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Abstract

The main purpose of this research is to develop methods for automatic
identification of biological specimens in digital photographs and drawings
held in a database. Incorporation of taxonomic drawings into a visual index-
ing system has not been attempted to date. Diatoms are a single cell micro-
scopic algae that provide a particularly suitable case study. Identification of
diatoms is a challenging task due to the huge number of the species, blurred
boundaries between species, and life cycle related shape changes. A novel
model based on principal curves representing the life cycle related shape
variation of a number of diatom species has been developed. Our model
is suitable for reconstruction purposes, allowing us to produce drawings of a
variety of diatom shapes, thus providing a link between the photographs and
drawings. We present the classification results of photographed and drawn
specimens based on the model and compare our results to another recent sys-
tem for diatom identification. Finally, given a diatom specimen, we are able
not only to identify the species it belongs to but also to pinpoint the stage in
the life cycle it represents.

1 Introduction

The ultimate aim of our research is to develop methods for automatic identification of
biological specimens in photographs and drawings held in a database. Automatic identi-
fication of objects represented in visual form and held in a database is also referred to as
visual indexing. Biological specimens are frequently represented in visual form for taxo-
nomic and other purposes. Vast catalogues of specimen material have been accumulated
over many years in the form of microscope slides, drawings and photographs. Recently,
efforts have been made to digitize such data for electronic storage and transmission.
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Figure 1: A drawing and a photograph of Fragilariforma bicapitata diatom specimens.

There has been some recent work in indexing between images in biological databases [2,
14]. However, there is a clear need to extend such indexing capabilities; the inclusion of
biological drawings is a natural extension. The approach taken in this research is novel in
that it seeks to incorporate taxonomic drawings as a prime source of taxonomic data and
to develop methods to enable indexing between digital photographic images and drawings
stored in a biological database (Figure 1).

There are several ways in which inclusion of drawings can benefit a visual indexing
system. First of all, they represent an example of the species; in some cases it could be
the only example. Secondly, they contain only salient for classification information, thus
serving as a model of the species. Finally, type specimens are often defined in taxonomy
literature using drawings. Production of biological drawings by hand is a time-consuming
and a difficult task, which makes it a perfect candidate for automation.

We propose to transform the high-dimensional image space of both photographs and
drawings into a lower-dimensional space where only relevant features are represented and
use this space for visual indexing and automatic production of drawings. To date we have
focused our attention on diatoms. However, we are planning to make our system more
general by extending its capabilities to work with other species, such as desmids (another
group of microscopic algae) and acari (water mites).

In this paper we investigate different data representation methods involving dimen-
sionality reduction and present our model of diatom shapes based on principal curves.
Our model is suitable for reconstruction purposes, allowing us to produce the drawings
of diatom life cycle related shape changes, thus providing a link between the photographs
and drawings. We apply our model to classification of photographed and drawn spec-
imens obtaining the results comparable to other diatom identification systems. Finally,
given a diatom specimen, we are able not only to identify the species it belongs to but
also to pinpoint the stage in the life cycle it represents. Throughout this paper, when we
mention photographs of diatoms, we are referring to digital photographs obtained using a
digital camera and an optical microscope. In case of diatom drawings, we are referring to
high-resolution digital scans of the drawings.

2 Previous research in diatom shape analysis

Diatoms are unicellular algae that live practically in any moist or aquatic environment.
Each specimen is enclosed in a silica shell with a regular geometric pattern. Diatoms can
undergo dramatic changes in size and shape during their life cycle (Figure 2). Diatoms
have been studied for many years and their classification, i.e. the systematic division of
the taxa into different genera, species, etc., is traditionally based on the size, shape and
pattern of their silica shells. Identification of diatoms, i.e. assigning a specimen to one of
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Figure 2: Fragilariforma bicapitata specimen contours in the order of projection onto the
principal curve.

the known species on the basis of the above features has applications in different areas,
including environmental monitoring and forensic science. The difficulties in identification
of diatoms are introduced by the large number of the species, sometimes poorly defined
borders between species, the changes in shape diatoms undergo during their life cycle, and
natural variation related to genetic or environmental factors. There are several thousand
of described diatom species and the estimates of undescribed species are in the region
of one hundred thousand. The classification of diatoms is still developing, i.e. diatoms
that have been considered to be the same species for decades are being split into several
species and new species are being found and described. Taking account of the above facts
it can be difficult to identify a diatom, even for a trained biological expert. There is clearly
a need for a system that could assist in identification and classification of diatoms.

In recent years there have been some efforts in the development of quantitative anal-
ysis of shape variation in separate diatom species, as well as in the development of au-
tomatic systems for diatom identification. Stoermer and Ladewski [11] modelled Gom-
phoneis herculeana shapes by representing the specimen outlines using Legendre polyno-
mial descriptors and performing principal component analysis on them. They were able
to reconstruct the shapes from the model, which showed that the variation in shape cor-
responding to the first principal component was highly correlated with diatom length and
thus with the stage in the life cycle. Goldman ez al. [6] later used the same method to
describe two populations of Surirella fastuosa, which showed that the populations were
partially overlapping when projected in the space of the two largest eigenvectors. Fi-
nally, Mou ef al. [9] used principal component analysis on Fourier descriptors of diatom
contours belonging to several subgroups of Tabellaria flocculosa. They showed that the
distribution of the whole taxon formed a nonlinear curve in the space of the first three
principal components. The groups within Tabellaria flocculosa formed smaller curves,
representing their growth trajectories in the shape space.

In the recent ADIAC project [2, 5], a diatom identification system was developed,
based on shape, size, internal pattern features, and decision trees. The system can identify
specimens from 37 different species with around 97% accuracy. However, the ADIAC is
not capable of reconstructing diatom shape or appearance in drawings, nor it is capable of
modelling the life cycle.

To date, there has been no attempt to develop a single system for modelling shape
variation of a relatively large number of diatom species. One of the reasons for this could
be the difficulty of obtaining a sufficient number of specimens for each modelled species.
Neither has there been an attempt to include the information from available specimen
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drawings into such a system. Finally, no one has attempted to produce the specimen
drawings automatically from the photographs.

In the next sections we introduce a system that models the diatom shape development
through the life cycle for a large number of species, and allows the production of shape-
drawings. Our system does not require a large number of specimens for training, and
allows identification of the new specimens with a success rate comparable to other diatom
identification systems.

3 Modelling diatom contours

We need to find a general way to describe diatom shapes belonging to a large number
(possibly hundreds) of different species. We require this method to be general enough to
describe not only previously encountered shapes, but also previously unseen specimens
and even the specimens of previously unseen species. Finally, we desire the description
to be suitable for reconstruction of the original shapes.

We considered describing variation in diatoms by modelling the distribution of a num-
ber of automatically chosen landmarks on a diatom’s contour [8]. While this method
works well for modelling a single diatom species, it runs into difficulties when trying to
match the landmarks on the contours of different species, which is not surprising consid-
ering the variety of diatom shapes. Even manual landmarking wouldn’t work here owing
to the different number of landmarks on contours of different species, as well as the high
degree of ambiguity concerning which landmarks should be matched to which. Alterna-
tively, we could choose a uniform landmarking approach, such as equal distance sampling
of points over the arc length of the shape. However, unless we use a very high number of
landmarks, this could lead to missing important detail in the shape.

Fourier descriptors have been successfully used to provide a compact and informative
description of diatom shapes [5, 9] in a number of cases and do not suffer from above
problems. Hence, we chose to work with these.

3.1 Extracting diatom shape contours

We will start this section with a description of the diatom data set we are trying to model.
It is the same data set that was used in the ADIAC project [2]. It contains photographs
of diatom specimens belonging to 37 species, each represented by approximately 20 pho-
tographs. For each species there is also a digitised drawing of a single specimen. In the
natural habitat there are usually considerably larger numbers of diatoms at the later stages
of their life cycle rather than at the earlier stage, which is reflected in the data, and it is
often difficult to find “clean” diatom specimens, i.e. not broken and without any overlap-
ping debris in the photograph. There is also a problem of diffraction effects which can
sometimes distort the image. At present we can successfully extract the features from
approximately 50% of these specimens, depending on the species.

We start processing the digital photographs of diatoms by extracting the contour of
the specimen, which is a difficult problem in its own right because of the diffraction effect
around the diatom specimens (Figure 1). We extract the contours by subsequently apply-
ing automatic thresholding, area closing and area filling operations. After that, we find
all the contour chains in the image and assume that the chain with the largest enclosed
area is the contour of the diatom. Extracting the contour from a drawing of a diatom
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is relatively straightforward using a similar approach; here there are fewer image distor-
tions (for more details see [8]). Before representing the extracted contours using Fourier
descriptors we resample them to the same length in order to obtain the same number of
Fourier descriptors for each contour.

We successfully extracted diatom contours from approximately half of the photographs
from the original data set. The failures were due mainly to the presence of debris in the
photographs and strong diffraction effect in some of the photographs which left the di-
atom boundaries extremely blurred. We are planning to look into solving the problems
caused by diffraction effect in the future. As a result we obtained a total of 268 specimens
representing 22 species, which is still an adequate training set.

3.2 Fourier descriptors

In this section we discuss the methods by which we describe the shape contours extracted
above. There are several types of Fourier descriptors (FD) for plane closed curves such
as diatom contours. We adopt Fourier descriptors developed by Zahn and Roskies [15],
which have been successfully used before for describing diatom contours [9]. They define
FD as follows:

Let v be a clockwise-oriented simple closed curve with parametric representation
(z(1),y(1)) = Z(l), where [ is the arc length and 0 < [ < L. Let define the cumula-
tive angular function ¢(1) as the net amount of angular bend between the starting point
I = 0 and point /. The domain of ¢(I) can be normalised to the interval [0, 27]. The
formal definition of a normalised variant ¢* whose domain is [0, 27] is

¢ (t) = o(5-

t
27r)+

and ¢* is invariant under translations, rotations and scaling.
We now expand ¢* as a Fourier series

oo
@" = po + Z(akcoskt + by sinkt).
k=1
Mou and Stourmer [9] have shown that it is enough to keep the first 30 Fourier de-
scriptors (harmonic amplitude and phase angle values) for a good reconstruction of the
original diatom contour from them. We describe each diatom contour using a 60 element
vector consisting of 30 amplitude values and 30 corresponding phase angles obtained
from Fourier descriptors.

4 Modelling diatom shape variation

Having described how we extract and represent the shape of individual specimens we turn
our attention to the problem of modelling the life cycle related shape variation in a single
species. This is then extended in Section 5 to a model of life cycle shape variation across
several species.

A comparative investigation of potential data representations suitable for our mod-
elling requirements has been undertaken as a part of this project. The dimensionality of
the data describing the diatom outlines is very high (60 Fourier descriptors). In addition,
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the distributions of vectors representing different species are non-linear. We need to find
a method to reduce the dimensionality of the space and to model the distributions. One
of the best known methods of dimensionality reduction is principal component analysis
(PCA), however it does not model well the non-linearities or discontinuities in the data.
There are non-linear dimensionality reduction methods, such as, for example, the con-
straint shape space point distribution model [1]. This method automatically clusters the
data into a combination of Gaussian distributions. Yet the data representing a diatom
species often does not form a Gaussian in the distribution space [9]. In addition, there are
fewer larger specimens in our data set, as mentioned in Section 3.1, which we do not want
to be reflected in our model. Finally, the distributions of different species are very close
to each other or even intersecting [6]. In such circumstances any automatic clustering
method is likely to combine the samples from different species into one cluster, which we
do not want to happen.

A recently developed method, Isomap [12], finds meaningful low-dimensional struc-
tures hidden in the high-dimensional observations. This method only provides a way
of reducing dimensionality of the original space. After projecting all the data into a
lower-dimensional space we still need to separate the data into the groups representing
the species. In addition, this method requires a large amount of data, especially if we
want to project any more data into the reduced-dimensionality space once it has been
built. Alternatively, we could use the Isomap method to find the low-dimensional repre-
sentation of each species separately. In this case, there is still a problem of insufficient
quantity of data. Apart from that, we would have to find a mechanism of assigning a new
sample to one of the Isomap representations in the space of all species.

Kernel PCA [10] models non-linearities in the data by using kernels other than the
inner product, but to model the data successfully one needs to know the underlying rela-
tionship in order to choose the correct kernel, which is not the case in our application.

Principal curves [7] were introduced about 20 years ago and since then have found
applications in different areas including computer vision [3] . They are non-linear gen-
eralisations of principal components that model well non-gaussian distributed data, and
are especially good for modelling trajectories. Other advantages in modelling data with
principal curves is that they do not require a large amount of data and possibly can be
trained incrementally.

4.1 Principal curves

The principal curve was first defined by Hastie and Stuetzle [7] as a smooth (C °°) unit-
speed 1D curve in RP satisfying the self-consistency condition

f(@) = By g(V | g(F) =2}, Ve € ACR
where F is the conditional average operator and g(y) is the projection operator given by
g9(Y) =sup{A:[| Y = f(A) [|= inf [| Y — f(u) [}
A€EA HEA
Intuitively, a principal curve is a smooth curve passing through the “middle” of a data

distribution. The above definition allows recursive estimation of a principal curve for
a given data set. In practice, the conditional expectation is replaced by a smoother or
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nonparametric regression estimate, and the curve is approximated with a number of knots
and linear segments connecting them.

There are several problems with the original definition of the principal curve which
gave a rise to several alternative definitions offering improved estimation algorithms. Tib-
shirani [13] considered the principal curve as a smoothed mixture of Gaussians along a
1-D manifold in R? space. Under this framework, each component density is defined
by the conditional Gaussian probability of y given x, with mean f(z), covariance X(z),
and mixing probabilities P(z). Then the standard closed-form Expectation-Maximisation
solution can be derived for the mixture of Gaussians.

Chang et al. successfully applied principal curves to the classification problem [3]
and subsequently improved on the Tibshirani’s [13] definition by making use of data pro-
jections onto the curve through orienting the covariances to lie orthogonal to the manifold
gradient at each node, with variance in the manifold gradient direction attenuated [4]. In
the next subsection we adopt Chang’s method to model the life-cycle shape trajectory of
a single diatom species.

4.2 Applying principal curves to modelling shape variation

Prior to modelling the diatom shape data we find the main modes of variation in the data
set of all species through PCA. We propose to model the life-cycle shape variation in
a single species using a principle curve going through the middle of the corresponding
data set created by the Fourier descriptor vectors projected into the eigenspace. To model
several species we follow the procedure described below for each species separately; see
Section 5 for more details. This approach allows us to extend the model to include a new
species easily, unlike in the case of a decision-tree diatom identification method [2].

We adopt Chang’s [4] principal curve estimation method to model the life cycle shape
variation of a single species. For illustrative purposes we model the shape variation of
Fragilariforma bicapitata in this section. In Figure 3 you can see the original data set
projected into the space of the first and third eigenvectors (for illustrative purposes) with
overlaid corresponding diatom contours, as well as the principal curve fitted into the data.
The fitted principal curve follows the growth trajectory of Fragilariforma bicapitata, as
that provides the main source of shape variation. As a result of fitting a principal curve
into the data set we reduced its dimensionality from 60 to 1, and modelled the life cycle
related variation simultaneously.

Individual shape variations lie in the dimensions orthogonal to the principal curve
and can be modelled, for example, by a “generalised cone” of varying thickness fitted
around it. The thickness of the cone can be determined according to the deviation of the
specimens from the curve in the different sections of the curve. A priori knowledge can
be taken into account as well. For example, it has been noticed that there is more diversity
in the shape of Tabellaria flocculosa in the life-cycle at a later stage [9].

S Classifying diatom specimens

We have described how we build a model of shape variation across a single species. Now
lets turn our attention to classifying specimens over a wide range of species.

We fit an individual principal curve into each of the available 22 species shape data
sets as described in Section 4.2. The fitted principal curves can be viewed as a drastically
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Figure 3: Left: the distribution of vectors representing shape of Fragilariforma bicapitata
specimens (represented with *’s) projected onto the first and third eigenvectors together
with the principal curve fitted into the distribution. Right: 22 principal curves modelling
shape variation in 22 diatom species projected into the space of the first three eigenvectors.

reduced dimensional description of the life-cycle variation across the species (Figure 3).
Since the curves are in the same shape space of the 60 Fourier descriptors, we can place a
new specimen into the same space and then estimate Euclidian distance from the specimen
to its projection onto the curves for identification purposes. This is not the only approach
to specimen identification in our model. For example, the likelihood of the specimen
belonging to each of the curves instead of Euclidian distance can be estimated. Rejection,
i.e. not assigning a diatom to any species, also can be easily incorporated. For reasons of
simplicity, we base our identification experiments below on Euclidian distance.

We tested the model in identification experiments using the standard “leave one out”
approach, by training the model on all specimens apart from one and classifying that
specimen using the model. The experiment was repeated to omit each specimen out of
the total 268. Approximately 84% were classified correctly compared to 77% achieved in
ADIAC project when using only Fourier descriptors for identification. However, we used
only a third of the set used in the ADIAC, so firm conclusions cannot be made.

Next, we tested how our model performs when identifying the drawings of diatoms.
We tested the model on 11 drawings of the species included in the model. The model cor-
rectly identified 7 out of the 11 drawings, which is comparable to identification results on
the photographs. We expect the identification accuracy to improve for both photographs
and drawings in the future when we include internal features descriptors into the model.

As we mentioned above, given a photograph (or a drawing) of a diatom specimen we
can not only identify the species it belongs to but pinpoint the stage of the life cycle it
represents. To illustrate this, we projected the vectors representing the shape of Fragilar-
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Figure 4: The drawings of Fragilariforma bicapitata (scaled to the same length) recon-
structed from the knots on the principal curve following its length.

iforma bicapitata specimens onto the corresponding principal curve and then sorted them
in the order of their principal curve projection points. The results were very close to the
expected order, as you can see in the Figure 1.

Finally, we reconstructed diatom contours from the knots on the principal curve rep-
resenting Fragilariforma bicapitata species. You can see the reconstructed drawings in
the order of the knots on the curve in the Figure 4. All the contours are scaled to the same
length, however, if we incorporate the diatom length into the model, they can be scaled to
the correct length.

6 Discussion and future work

An investigation of different data representation methods with application to modelling
the shape of biological specimens has been carried out. A model of the shape variation in
diatom specimens belonging to 22 different species has been presented. Our model not
only allows identification of the specimens but also models their shape variation through
different life stages. The model provides a link between photographs and drawings of the
specimens and allows us to create a drawing of a diatom shape from its photograph. The
results of classification of drawn and photographed diatom specimens based on our model
are comparable to the results of another recent system for diatom identification [2].

So far we have concentrated on modelling the shape of diatoms. Our next step is
to extend the model to represent their internal structure, which, as shown in ADIAC,
should improve identification accuracy. The extended model will also support automatic
production of drawings of the internal structures.

The presented model extends naturally not only to modelling of other biological ob-
jects and organisms, such as desmids and acari, but can be used for modelling of other
classes of objects where intraclass variation can exceed that of interclass variation, which
is often the case in medical and biological applications.
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