Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A hybrid moment equation approach to gas-grain chemical modeling

Du, F. and Parise, Berengere 2011. A hybrid moment equation approach to gas-grain chemical modeling. Astronomy and Astrophysics 530 , A131. 10.1051/0004-6361/201016262

[thumbnail of Du 2011.pdf]
Preview
PDF - Published Version
Download (863kB) | Preview

Abstract

Context. In addition to gas phase reactions, the chemical processes on the surfaces of interstellar dust grains are important for the energy and material budget of the interstellar medium. The stochasticity of these processes requires special care in modeling. Previously methods based on the modified rate equation, the master equation, the moment equation, and Monte Carlo simulations have been used. Aims. We attempt to develop a systematic and efficient way to model the gas-grain chemistry with a large reaction network as accurately as possible. Methods. We present a hybrid moment equation approach, which is a general and automatic method where the generating function is used to generate the moment equations. For large reaction networks, the moment equation is cut off at the second order, and a switch scheme is used when the average population of certain species reaches 1. For small networks, the third order moments can also be utilized to achieve a higher accuracy. Results. For physical conditions in which the surface reactions are important, our method provides a major improvement over the rate equation approach, when benchmarked against the rigorous Monte Carlo results. For either very low or very high temperatures, or large grain radii, results from the rate equation are similar to those from our new approach. Our method is faster than the Monte Carlo approach, but slower than the rate equation approach. Conclusions. The hybrid moment equation approach with a cutoff and switch scheme is a very powerful way to solve gas-grain chemistry. It is applicable to large gas-grain networks, and is demonstrated to have a degree of accuracy high enough to be used for astrochemistry studies. Further work should be done to investigate how to cut off the hybrid moment equation selectively to make the computation faster, more accurate, and more stable, how to make the switch to rate equation more mathematically sound, and how to make the errors controllable. The layered structure of the grain mantle could also be incorporated into this approach, although a full implementation of the grain micro-physics appears to be difficult.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Uncontrolled Keywords: astrochemistry ; ISM: abundances ; ISM: clouds ; ISM: molecules ; radio lines: ISM ; stars: formation
Additional Information: Pdf uploaded in accordance with publisher's policy at http://www.sherpa.ac.uk/romeo/issn/0004-6361/ (accessed 16/04/2014)
Publisher: EDP Sciences
ISSN: 0004-6361
Date of First Compliant Deposit: 30 March 2016
Last Modified: 26 May 2023 13:13
URI: https://orca.cardiff.ac.uk/id/eprint/52777

Citation Data

Cited 24 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics