manipulates the training data
to generate different classifiers. Bagging produces a replication of the training set by
sampling with replacement from the training instances. Each replication of the training
set has the same size as the original data. Some examples do not appear at all while others
may appear more than once. Such a training set is called a bootstrap replicate of the
original training set, and the technique is called bootstrap aggregating (from which the
term bagging is derived). From each replication of the training set a classifier is
generated. All classifiers are used to classify each instance in the test set, usually using a

uniform voting scheme where each component classifier has the same vote. Bagging
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