Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Variations in H2O+/H2O ratios toward massive star-forming regions [Letter]

Wyrowski, F., van der Tak, F., Herpin, F., Baudry, A., Bontemps, S., Chavarria, L., Frieswijk, W., Jacq, T., Marseille, M., Shipman, R., van Dishoeck, E. F., Benz, A. O., Caselli, P., Hogerheijde, M. R., Johnstone, D., Liseau, R., Bachiller, R., Benedettini, M., Bergin, E., Bjerkeli, P., Blake, G., Braine, J., Bruderer, S., Cernicharo, J., Codella, C., Daniel, F., di Giorgio, A. M., Dominik, C., Doty, S. D., Encrenaz, P., Fich, M., Fuente, A., Giannini, T., Goicoechea, J. R., de Graauw, Th., Helmich, F., Herczeg, G. J., Jorgensen, J. K., Kristensen, L. E., Larsson, B., Lis, D., McCoey, C., Melnick, G., Nisini, B., Olberg, M., Parise, Berengere, Pearson, J. C., Plume, R., Risacher, C., Santiago, J., Saraceno, P., Tafalla, M., van Kempen, T. A., Visser, R., Wampfler, S., Yildiz, U. A., Black, J. H., Falgarone, E., Gerin, M., Roelfsema, P., Dieleman, P., Beintema, D., De Jonge, A., Whyborn, N., Stutzki, J. and Ossenkopf, V. 2010. Variations in H2O+/H2O ratios toward massive star-forming regions [Letter]. Astronomy and Astrophysics 521 , L34. 10.1051/0004-6361/201015110

[thumbnail of Wyrowski 2010.pdf]
Preview
PDF - Published Version
Download (316kB) | Preview

Abstract

Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+ are found in the range of 1012 to a few 1013 cm-2. The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto)cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Uncontrolled Keywords: ISM: clouds ; ISM: molecules ; submillimeter: ISM ; stars: formation
Additional Information: Pdf uploaded in accordance with publisher's policy at http://www.sherpa.ac.uk/romeo/issn/0004-6361/ (accessed 17/04/2014)
Publisher: EDP Sciences
ISSN: 0004-6361
Date of First Compliant Deposit: 30 March 2016
Last Modified: 05 May 2023 21:57
URI: https://orca.cardiff.ac.uk/id/eprint/52791

Citation Data

Cited 30 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics