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Abstract

The development of the connectivity of the primary visual cortex depends upon
an interplay of genetic factors, and environmental factors such as visual
experience. In the studies which follow | have investigated the molecular
mechanisms by which visual experience alters the connectivity at synapses
between the neurons which constitute the visual system. In vitro studies of
synaptic plasticity have yielded a deep understanding of ways in which neurons
could alter their connectivity, but less is known about whether these mechanisms
are utilised in vivo and by which brain regions. Broadly speaking, the following
studies examine plasticity processes in vivo, in both the developing and adult
visual cortex of mice which are known to have deficits in plasticity measured in
vitro and ex vivo. Plasticity was assessed by monocular eye closure which is
known to induce both a loss of cortical responsiveness to the closed eye (after 3
days) and a more gradual gain in cortical responsiveness to the open eye (after 6

days). This process is known as ocular dominance plasticity.

Ocular dominance plasticity was assessed in juvenile mice lacking the GIuR1
AMPAR (alpha-amino-3-hyroxy-5-methylisoxazole-4 propionic acid receptor)
subunit which results in long term potentiation and long term depression deficits
in the hippocampus and somatosensory cortex. In mice lacking GluR1, intrinsic
signal responses were observed to be basally depressed and retinotopic map

organisation appeared to be defective, although ocular dominance was observed



to basally normal. After 3d of monocular experience plasticity deficits were
observed in GIluR1 knockout mice in the monocular cortex and in binocular
cortical layer 4, while plasticity appeared normal in more superficial binocular
cortex. After 6d monocular experience, open eye potentiation was absent in

mice lacking GluR1.

Ocular dominance plasticity was also assessed in adult mice lacking GIuR1.
Ocular dominance plasticity after 6d monocular experience was observed to be
normal in GIuR1™ mice as was adult recovery from monocular experience.
Facilitation of OD plasticity after short monocular experience (3d) due to prior

experience was however impaired in mice lacking GluR1.

A penetrant strain difference was observed in juvenile ocular dominance
plasticity between two C57BL/6J sub strains of mice (C57BL/6J and
C57BL/6J0laHsd) whereby open eye ‘homeostatic’ potentiation was completely
absent in the C57BL/6JOlaHsd strain. This was accompanied by a complete
lack of dark exposure induced synaptic scaling as measured ex vivo. In contrast
in adulthood both strains showed robust and comparable open eye potentiation,
suggesting a mechanistic difference between juvenile and adult plasticity.
Preliminary data suggests that while juvenile open eye potentiation is
homeostatic, in adulthood it may be more of an LTP like process as it appears to

be dependent upon CaMKIl autophosphorylation.
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Chapter 1. Introduction



1.1 Introduction

The consistency of the morphology of biological organisms is in large part
genetically determined. The enormity of this feat of organisation is particularly
apparent during brain development when, in the case of humans, tens of billions
of neurons are organised into prototypical circuits made up of trillions of synaptic
connections. These circuits once developed form the substrate for all cognitive
functions. However the fine scale connectivity of many brain circuits can not be
accounted for by genetic factors alone and depends upon an interplay of genetic
and environmental factors. A much studied example is the primary visual cortex
where structured input from the environment relayed via sensory organs is critical

to the development of normal connectivity (Katz & Shatz, 1996).

1.2 Cortical map development

There are many problems with trying to understand the role that experience plays
in formation of a highly complex brain circuit such as that which produces
language. One hurdle is that the brain activity associated with complex cognitive
processes is widely distributed in the brain and consequently difficult to measure
directly. Early stages of sensory systems in contrast are in many respects more
amenable to measurement and are guided in their development by environmental
factors which are more readily manipulable. The development of the sensory

systems which constitute the early stages of sensory processing has been



explored as model systems in order to understand how genetic products and the

environment interact to shape brain circuits.

Early sensory circuits possess some key features which make studying their
development a relatively tractable problem. The spatial layout of sensory
processing areas often reflects features of the structure of the stimuli being
sensed and of the sensory organs. For example the rodent somatosensory
cortex contains histologically identifiable ‘barmrels’, each of which contain neurons
which respond preferentially to a single whisker. These barrels are laid out with
the same topology as the vibrissae on the animals snout (Woolsey & Van der
Loos, 1970). Similardy in the auditory cortex there exists a ‘tonotopic’ map
whereby neighbouring sound frequencies activate neighbouring cortical regions
(Nelken et al., 2004; Kalatsky et al., 2005) (Figure 1.1B). In visual processing
areas ‘retinotopy’ is present in many structures, whereby activity in neighbouring
retinal cells leads to activation of neighbouring cortical neurons (Allman & Kaas,
1971; Kalatsky & Stryker, 2003) (Figure 1.1A). Another advantage of studying
circuit development in sensory systems is that the environmental factors which

play a part in development are relatively easily experimentally manipulated.

A pivotal epoch in the development of understanding of the importance of
environment in brain circuit and particularly sensory brain circuit development
began in 1963 with a series of Nobel prize winning studies by Torsten Wiesel and
David Hubel exploring the effects of sensory experience manipulation on the

development of the cat visual system. This work compared the previously
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established characteristics of normal cat visual cortex cell receptive fields (Hubel
& Wiesel, 1959) with those of cats reared with abnormal visual experience. In
the visual cortex of primates and many mammalian carnivores (for example cats
and ferrets) the retinally innervated lateral geniculate nucleus is normally
comprised of well segregated eye specific layers which project to the cortex. In
the cortex, projecting LGN axons form approximate eye specific patches in
cortical layer 4 that are thought not to be experience dependent (Crowley & Katz,
2000), although this remains a controversial finding (Wickelgren, 2000). The eye
specificity of these patches is refined in an experience dependent manner and
they form the template for further projections upwards into the cortex which make

up eye specific cortical columns.

In 1963 Wiesel and Hubel published work exploring the characteristics of cat
binocular visual cortical neurons (i.e. neurons that normally receive correlated
input from both éyes), which had been deprived of input from the contralateral
eye (known as monocular deprivation) during the critical period (Wiesel & Hubel,
1963). This resulted in a behaviourally assayable blindness in this eye (Dews &
Wiesel, 1970), the cause of which was electrophysiologically determined to be a
loss of responsiveness of cortical neurons to the deprived eye (Wiesel & Hubel,
1963). A further study of binocular deprivation (Wiesel & Hubel, 1965)
demonstrated that this effect of reduced response of the deprived eye was
largely dependent upon normal input from the open eye as depriving both eyes
did not result in the same dramatic loss of eye driven activity. A further study

provided evidence that the development of normal binocular cells that were
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driven by both eyes was dependent upon correct alignment of the eyes (Hubel &

Wiesel, 1965).

1.3 The mouse visual system

As the most thoroughly genetically characterised and manipulable mammalian
species, the mouse has emerged as the subject of intense study of cortical map
development and the molecular means by which the environment influences

circuit formation. | will now provide an overview of the mouse visual system.

1.3.1 The eye and the retina

The mouse eye has an axial length of approximately 3mm and is characterised
by a relatively large cornea and lens (Chalupa & Williams, 2008). As is typical of
animals adapted to live in low light conditions the retina of the mouse is
dominated by rod photoreceptors which make up 97% of the photoreceptive cells
(Chalupa & Williams, 2008) and are present at a peak density of 100,000
cellss/mm?. In contrast retinal cones are present at a peak density of 16,000
cellss/mm?.  Similar to other non-primate mammals the mouse does not
possesses a pitted cone filled foveal region of the retina but instead possesses
an area centralis within which both rod and cone photoreceptor density is
maximum (Chalupa & Williams, 2008). In the mouse the peak wavelength
sensitivity of rod cells is 497 — 500 nm while the peak sensitivity of cone cells
depends upon the relative quantity of expression of two photoreceptors: one with

a UV peak sensitivity of 360 nm and another with a peak sensitivity of 508 nm



(Chalupa & Williams, 2008). Rod photoreceptor cells relay light signals via rod
bipolar cells on to horizontal amacrine interneurons which in turn ‘piggyback’ onto
the cone ON and OFF bipolar cell pathway. Signals are then relayed on to retinal
ganglion cells (RGCs). Cone photoreceptors in contrast relay light signals via
cone bipolar cells directly to RGCs. Bipolar cell's dendritic neurotransmitter
receptor response to photoreceptor released glutamate determines whether they

are photoreceptor ON or OFF sensitive.

The photoreceptors in the mouse retina converge onto approximately 48,000 —
65,000 RGCs (Drager & Olsen, 1980) with a peak density of 8,000 cells/mm?
(Drager & Olsen, 1981). In the mouse RGCs have receptive field sizes of
around 2-10° in diameter which are functionally similar to those observed in other
mammals in the sense of possessing an antagonistic centre surround
configuration and exhibiting a varying degree of direction selectivity (Chalupa &
Williams, 2008). In the mouse 2-3% of RGCs project ipsilaterally (Drager &
Olsen, 1980) and provide input to the binocular region of the cortical retinotopic

map and correspond to the central 30-40° of visual space.

1.3.2 The dorsal lateral geniculate nucleus (dLGN)

In the mouse the dLGN receives direct retinal input from RGCs and relays visual
information to the primary visual cortex. The mouse dLGN is organised
retinotopically and while it does not contain eye specific laminae as have been
observed in primates and carnivores, there is a binocular segment which

contains both contralateral and ipsilateral eye responsive relay cells. Of the

7



binocular visual space inputs there is a difference in degree of convergence
between contralateral and ipsilateral RGC afferents onto dLGN recipient relay
cells. Specifically while a point in binocular visual space will stimulate around 9
times as many contralateral as ipsilateral RGCs, the volume of the binocular
dLGN occupied by contralateral RGC afferents is just 2.4 times the volume
occupied by ipsilateral afferents (Coleman et al., 2009), which is approximately
the degree of contralateral dominance observed in the binocular cortex (Gordon
& Stryker, 1996; Frenkel & Bear, 2004a; Cang et al., 2005). The typical spatial
acuity of dLGN cells has been observed to be around 0.03 c/deg with a maximum
value of around 0.5c/deg (Grubb & Thompson, 2003) which is consistent with
cortical electrophysiological and functional imaging assessments which have
been made of mouse visual acuity cut-off (Porciatti et al., 1999; Heimel et al.,
2007). The dLGN relay cells transmit visual information to the cortex via their

axons which make up the optic radiation.

1.3.3 The visual cortical areas

In the posterior region of the occipital neocortex there are a number of
retinotopically organised areas which receive either direct thalamic visual input or
receive projections from within the primary visual cortex. The primary visual
cortex (V1) is one of the most studied of the visual cortical areas in the mouse
and is constituted of cytoarchitectonic area 17. V1 is approximately 3mm? in
area and contains a retinotopically organised map of the contralateral visual field.
In this map more medial areas correspond to the more horizontally peripheral

visual field while more posterior areas correspond to the more vertically elevated
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areas of the visual field (Drager, 1975; Gordon & Stryker, 1996; Kalatsky &
Stryker, 2003). V1 primarily receives input from the dLGN via the axons of dLGN
relay cells which form a projection known as the optic radiation, which for the
most part makes excitatory synapses onto the dendrites of layer 4 stellate cells.
There is also a substantial degree of direct thalamocortical input to layer 3 (Liu et
al., 2008). In addition the mouse cortex receives callosal projections from the
contralateral cortex via the commisural fibres which terminate mostly in layers 1-3
and 5 and in retinotopic terms into the lateral, most binocular regions of the V1
cortical map (Mizuno et al,, 2007; Restani et al., 2009). These transcallosal
projections are thought to be partially explanative of the high degree of
binocularity in mouse cortex in the absence of a large number of ipsilateral RGCs

innervating the dLGN (although see Coleman et al., 2009).

1.3.4 Receptive field properties of mouse visual cortical cells

The visual cortical neurons of mouse V1 possess many of the receptive field
properties observed in other mammals such as spatial frequency and orientation
selectivity and simple vs. complex receptive fields (Drager, 1975; Niell & Stryker,

2008; Kerin et al., 2010).

Single unit studies have assessed the maximum spatial frequency preference of
excitatory V1 neurons in the mouse to be approximately 0.3c/deg with the vast
majority of neurons exhibiting tuning in the range of 0.01 to 0.08c/deg (Niell &
Stryker, 2008), see Figure 1.6A. This is broadly consistent with observations of

spatial frequency tuning in the dLGN (Grubb & Thompson, 2003). The spatial
9
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frequency cut off has been determined to be approximately 0.5-0.6c/deg (Grubb
& Thompson, 2003; Prusky & Douglas, 2003; Heimel et al., 2007). Amongst
excitatory cells spatial frequency tuning is similar between cortical layers with the
exception of layer 6 where population mean spatial frequency tuning is around
0.02c/deg (Figure 1.6). The bandwidth of spatial frequency tuning is also
comparable across most cortical layers with a typical mean spatial frequency
tuning width of approximately 2.5 octaves; the exception is cortical layer 5 in
which a mean tuning width of closer to 3.5 has been observed (Niell & Stryker,

2008).

Poor orientation selectivity was initially reported in the mouse (Drager, 1975),
however more recent studies have described experiments in which 74% of
excitatory visually responsive cells are orientation selective (Niell & Stryker,
2008). Cells are most orientation selective in layer 2/3 of the mouse visual cortex
with a median tuning half-width at half maximal response of 20 degrees reported
by Niell & Stryker (2008) which is comparable to the 19-25 degrees reported in

the cat (Van Hooser, 2007).

Electrophysiological analysis of putative inhibitory neurons (putative because
they have been identified by spike waveform) and calcium imaging of genetically
and immunologically identified classes of inhibitory cells suggests that throughout
the visual cortex GABAergic neurons are tuned to lower spatial frequencies (on
average 0.02c/deg). Additionally there is evidence that the receptive field

properties of GABAergic neurons is in large part determined by the receptive field
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