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Demand Forecasting by Temporal Aggregation

Abstract: Demand forecasting performance is subject to the uncertainty underlying teesénes an
organisation is dealing with. There are many approaches that may be used touresiutanty and thus to
improve forecasting performance. One intuitively appealing such approach isrégaggdemand in lower-
frequency ‘time buckets’. The approach under concern is termed to as Temporal Aggregation and in this paper
we investigate its impact on forecasting performance. We assume that the noatadgiegiand follows either
a moving average process of order one or a first-order autoregressive process ana &xpiogéntial
Smoothing (SES) procedure is used to forecast demand. These demand processes aneoofiéered in
practice and SES is one of the standard estimators used in industry. Theoretical Meath Bgaaexpressions
are derived for the aggregated and non-aggregated demand in order to contrast #m fedegasting
performances. The theoretical analysis is supported by an extensive numericalativaestigd experimentation
with an empirical dataset. The results indicate that performancevempents achieved through the aggregation
approach are a function of the aggregation level, the smoothing constant amdctss parameters. Valuable
insights are offered to practitioners and the paper closes with an agenda for further resdaralein th
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1. INTRODUCTION

Demand uncertaintys among the most important challenges facing modern compatjidhd
existence of high variability in demand for fast moving and slow/intermittent moving items (items with
a high ratio of zero observations) pose considerable difficulties in terms of forecasting and stock control
Deviations from the degree of variability accommodated by the Normal distribution often render
standard forecasting and inventory theory inapproprizat@ f].

There are many approaches that may be used to reduce demand uncertainty and thus to improve t
forecasting (and inventory control) performance of a company. An intuitively appealing such approach
that is known to be effective is demand aggregati&in Qne possibility is to aggregate demand in
lowerfrequency ‘time buckets’ (for example aggregate weekly data into monthly) and such a time
series transformation approach is often refetoeth the academic literature, asmporal Aggregation
[6]. Another aggregation approach discussed in the literature and often applied in practi€rosshe
Sectionalor Contemporaneous Aggregatiowhich involves aggregating different time series in order
to improve performance across a group of iteffisJuch an approach is equivalent to aggregating data
for one single Stock Keeping Unit (SKU) across a number of depots or stock locations. Natural,
practically useful, associated forms of aggregation involve also geographical consolidation of data or
aggregation across markets.

Although no empirical studies exist that document the extent to which aggregation takes place in
practical settings, this is an approach that is known to be popular amongst practitioners nat the lea
because of its intuitive appeal. In practical terms, the benefit will depend on the type of aggesghtion
of course the data characteristics. Cross-sectional aggregation for example usually leads ® varianc
reduction. This is due to the fact that fluctuations in the data from one time series may be offset by the
fluctuations present in another time seri8 [Contrary to cross-sectional aggregation, in temporal
aggregation, variands increased. However, it is easy to show that temporal aggregation can reduce the
coefficient of variation of demand. In any case, the implied benefit coupled with the ease of
implementing such approaches renders them a popular choice in industry.

From an academic perspective the emphasis to date has been mainly on cross-sectional aggregatic
Moreover, and although most inventory forecasting software packages support aggregation of data, thi
would also typically cover cross-sectional aggregation only. The consideration of temporal aggregati
has been somewhat neglected by software manufacturers and academics alike despite tHe potent
opportunity for adding more value to real world practices. In this paper we aim to advance the current
state of knowledge in the area of demand forecasting temporal aggregation.



Demand data may be broadly categorized as intermittent and fast. Aggregation of demand in lower-
frequency ‘time buckets’ enables the reduction of the presence of zero observations in the former case
or, generally, reduce uncertainty in the latter. Intermittent demand items (such as spare parts) are know
to cause considerable difficulties in terms of forecasting and inventory modeling. The presence of
zeroes has significant implications in terms of: i) difficulty in capturing underlying time series
characteristics and fitting standard forecasting models; ii) difficulty in fitting standard statistical
distributions such as the Normal; iii) deviations from standard inventory modeling assumptions and
formulations — that collectively render the management of these items a very difficult exercise.
Temporal aggregation is known to be applied widely in military settings (very sparse data), the afte
sales industry (service parts) etc. Recent empirical studies in thissagddve resulted in some very
promising results pointing out also the need for more theoretical analysis. Although the area of
forecasting with temporal aggregation in an intermittent demand context is a very interesting one both
from an academic and practitioner perspective, in this paper we consider only the most oftemgoccur
cases of fast demand items. Analysis in an intermittent demand context is an important avenue fol
further research and this issue is discussed in more detail in the last section of the paper.

1.1. Objectives and Organization of the Paper

In this paper we study analytically the effects of temporal aggregation on fangcasten the
underlying series follow an Autoregressive process of order one, AR@ Moving Average process
of order one, MA(1) and the forecasting method is the Single Exponential Smoothing (SES). Both
assumptions bear a significant degree of realism. As it will be discussed later in the paper there
evidence to support the fact that demand often follows the stationary processes assumed in this wor
(43% of the empirical series available in our research follow such processes). Moreover, SES is a ver
popular forecasting method in industr§0] 11, 12, 13]. Although its application implies a non-
stationary behavior of the demand, sufficiently low smoothing constant values introduce minor
deviations from the stationarity assumption whilst the method is also unbiased.

In this work we compare the variance of the forecast error (or equivalently, byleximgian
unbiased estimation procedure, the mean square ehtained based on the aggregated demand to that
of the non-aggregated demand. Comparisons are performed at the original (non-aggregate) demar
level. We mathematically show that the ratio of the Mean Squared Error (MSE) of the latter approach to
that of the former is a function of the aggregation level, the process parameters and the exponentic
smoothing constant. The mathematical analysis is complemented by a numerical investigation to
evaluate in detail the conditions under which aggregation leads to forecast performance improvements
Next, we validate empirically our theoretical results (by means of simulation on a dataset prg\aded b
European superstore) and by doing so we also offer some very much needed empirical evidence in tf
area of temporal aggregation. Finally, important managerial insights are derived and tangible
suggestions are offered to practitioners dealing with inventory forecasting problems.

To the best of our knowledge, the only papers directly relevant to our work are those by Amemiya
and Wu [14] and Tiao 5] for the AR and MA process respectively. In both cases the researchers
investigatedthe forecast performance of temporal aggregation strategies under an (Auto-Regressive
Integrated Moving AverageARIMA-type framework. However, the results presented in these two
papers remain preliminary in nature while the experimental setting may also be criticized in terms of the
estimation procedures considerdd][ In addition, no empirical results were provided. Important as
they are, both papers foadson characterizing the aggregated demand series rather than the forecast
performance. These issues are further discussed in the next section of the paper.

This paper attempts to fill this gap and provides helpful guidelines to select the appropriate
approach under such demand processes. The work discussed in this paper can be extended to
analyze more general cases such aspAR{IA(Q) or indeed ARMAp,q) processes. However, the
analysis and presentation of results would become complex. Since our main objective is to obtain som
key managerial insights, we shall restrict our attention to the AR(1) and MA(1) processes only.



The remainder of this paper is structured as follows. In Section 2 we provide a review of the literature
on the issue of temporal demand aggregation. In Section 3 we describe the assumptions and notatiol
used in this study. In Section 4, we conduct an analytical evaluation of the MSE related to both the
aggregation and non-aggregation approachHse conditions that determine the comparative
performance of the two approaches are determined in Section 5 followed by an érapalgais
conducted in Section 6. The paper concludes in Section 7 with the implications of our work for real
world practices along with an agenda for further research in this area.

2. LITERATURE REVIEW

In the supply chain and demand planning literature, demand aggregation is generally known as ¢
'risk-pooling’ approach to reduce demand fluctuation for more effective material/capacity platining [
Demand uncertainty may considerably affect forecasting performance with further detrimentaireffects
production planning and inventory control. It has been shbwiTheil [17], Yehuda and Zvi 18],

Aigner and Goldfeld 9] that demand uncertainty can be effectively reduced through appropriate
demand aggregation and forecasting.

Temporal aggregatioin particular refers to the process by which a low frequency time series (e.g.
quarterly) is derived from a high frequency time series (e.g. mon®jlyJlis is achieved through the
summation (bucketing) of everg periods of the high frequency data, wheres the aggregation level.
There are two different types of temporal aggregatam-overlapping and overlapping. In the former
case the time series are divided into consecutive non-overlapping buckets of time. In the overlappinc
case, at each period the oldest observation is dropped and the newest is included. In both the nol
overlapping and overlapping cases, the length of the time buckes ¢éagalggregation level. In this
paper only the case of temporal non-overlapping aggregatimonsiderepoverlapping aggregation is
an issue left for further research and this is discussed in more detail in the last section of the paper.

Most of the literature that deals with temporal aggregation may be found in the Economics discipline.
The analysis of temporal aggregation starts with the work of Amemiya and4VaThey have shown
that if the original variable follows g" order autoregressive process, AR¢hen the non-overlapping
aggregates follow a mixed autoregressive moving average (ARMA) model op,thefdrm where
q*:[(m—l)(p+1)/m]. By considering the ratio of MSE of disaggregate and aggregate prediction (3

linear predictors were considered) at the aggregated level, they have shown that the MSE of non
aggregated forecasts is greater than that of the aggregated ones, i.e. the aggregation approa
outperforms the non-aggregation one. Ti#g] has investigated the effect of non-overlapping temporal
aggregation on a non-stationary process of the Integrated Moving Averagel JiAqrm, whered is
the integrated parameter agds the moving average parameter. He has shown that the aggregated
process is of the IMAI(,g*) where g* is g*<[d+1+(q—d-1/m)]. They applied a conditional
expectation to obtain one step ahead forecasts at the aggregated level based on the nomagglegate
aggregated series. Subsequently, the efficiency of the aggregated forecasts was sitfieadto of
the variance of the forecast error of the non-aggregated to the aggregated series whengdwgaggre
level is large. They have shown that wiiet© the ratio under concern equals to 1 and the comparative
benefit of using the non-aggregated forecasts is increasinglwith

Our work considers the case of AR(1) and MA(1) processes and as such some of the theoretice
results presented in the above discussed papers are of direct relevance to our analysis. Our work diffe
from these papers though and extends them in some very significant ways: i) optimal estimators are
seldom used in practice not only due to the computational requirements that are typically prohibitive but
also the lack of understanding on the part of the managers of their functionality. In addition, there is
evidence to support the fact that simple forecasting methods (such as SES that is used in our work
perform at least as good as more complex theoretically coherent altern20yes) [a difficulty
associated with aggregation methods is the fact that a disaggregation mechanism is also required sin
very often forecasts are needed at the original/non-aggregate demand level. Both papers consider
comparison at the aggregate level which addresses only part of the forecasting problem. Consideratio
of a comparison at the original demand level, which is the case considered in our work, addresse:
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another part of the problem and is an important extension of the research already béiniij)dome
empirical analysis has been undertaken in both papers in contrast with our work were our findings are
empirically validated; iv) we complement our analysis by means of further numerical investigations to
identify the optimum aggregation level and smoothing constant values that need to be used.

Brewer P1] studied the effects of non-overlapping temporal aggregation on ARM\ [frocesses.
He showed that aggregating such processes results in ARMA mseéssautoregressive orderand
moving average order, ARMA (p, 1), wherer =[p+1+(q— p—1/m)]. Stram and Wei 2] have

studied the relationship between the autocovariance function of non-aggregated and aggregate
processs They have shown that the autocovarinace function of the latter can be computed based on th:
autocovariance function of former; in particular the autocovariance function after aggregation is a
function of the aggregation level and autocovariance function before aggregation. Souza an2BEmith |
showed that foAR Fractionally IMA (ARFIMA) models temporal aggregation results in bias reduction.

Athanasopoulos et al.24] have recently looked at the effects of non-overlapping temporal
aggregation on forecasting accuracy in the tourism industry. They have conducted anakempiric
investigation usin@66 monthly series and some forecasting methods tested in the M3 competition data
[20], namely Innovations state space models for exponential smoothing (labeled ETS), the ARIMA
methodology, a commercial software (Forecast Pro), damped 2BjidHe Theta method and naive.

The monthly series were aggregated to be quarterly, and the quarterly series weradgrigated to

be yearly. Subsequently, they compared the accuracy of the forecasts made before aggreadation.

They considered one and two step-ahead forecasts and three statistical measures were useé to comp
the results: Mean Absolute Percentage EixhPE) Mean Absolute Scaled ErrdviASE and Median
Absolute Scaled ErrodMdASE. The aggregated forecasts at the yearly level (whether produced from
monthly or quarterly data) were found to be more accurate than the forecasts produced fromtythe yea
data directlyThis study provided considerable empirical evidence in support of temporal aggregation.

Luna and Ballini 26] have used a non-overlapping aggregation approach to predict daily time series
of cash money withdrawals in the neural forecasting competition>NB&&h time series consstof
735daily observations which have been used to forégagaily steps ahead for two sets of 11 and 111
time series. Daily samples were aggregated to give weekly time series and then an adagtivdefuz
based system was applied to provitistep-ahead forecasts (thus aggregation reduced the forecast
horizon from56 to 8 steps). Two different aggregation approaches were evaluated for this purpose: the
historical top-down (TD-H) approach and the daily top-down (TD-DM) approach, where the main
difference between the two was the disaggregation procedure. In the former case aggregaists for
were dis-aggregated based on historical percentages. In the lattetheaskily estimations were
‘corrected by multiplying them by the associated weekly estimation and dividing by the sum of the
seven daily estimated samples. The symmetric MASNEAPE and the Mean Absolute ErroMAE)
were used to compare the results. The researchers showed that the aggregated forecasts produced by
two approaches performed similarly or better than those given by the daily models directly. The
reduction of a forecast horizon from 56 to 8 steps ahead would be intuitively expected to lead to
performance improvement.

Although many papers consider the case of fast moving items or continuous-valued time series,
integer time series have received less attention in a temporal aggregation context. Bran@d@sfiestal. [
studied the non-overlapping temporal aggregation of an Integer Auto-Regressive procdss ohey
INAR(1), They have shown that the aggregated series follows an Integer Auto-Regressive Moving
Average process of order one, INARMA (1,1). Mohammadipour and Boy8h Have studied
theoretically the effects of overlapping temporal aggregation of INARMA preseBsey showed that

! An important assumption in our analysis is that we start with data thaisadisaggregate as our required forecasting
output. However, and as one of the referees correctly pointedeodéginee of aggregation of the forecasting output does not
necessarily need to match with the existing data structure (which mmpiteeaggregate or more disaggregate than the
forecasts driving decision making). The degree of aggregation dbtbeasting output (i.e. the forecast we use to make
decisions) is actually a function of the decision making prolitmecasting tries to support. On the contrary inputs to the
forecasting process are very often driven by existing data struchltiesugh the two may indeed match sometimes, this is
not always the case.

2 http://www.neural-forecasting-competition.com/NN5/
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the aggregation of an INARMA process over a given horizon results in an INARMA process as well.
The conditional mean of the aggregated process was derived as a basis for forecasting. A simulatio
experiment was conducted to assess the accuracy of the forecasts produced using the conditional me
of the aggregation approach for three INARMA processes: INAR(1), INMA(1) and INARMA(1,1),
against that of the non-aggregation approach. The simulation results showed thast cases, the
aggregation approach provides forecasts with smaller MSEs than non-aggregation ones. The
performance of these forecasts was also tested by using two empirical datasets. Theviast foo

the Royal Air Force (RAF, UK) and consisted of the individual demand histories of 16,000 SKUs over a
period of 6 years (monthly observations). The second data set consisted of the demand history of 3,00
SKUs from the automotive industry (over a period of 24 months). The outcome of the empirical
investigation confirmed the simulation results.

Willemain et al. 29] have empirically explored the effects of temporal aggregation on forecasting
intermittent demand considering the application Qybston’s method that has been specifically
developed for such demand patter8@.[ The researchers considergglempirical data sets @05 daily
observations; the aggregation level was considered to be a week. Results were reported by considerir
theMAPE and the researchers showed a significant reduction in forecasting errors when weekly demanc
aggregated data were used instead of daily data.

Nikolopoulos et al. §] have empirically analyd the effects of non-overlapping temporal
aggregation on forecasting intermittent demand requirementsir Thmeposed approach, called
Aggregate-Disaggregate Intermittent Demand Approach (ADIDA), was assess&oonSKUs
containing7 years history§4 monthly demand observation®rm the Royal Air Force (RAF, UK), by
means of employing three methotigive, Croston and Syntetos-Boylan Approximation (SBR)[he
aggregation level was varied fromto 24 months. Comparisons were performed at the original series
level (disaggregated demand) and the results showed that the proposed ADIDA methodology may
indeed offer considerable improvements in terms of forecast accuracy. The main conclusions of this
study were: (1) the ADIDA may be perceived as an important melédnproving mechanisni2) an
optimal aggregation level may exist either at the individual series level or across sesejin@)he
aggregation level equal to the lead time length plus one review period L+171 (which is the time
bucket required for periodic stock control applications) shows very promising results. Spithourakis
et al.[31] extended the application of the ADIDA approach to fast-moving demandTdatenethod’s
performance was tested on 1,428 monthly time series dflBa€ompetition by using #aNaive, SES,

Theta, Holt and damped forecasting methods. The empirical results cahfinen previous findings
reported by Nikolopoulos et al.[6].

Finally, Babai et al.9] have also extended the study discussed al@j\J®/[means of considering the
inventory implications of the ADIDA framework through a periodic ordeteasfevel stock control
policy. Three forecasting methods, SES, Croston and SBA were used and the demand was assumed
be negative binomially distributed. Performance was reported through the inventory holding and
backlog volumes and costs, for three possible tai@gcle Service Levels (CSL): 90%, 95% and 99%.

For high CSLs, the aggregation approach has been shown to be more efficient but for low CSLs it was
outperformedy the classical one when Croston’s method was used. For SES, the aggregation approach
outperforms the classical approach even for low CSLs. The researchers concluded that a simpl
technique such as temporal aggregatiam be as effective as complex mathematical intermittent
forecasting approaches.

Before we close this section it is important to note that our working framework resembles to that
employed by Widiga et al. B2, 8, 33] in that the same demand processes and estimator are assumed
albeit under a different approach to aggregation. Widiatra et al. examined analyticdily mweadns of
simulation the relative performance of some cross-sectional aggregation strategies when deman
follows an AR(1) and MA(1) process and when SES is used to extrapolate future demand requirements
Our research focuses on temporal aggregation yet some of the analytical results presdmted by
researchers have been found to be of relevance and they are utilized in our theoretical developments to
The interface between, and the scope for combining, temporal and cross-sectional aggregation is a
issue that has received minimal attention in the academic literature but one that is to be cdnsidered
the next steps of our research (please refer also to the last section of the paper).
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3. NOTATION AND ASSUMPTIONS

For the remainder of the paper, we denote by:

m: Aggregation level, i.e. number of periods considered to build the block of aggregated demand.
n: total number of periods available in the demand history.

t: Time unit in the original non-aggregated time setres,?2, ...,n.

T: Time unit in the aggregated time serigs/,2, ..., [n/m] .

di: Non-aggregated demand in period

D+: Aggregated demand in peridd

g, Independent random variables for non-aggregated demand in pen@anally distributed with
zero mean and varianeg€

g1 : Independent random variables for aggregated demand in gemaamally distributed with zero
mean and variance'?

fi : Forecast of non-aggregated demand in pdritite forecast produced il for the demand ih
Fr: Forecast of aggregated demand in pefipthe forecast produced il for the demand if.

a : Smoothing constant used in Single Exponential Smoothing method before aggreiatonl
B : Smoothing constant used in Single Exponential Smoothing method after aggregaom

MSEsa: Theoretical Mean Squared Errdd$E) before aggregation
MSEaa : Theoretical Mean Squared Errdd$E) after aggregation

7, : Covariance of lags of non-aggregated demang, = Cov(d, ,d, , )
7« : Covariance of lags of aggregated demang,=CovD;,D;_, )

¢ : Autoregressive parameter before aggregat;ﬂ)ﬂ,l

¢' : Autoregressive parameter after aggregatighx 1

¢ : Moving average parameter before aggregatign; 1

¢': Moving average parameter after aggregations 1

u - Expected value of non-aggregated demand in any time period
' Expected value of aggregated demand in any time period

We assume that the non-aggregated demand s#riésllows either a first order moving average,

MA(1) or a first order autoregressive data generation process (DGP), AR(1) that can be nehgmati
written in period by (1) and (2) respectively.

d, = p+¢& —0Og_,,Whereld| <1, (1)
d, = 41— @)+, +¢d,_,, where|g < 1 )

The m periods non-overlapping aggregated demBnctan be expressed as a function of the non-
aggregated demand series as follows

Dry = Zdt—(k—l)m—l k=12,... 3

=1

The forecasting method considered in this study is the Single Exponential Smoothing (SES); this
method is being applied in very many companies and most of the managers use this mathod in
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production planning environment due to its simplicity][ Using SES, the forecast of demand in period

t produced at the end of peribd is
k-1

=> all-a) d., (4)
k=1
We further assume that the standard deviation of the errorine(h) and (2) above is significantly
smaller than the expected value of the demand, so should demand be generated the probability of
negative value is negligible. Constrainiggand @ to lie between -1 and ih (1) and (2) , means that
the process is stationary and invertible.

4. THEORETICAL ANALYSIS

In this section we derive thdSE of the forecasts generated by considering the non-aggregated and
the aggregated demand. Comparisons are to be performed at the original disaggregated level; to that e
the aggregation approach works as follows: firstly buckets of aggregated demand are created based ¢
the aggregation level; the8ESis applied to these aggregated data and finally the aggregated forecasts
are disaggregated by dividing by, to produce forecasts at the original level. Other disaggregation
mechanisms could have been considef@d(it the one employed for the purposes of our research is
viewed as realistic from a practitioner perspective and a reasonable approach when vdéa
stationary demands. Note that in order to ensure that the forecasting horizon is the same in both th
aggregate and the disaggregate cases, the agg&ig&ferecast is updated in each period when we
rebuild the aggregate series.

The comparisons will result in the development of theoretical rules that indicate under which
conditions forecasting of aggregated demand is theoretically expected to perform better taatirigre
of the non-aggregated demand. These theoretical rules are a function of the aggregation level and tt
control parameters. The cut-off values to be assigned to the parameters will be the outcome of
numerical analysis to be conducted based on the theoretical results. Having obtained the cut-off value:
we can then specify regions of superior performance of the aggregation approach over the non
aggregation one.

In this stug the MSEis used as a forecast accuracy measure as it is the only theoretically tractable
such measure. THASEis similar to the variance of the forecast errors (which consists of the variance
of the estimates produced by the forecasting method under concern and the variance of the actu:
demand) but not quite the same since any potential bias of the estimates may also be taken into accou
[34]. SinceSESprovides unbiased estineat (due to the stationarity of the time series considered in our
work) the variance of forecast errors is equal taMIs&, i.e. MSE=Var(Forecast Error).

For each process under consideration we calculate the ratio of the MSE before ayy (eisti )
to the MSE after aggregatiotMGBExs). A ratio that is lower than one implies that the aggregation
approach does not add any value. Conversely, if the ratio is greater than one aggregation performs bett
than the classical approach.

4.1. M SE Before Aggregation, MSEga

We begin the analysis by deriving tMSEsa for the MA(1) and AR(1) process. As discussed above
the MSEza is

MSE,, =Var(d, - f,)=Var(d, )+ Var(f,)—2Co\d,, f,), (5)

3 Obviously other forecasting methods may also provide unbiased &stimader the stationary demand processes
considered in this paper but those are not further considered as their agdlgyisnd the scope of this research work.
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Subsequently, the three parts of (5) need to be determined: i) variance of demand, ii) vatia@ce of
forecast, and iii) the covariance between the demand and the forecast.

411. MA@
When the demand follows an MA(1) process, the autocovariance and autocorrelation functions are
[35]:
(1+ «92)02
7.=1 —0c5° |k|:1, (6)
0 K >1

We begin the evaluation MSEsa by defining the covariance between the demand and the forecast as
follows:

CoVd,, f,)=Coud,,> all-«)d,,) = aCov(dt,21 a)?td, )=
k=1 k=1

a(Cov(d,,d, ;) +(1- &)Coud,,d, ,) + (1—a)’ Coud,,d, ,) +..). ¥
Considering thatCovd,,d, ,) =0 for all k> 1, and substituting (6) into (7) we have:
Co\d,, f, )= ay,. (8)
The variance of the forecast is as follows:
Var(f,)=Var(ad, , +(1-a)f,,)=a?Var(d, ,)+@1-a)*Var(f,_, )+ 2a(1- a)CoVd, ,, f, ,)- ©)

By considering thavar(f,)=Var(f,_, ) andCo\d,, f,)=CoMd,,, f_.) for all k and substituting
(6) and (8) into (9) we get

var(f,) = “7o% io_t(i_ s : (10)

And finally, by using the fact that, =Var(dt7k) and substituting (6), (8) and (10) into (5) it is easy
to show that:

Yo~ QY.
MSEBA:m. (11)
412. AR(1)

When demand follows an AR(1) process the following properties B5]d [

2

7 _ k=0
Ve =11-¢ , (12)
¢k7o k=1



To evaluate (5) for AR(1), @begin by deriving the covariance between the forecast and the demand
in periodt, by substituting (12) into (7), we get:

codd,, f,)= %o (13)
(L-¢+ag)
The variance of forecasts in peribds derived as follows, si@ var(f,)=Var(f,_;) and by substituting
(12) and (13) into (9), we get:

a(l+p—ad)yg

var(f;)= 2-a)1-¢+ad)

(14)

Finally we can calculate thdSE of the forecats before aggregation. By substituting (12), (13) and
(14) into (5), we get

MSE,, = ( 70(1_ ¢) (15)

1- 05 )1- ¢ + ag)
4.2. M SE After Aggregation, MSEaa
In this section we proceed with the derivation of M8E of the forecasts for the aggregation
approach. Demand is first aggregated to produce high frequency demand forecasts b&8E&] on

followed by the disaggregation of such forecasts to produce one-step-ahead estimatesigihéhe
level by dividing the aggregated forecast by the aggregationrtevidieMSExa is defined as

MSE,, =Var[dt —%) =Var(dt)+iVar(FT )—%CO\(dt, F)=7, +iVar(FT)—%C0\(dt, F),

e m? (16)
By applying SES, the aggregated forecast for peFicddefined as
w k-1
Fr =Zﬁ(1_ /8) Dy (17)
k=1
421. MAQQ)

When the non-aggregated series follows an MA(1) process, the aggregated series also follows an MA(1
process but witla different parameter valud$, 36].

Based on Wei35] we can show that the relationship between the autocovariance functitme of
non-aggregated and the aggregated demand is

S =my,+2(m-1
{70 70, ( )71 _ (18)
Y1=n
From (A-2 and (B-3 in Appendix A and B respectively, we have:
CO\'(dt Py ) =P (19)



Var(F,) = Pro+ 2P0-Pri. (20)

2-p

So by substituting (19) and (20) into (16) and then using (18) intottie@alISE of the forecast after
aggregations

1 (ﬂ'n70+2mﬂ71_2ﬁ271]_2’371J. (21)

MSE,, = +—
EAA (}/0 m2 Z—ﬂ m

422. AR(1)

If the non-aggregated series follows an AR(1) process then the aggregated series follows ar
ARMA(1,1) processl4, 36]. It can be shown that the following properties hold when the process is
ARMA(1,1):

Dy =u'(1-¢')+& +¢' D, — 0., where|@| <1,|p]<1, (22)
N’ 12
1-24'0'+0" .. | _,
o g0
, ¢!_9! 1_¢19!
O [k=1. (23)
ra=9""ri  |K>1

From Wei B5] we can show the relation of autocovadafunction of non-aggregated and aggregate
demand series when the non-aggregated series follows an AR(1) process:

74 :yo(m+§2(m—k)¢k], (24)
e s+ Sk . (25)
et ket
¢ =¢", (26)
and for allk > 1, we have:
7= 7/0(¢(k‘1)””1 +20% ™2 ¢ mg "+ (m=1)g ™ L+ ¢(k+1)’“). (27)

In Appendices A and B (equations (A-3) and (B-6)) we show that:

_ BHe 14"
Coud, Fr)= e o 0 (28)

var(F, )= 2o, 2P0=Bli

T2 BN (29)
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Considering equations (24), (25) , (26), (28) and (29) MB& of the forecasts at the disaggregated
level is given by:

. ﬁ((mﬂZZ(m—k)ﬂD 2ﬂ(1—ﬂ)([§m:k¢k+m2k¢mkn
A R Ty
vse. | ™ By ~pNL-¢" + p | 0)
2 P e
m\(1-¢™ + Bg" 1-¢

5. MSE COMPARISON RESULTS

The effectiveness of temporal aggregation as compared to non-aggregation may be assessed |
analyzing the ratio of theMSEs. Recall from Section 4, that a valueM$E,,/MSE,, greater than 1
implies that tle aggregation approach is superior to the non-aggregation one, whereas a value that is
lower than 1 implies the opposite. A ratio value equals to 1 means that performance is the same.

In subsection 5.1we investigate the impact of the aggregation lewglthe smoothing constants
and g and the moving average or the autoregressive paramegeon the ratio ofMSE,,/MSE,, by
varying their values.nl subsection 5.2, we determine analytically the conditions under which one
approach outperforms the other. Finally in subsection 5.3 we are concerned with the determination o
the optimum aggregation level.

5.1. I mpact of the Parameters— Sensitivity Analysis

In this section the effect of the paramet&rsx , 5 , @ and¢ on the ratioMSE;,,/MSE,, is analyzed.
Note thatm, «, # , are control parameters often set by the forecaster, wheraad ¢ are parameters
associated with the underlying demand generation process (process parameters). Therefore, we a
interested to know which values of the control parameters lead to a ratio highér thaany given
values of the process parameters.

In real world settings data could typically be aggregated as weeldy)(from daily data, yearly
(m=4) from quarterly, monthlyng=4) from weekly, quarterlynj=3) from monthly, semi-annually
(m=6) from monthly and annuallyn=12) from monthly data or it may also be aggregated at some other
level to reflect relevant business concerns (e.g. equal to the lead time length).

Given the considerable number of control parameter combinations it is natural that only some results
may be presented here. The simulation output was judged to be represented sufficiently through thi
consideration ok = 01, a = 05, m=2, m=12 and the whole range ¢f, # and¢.

511. MA(L)

Figure 1 presents the impact of the control paramgten the ratio ofMSE;,,/MSE,, for m = 2, 12
and « = 0105, when the non-aggregated demand series follows an MA(1) process. Shaded areas
represent a behavior in favor of the non-aggregation approach. The results show that for a fixed value c
a , by increasing the aggregation level, the aggregation approach provides more accurate forecasts th:
the non-aggregation one. On the other hand, when considering a fixed value of the aggregation leve
increasingp results in a deterioration of the aggregation approach. If the selected smoothing constant
value after aggregatiog,, is considerably higher than the smoothing constant used at the original
datag , then the aggregation approach is not preferable. Alternatively, the aggregation approach may
produce more accurate forecast unl@stakes highly negative values.
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m=12

MSE,, /MSE, ,

MSE, / MSE, ,
MSE, / MSE, ,

Figure 1. Impact of mé, « and  on the MSHatio fora = 01 (top) anda = 05 (bottom)

In the particular case where the smoothing constant parameters before and after aggregation ai
identical (@ = 2), the aggregation approach outperforms the non-aggregation one in all cases, except

those associated with high negative value@ @figh positive autocorrelation). Moreover, even in those
cases, when increasing the aggregation level the perforroatiee aggregation approach is improved.

The impact of the smoothing paramefeand the aggregation level is quite intuitive. In fact, it is
obvious that the coefficient of variation (CV) of the non-overlapping temporally aggregated demand is
smaller than the CV of the original (non-aggregated demand) and we can easily show that by increasin
the aggregation level the coefficient of variation of demand is further reduced. This means that high
aggregated order series are associated with less dispersion than low aggregated order series. In additi
by considering the autocovariance function before and after aggregation, we may show that the
application of non-overlapping temporal aggregation decreases the value of the autocorrelation functior
and increasing the aggregation level leads to a higher reduction in the autocorrelatioewehtcially
becomes zero. That is, the aggregated series tend toavardiée noise process in which case small
values of the smoothing constant lead to sma8Es.Therefore, setting? to be small g should be
smaller thanx ) in conjunction with high aggregation levels provides an advantage to the aggregation
approach; this is confirmed by the results presented in Figure 1.

We note that even if the selectgdis smaller thaw , there are cases in which the aggregation
approach is not preferable. This can be attributed to the potential high positive autocorrelation betweelr
demand periods. For negative valuésdpthe autocorrelation is positive; for positive valuesfdahe
autocorrelation is negative and for white noise process, the autocorrelation is zero. Agyragati
highly positively correlated series doesn't add as much value as aggregating series with less positiv
autocorrelation.
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These examples show that the performance superiority of each approach is a function of all the
control and the process parameters and the selection of the control paramgieamid m, influence

the effectiveness of the aggregation approach in conjunction with the consideration of the proces:s
parameters. In subsection 5.2.1 we attempt to identify the conditions under which each approact
produces more accurate forecasts for a fixed valae of

51.2.  AR(1)

Figure 2 presents the impact of control parametarsr, f on the ratio ofMSE,,/MSE,, for m = 2,
12 anda = 01,05, when the non-aggregated demand series follow&R{1) process. As in the case

of the MA(1) process it is easy to see that the superiority of each approach is a fohetibthe
control parameterd.he results show that for a fixed value®f increasing the aggregation level results
in accuracy improvements of the aggregation approach. Conversely, for a fixedatiggréevel,
increasingf results in a deterioration of the performance. In additibrshould be generally smaller

than « in order for the aggregation approach to produce more accurate forecasts.

m=2 m=12

Figure 2. Impact ofm, ¢ ,a and f on the MSE ratidor « = 0.1 (top) anda = 05 (bottom)

As in the case of the MA(1) process, when the smoothing constant parameters before and afte
aggregation are identical (i.e. = ), the aggregation approach outperforms the non-aggregation one in

all cases, except those that are associated with highly positive autocorrelation (highly positive values o
#). In those exceptional cases the comparative performance of the two approaches is insensitive to th

increase of the aggregation level. The impact of the smoothing pargfeted the aggregation level
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m on the ratio is similar to that reported for the MA(1) process. Eigwhows that for highly positive
values of the autoregressive parameid¢ine aggregation approach does not work well and the non-
aggregation approach provides more accurate results. This is generally true regardless of the value
employed by the other control parameters. Therefore, the aggregation approach is not reconmmende
such cases. Whep is positive, the series is 'slowly changing' or can be considered as a positively

autocorrelated process. In addition when the non-aggregated demand follows an AR(1) process, th
autocorrelation spans all time lags (not only lag 1). As such, for highly pogitradues no level of
aggregation may improve the accuracy of forecasts.

Hence, when the non-aggregated demand follows an AR(1) process, the aggregation approach me
lead to accuracy improvements when the aggregation layed, high and the smoothing constant after
aggregationg is small. However, for highly positive values of the autoregressive paraimeties
aggregation approach is not recommended (especially Wherbigger thaw ).

In summary, what may be concluded at the end of this subsection is that for both the MA(1) and
AR(1) processes, if the demand data is positively autocorrelated then the non-aggregation approac
works better that the aggregation one; in those cases the non-aggregation approach exploits better t
very important recent information (i.&) (though it is more prone to noise). On the contrary, when the
recent demand informatiag not that crucial then a loegterm view of the demand is preferable (if one
properly selects how to use long term demand information thnowagid 5). Moreover, the aggregation
performance under the MA(1) and AR(1) process is slightly different due to the nature of these
processesPositive autocorrelation under an AR(1) process, with a maximum value eqtid) i®
potentially higher than that associated with an MA(1) process @wttaximum value equal to 0.5)
which renders the range of outperformance of the non-aggregation approach larger under the AR(1
process. In subsection 5.2.2 we theoretically determine the conditions under which each approacl
outperforms the other one under the AR(1) process.

5.2. Compar ative Performance

Having conducted a sensitivity analysis in subsection 5.1, we now identify analytically the conditions
under which each approach outperforms the other one.

52.1. MA(L)

The ratio of theMSEsa to MSEaa When the non-aggregated demand follows an MA(1) process is
function of the moving average parameter, the smoothing constant before and after aggregation (
andg) and the aggregation level. Considering that the aggregation level may only get integer values
greater than or equal to two, we wish to determine the yaliniat enables the aggregation approach to
perform better. Here we consider the entire range of possible valugskfot the smoothing constant is
a parameter that is set to its optimal value by practitioners, normally by minimiziMSted=rom (11)
it is obvious thatMSE;, is monotonically increasinm o, as the derivative ofMSE;, is positive for
all values of¢ in [-1,1]. Hence,MSE;, can be minimized by having the smallest possible value of
which makes sense for a stationary process. However, we do wish to note that in our theoretical analysi
we disregard the issue of initialization of the forecasting process. This is an important issue to be
mentioned (since with very low values a bad initialization implies inaccurate estimates of the future
demand as the forecast will basically be kept constant) but one that is not considered as part of oL
research.

To show the conditions under which the aggregation approach outperforms the non-aggregatior
approach, we need to $¢8E,, /MSE,, >1. From this inequality we can obtain the following result:

THEOREM 1: If the time series of the non-aggregated demand follows an MA(1) process, then:
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*If g < f,, the aggregation approach provides more accurate forecasts.

*|If g = p,, both strategies perform equally.
= Otherwise, the non-aggregation approach works better.

where
(— (M?n + m(L+ 62) + 2m) + ((m?y + m@+ 62) + 2me) | + 820 - 2m0)m277j (31)
Fi= 220 — 2mo) !
and
_ a(1+6) (32)
2—-a

PROOF: the proof of Theorem 1 is given in Appendix C.

The results demonstrate that, for giveandm, there always exists a value®guch that aggregation
approach outperforms non-aggregation one.

Note thaip, is always positive, consequently choosigg B, guarantees thate aggregén approach
always outperforms the disaggregation one in this region. Hémee/alue ofp; reflects a cut-off point that

may be used in practice for the selection of the smoothing constant value to be used for the aggregate
series. The cut-off point reflects all the qualitative discussion provided in the previous subsection as tc
when aggregation outperforms the non-aggregation approach.

52.2.  AR(1)

We work inasimilar way to the MA(1) process by setting the raliSEs, to MSExa greater than 1 in
order to identify the conditions under which the aggregation approach performs better.ohluésens
are summarizelly the selection procedure presented in Appendix D.

Aswe mentioned earlier the smoothing constant is often set by practitioners to its optimal value, so it
is more interesting to discuss in our work the cases where such a value is considered. Te ficsso, w
find the value that minimizes tHdSEs;a and then we find the value of the smoothing constant after
aggregation that leads to more accurate forecasts. The optimal value that minimizes (15), denoted b

a , obtained by solving the first derivative of (15), is given by (88B:

. -1)/2 3<p<l
L [B-12 Y3<g<1 3

0] -1<¢ <713
where o > 0 is a very small positive value.

By considering the optimal value of the smoothing constant before aggregation, we have two different
cases. FronMSE,,/MSE,, >1 and (33) we can get the following result

Casel. ¥3<¢<1. Inthis caseq” = (3p—1)/2¢
THEOREM 2: If the time series of the non-aggregated demand follows an AR(1) process, where

1/3<¢<1 and the optimal smoothing constamt, = (3¢ —-1)/2¢ , is used to determine the non-
aggregated demand forecast, then the non-aggregation approach always provides mordéoaecasate
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than the aggregation one, regardless of the smoothing constant parameter after aggregatiotihe
aggregation levein.

PROOF: the proof of Theorem 2 is given in Appendix E.
Case2. —1<¢<13.Inthis case’ is a very small positive number.

THEOREM 3. If the time series of the non-aggregated demand follows an AR(1) process, where
—1<¢ <13 and the optimal smoothing constant used to determine the non-aggregated demand

forecast,a” < 0.05, then:

= If § <p; the aggregation approach provides more accurate forecast.
= If g = both strategies perform equally.
= Otherwise, the non-aggregation approach works better.

where
4 - —(1-gm Y- p)z, + A1 ), — AmglL—g™)- 22" (1— gy + M2 (1- g™ N1— §))+ VA
1 2p"(1-p), - AL-p)z, +2mg(L- g™ )+ Mg (1 g)n) |

(34)

(&,5,,mand A are given in Appendix D)

PROOF: The proof of Theorem 3 is given in Appendix E.

As for the MA(1) process, the above results provide a cut-off point that may be used in practice for the
selection of the smoothing constant in order to obtain an outperformance of the aggregation approac
when AR(1) processes are considered. Obviously, as the cut-off point increases for high aggregatiol
levels, it is clear that this implies a considerable range of the smoothing constant of the aggregatet
series where the is a benefit of using the aggregation approach. Hence, these results provide a
comprehensive way of managing the process of forecasting of AR(1) processes when the autoregressi\
parameter is known and when the intention is to optimize the smoothing constant for the non-
aggregated series.

5.3. Optimal Aggregation Level
The objective of this section is to identify the optimal aggregation levels that maximize the ratio or

equivalently minimize thé1SExa for each demand process under consideration. To do so, we evaluate
the ratio ofMSEsa to MSEaa for the whole range of the control parameters.

531  MA(L)

In order to obtain the optimal aggregation level when the non-aggregated demand series follows ar
MA(1), we consider the following theorem.

THEOREM 4: If the non-aggregated demand series follows an MA(1) process, then the optimal
aggregation level is the highest level in any considered range.

Suppose, aggregation is to be tested in a ragge ], wherey;and y,are the lower and upper bound
respectively and they are positive integer numbers. The optimal aggregation level will alwgys be
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PROOF: A calculation of the first derivative ®&flSEaa With respect tan and a numerical analysis for

> 2 shows thaMSEa is a decreasing function af, which means that the ratMSE;/MSEaa is an
increasing function om. Therefore,a higher value of the aggregation level results in a higher value of
the ratioMSEza / MSEaa.

5.3.2. AR(1)

In order to obtain the optimal aggregation level when the non-aggregated process follows an AR(1)
process, we consider a numerical investigation since from (30) it is obvidukehzalculation of the
first derivative is infeasible. Two examples have been considered: i) the whole rapgehefe o =
0.15 andpg = 0.1; ii) the case 2 discussed in 5.2.2 with an optimal valae of
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a) AR(1) processd = 0.15, S = 01) b) Case 2, AR(1) procesg E 0.01, 5 = 0.008)

Figure 3. MSE ratio for different values oh

Figure 3a shows that the value of the aggregation level that maximizes the MSE ratio changes whel
varying the control parameter values. For negative and lower positive valgesef 1< ¢<1/3, the
forecast accuracy of the aggregation approach increases with the aggremagionhile for higher
positive values of, i.e. /3< ¢ <1, this is not true. Let us analyze the two different cases in which we
use the optimal smoothing constant valueM&@Es,.

Case 1. ¥3<¢<1. In this case the optimal smoothing constant paramgten3s-1)/24 is used
and we show in subsection 5.2.2 that the MSE ratio is always lower than 1.

Case 2. —-1< ¢ <Y3. In this case a very small smoothing constant valie;0.05 , is used. The
MSE ratio for different aggregation levels is shown in Figure 3b-fbt ¢ <13 and a numerical
example ofa and g values whereg < « . This figure shows that the aggregation approach is
associated with more acctgaesults for higher aggregation levels.

6. EMPIRICAL ANALYSIS

In this section we assess the empirical validity of the main theoretical findings of this resetreh.
following subsection we provide details of the empirical data available for the purposes of our
investigation along with the experimental structure employed in our.Wwosdubsection 6.2 the actual
empirical results are presented.
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6.1. Empirical Dataset and Experiment Details

The demand dataset available for the purposes of our research consists of weekly sales data over
period of two years for 1,798 SKUs from a European grocery store. The Time Series Expert Modeling
function of SPSS(version 19 has been used to identify the underlying ARIMA demand process for
each series and estimate the relevant parameters. It was found that more than 43% of theydsries ma
represented by the processes considered in our research. In particular, 30.3% of the serigeq)b44 se
were found to be ARIMA(1,0,0) and 13% (233 series) to be ARIMA(0,0,1). Other popular processes
identified were: ARIMA(1,0,1) (8.6%), ARIMA(0,0,0) (16.3%) and ARIMA(0,1,1) (23.7%). This
analysis provides some empirical justification on the frequency of stationary, and in particular MA(1)
and AR(1), processes in real world practices.

In Table 1 we summarize the characteristics of the SKUs relevant to our study by indicating
estimated parameters for the MA(1) and AR(1) processes. To facilitate a clear presentation, the
estimated parameters are grouped in intervals and the corresponding number of SKUs is given for eac
such interval. The averagkand ¢ value per interval is also presented for the MA(1) and AR(1) process
respectively. This categorization allows us to compare the empirical results with the theoretical findings
We must remark that th@ parameter values are all but one negative ang tharameter values are all

but one positive. As such, the data do not cover the entire theoretically feasible range of thengaramete
Some studies3/, 38, 39] that have considered empirical AR(1) proessdhave reported that is
common to have positive correlation/high value of autoregressive parameters in the consumer produc
industries which is also the case in the dataset used in our research. Replication of our findings in bigge
datasets is certainly an avenue for further research in this area and this issue is discussecetaimore d
in the next section of the paper.

Table 1. Processes Present in the Empirical Daa S

a) MA(1) b) AR(1)

0 intervals Average oft No. of SKUs gintervals  Average ofg No. of SKUs
[-.8,-.7] -0.7252 1 [-.1,0] -0.2240 1
[-.7,-.6] -0.6329 9 [.1,.2] 0.1981 2
[-.6,-.5] -0.5393 39 [.2,.3] 0.2534 84
[-.5,-.4] -0.4471 72 [.3,.4] 0.3549 125
[-.4,-.3] -0.3509 57 [.4,.5] 0.4479 127
[-.3,-.2] -0.2520 48 [.5,.6] 0.5512 121
[-.2,-.1] -0.1989 6 [.6,.7] 0.6433 63

[0,1] 0.2831 1 [.7,.8] 0.7352 18
[.8,.9] 0.8256 3
Total number of SKUSs: 233 Total number of SKUs: 544

The data series have been divided into two parts. The first part (within sample) consists of 62 time
periods and is used in order to initialize BiESestimates. The second part consists of the remadring
time periods and is used for the evaluation of the performance (out-of-3ample

The values of the smoothing constanere varied from 0.05 to 0.95 with a step increase of 0.05. In
the classical (non-aggregate) approach, we first calculate 41 one-step ahead forecasts for eanth series ¢
then we calculate the variance of the forecast error.

In order to obtain the forecasts via the aggregation approach we start by creating non-overlapping
buckets of aggregated data based on a specified aggregation level and then we apply 8&S to th
aggregated data.

Aggregation levek 2: Starting from the Y weekly observation in the initial (within sample) part,
we sum observations backwards in buckets of two (2), resulting in a bi-weekly series consi3ting of
aggregated observations. The average of aggregated series is obtained and is used as the SES fore
for the first bucketed period 1. SES is then applied all the way up to producing a forecast for bucket 32
which is then divided by 2 (the aggregation levet2) and it gives a forecast for periods 63 and 64.
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We drop the forecast for period 64 and record the one for 63 (they are equal anyway)eTétart w
creating buckets of 2 periods from period 63 backwards. So we create another 31dnakietsvery
first observation (period 1 in the original data) is not used anymore. We average these buckets (they ar
different from those created before), we use that average as the SES forecast for the firstvbucke
continue using SES until the point that we produce a forecast for bucket 32 (periods 64 and 65). We
keep the forecast for period 64 and so on. In the next period we bucket backwards from period 64
ending up with 32 buckets and continue like this until obtain the forecasts for 41 periods ahead.
Aggregation level = 3 . . . 24: Similarly, we continue with time buckets of up to 24 periods. At this
point there are 2 aggregated biweekly observations (2x24=48), so 14 weekly observations at the start c
the original series remain unused.
Finally, the value of the variance of the forecast error before aggregation is divided byaheevaf
the forecast error after aggregation, to obtain the rafiéSHsz to MSEaa.

6.2. Empirical Results

In Section 5 we examined analytically the conditions under which the aggregated foregasts ma
perform better than the non-aggregated ones using the rdd&Bfa to MSEaa. The cut-off points of
the smoothing constant of the aggregate seffigbat should be used (i.e. any valuetthat is lower
than the cut-off pointg, implies an outperformance of the aggregation appjohele also been

determined for both the MA(1) and AR(1) procdssthe following figures we present the results of the
empirical analysis and we investigate the degree to which they validate our theoretical findings.
In Figure 4 we show the cut-off poing; for fixed values ofe and m when the non-aggregated

demand of the SKUs follows an MA(1) process. Please recall that the cut-off/fomtthe value
below which anys value implies that the aggregation approach outperforms the non-aggregation one.

Note that we only show the results fer< 0.5 since this range is viewed as realistic for the stationary
processes considered in this work.

The empirical results show that for a low aggregation lewe2, the cut-off point is relatively low
since 3,=0.2 for a relatively highe value equal to 0.5. In that case, the MSE reduction wied.05
is equal to 8.89% and the MSE ratio decreases for higher valyes ©bviously, the cut-off value
considerably increases when the aggregation level increases. For example, when we consider th
aggregation levein=12, the cut-off point may go up t6,=0.8 for « value equal to 0.5. In that case
the MSE reduction whep=0.05 is equal to 12.13%. This shows the considerable region where the

aggregation approach outperforms the non-aggregation one for high aggregation levels. Hence
increasing the aggregation level improves the performance of the aggregation approach asid the be
results can be achieved for small valuesgpodnd high aggregation levets. These empirical results

generally confirm the theoretical findings.
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a) MA(1) process b) AR(1) process withl<¢ < 0.33
Figure 4. Cut-off points of g implying an outperformance of the aggregation approach for different
values ofa andm.
Figure 4b shows the cut-off poin#, for fixed values ofe and m when the SKUs have a non-

aggregated demand that follows an AR(1) process witky <16.33. The empirical results show that for

a low aggregation leveh=2, low S values should be selected in order to have an outperformance of
the aggregation approach. For example when we use an aggregatiomH@yethe cut-off point
S1=0.33 for ana value equal to 0.5 and the MSE reduction wigerD.05 is equal to 12.45%. The cut-

off points considerably increase when the aggregation level increases. Figure 4b shows also that for a
« value equal to 0.5 and when the aggregation lewdl2, the cut-off poing; is almost equal to 1,
which means that the aggregation approach always outperforms the non-aggregation one in that cas
That results also in a MSE reduction equal to 15.11% that decreases for higher v@uétouafever, it

should be noted that for the SKUs where 0.33<<l, the empirical results show that when the optimal
value of « is used for all values off and m, the non-aggregation approach outperforms the

aggregation one.

The empirical analysis confirms overall the results of the theoretical evaluation both for the MA(1)
and AR(1) procegs What can be concluded here is that there is a considerable range of the fvalues o
the smoothing constant of the aggregated series that implies a benefit of using the aggregation approac
This benefit can also be substantial for high aggregation levels and low smoothing constants. Note the
such analysis can be utilized as an indicator on when the aggregation aroalkchbe used and
which parameters lead to the outperformance of this approach.

7. IMPLICATIONS, CONCLUSIONSAND FURTHER RESEARCH

Aggregation is an appealing approach to reduce demand uncertainty for both fast and slow movinc
items. Moreover, most inventory forecasting software packages support aggregation of data. Althougt
this would typically cover cross-sectional aggregation (i.e. aggregation across series), the considerati
of temporal aggregation has been neglected by software manufacturers although it constitutes a
opportunity for adding more value to their customers. In this paper we have analytically evhleated
effectiveness of the non-overlapping temporal aggregation approach on forecasting peefavimamc
non-aggregate series follow a first order moving average [MA(1)] or a first-order univariate
autoregressive [AR(1)] process Forecasting was assumed to be relying upon a Single Exponential
Smoothing (SES) procedure and the analytical results were complemented by a simulation experimer
on theoretically generated data as well as experimentation with an empirical dataset of a Europeal
superstore.

Although it is true that the fast changing market environment results in many demand processes bein
non-stationary in nature, stationary demands may still constitute a realistic assumption. The empirical
data available for the purposes of our research confirm such a statement and provide support for th
frequency with which both MA(1) and AR(1) processes are encountered in real world applications. We
have analytically considered the entire range of possible moving average and autoregaessieger
values. Negative parameter values result in positive (negative) autocorrelation and positive values ir
negative (positive) autocorrelation under the assumption of a MA(1) (AR(1)) process. Although positive
autocorrelation is intuitively more common in real world data (this was also evidenced in our dataset)
due to the repeat purchasing behavior of most shoppers, negative autocorrelation can be attributed to
‘variety seeking’ behavior and can be present in many product categories too. Finally, SES is a most
commonly employed forecasting procedure in industry and although its application iaphes-
stationary behavior (SES is optimal for an ARIMA(0,1,1) process) the method is unbiased and most
often used for stationary demands as well. In summary, we feel that the problem setting we consider is
very realistic one and our work sets the basis for more studies in this area.
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Analytical developments were based on the consideration of the Mean Squared Error (MSE) before
and after aggregationMSEsa / MSEna) and comparisons were undertaken at the original (non-
aggregated) demand level. The conditions under which one approach outperforms the other wer:
identified and the main findings can be summarized as follows.

First of all, the performance of aggregation was generally found to improve as the aggregation
level increases. The rate of improvement thoigglower for the AR(1) process compared to
MA(1). MSE percentage reductions may be as high as 15% with significant potential
implications for inventory control since the MSE translates directly to safety stocks.
Practitioners should always opt for the highest possible aggregation level. However, it is
important to note that consideration of high aggregation levels is subject to data availability.
Although this progressively becomes less of an issue in modern business settings, clearly
aggregation may not constitute a viable option when short demand histories are available.
Tremendous recent developments in terms of computing storage capacity facilitate the
accumulation of very lengthy series although we have come across situations/companies where
only a few years’ data is stored. In such cases aggregation may not be further considered. Long
historical data series do not only allow fdre more accurate estimation of the series’
components but also permit the application of temporal aggregation approaches.

Second, the performance of aggregation improves as the smoothing constant value employed &
the aggregated series reduces. Our analytical results show that as the level of aggregatiol
increases the auto-correlation of the series reduces necessitating the employment of low
smoothing constant values. This is an important finding from a practitioner perspective since
managers may set such values conveniently low to maximize the benefits derived from the
aggregation approach. The smoothing constant value after aggregation should be generally set t
be smaller than the smoothing constant before aggregation and specific rules and cut-off points
have been offered for making such decisions.

Third, and following from the above, our analysis suggests that there are shades of aggregatior
(at one extreme no data aggregation) and shades of responsiveness of the forecast parameters
). Our findings suggest that the dominant solutions are either pure white (disaggregate data anc
responsive parameters) or pure black (aggregate data and stable forecasting algorithms with lov
). This is, up to a certain extent, an expected outcome given the hypothesized stationarity but: i)
it is not obvious and to the best of our knowledge has never been shown before; ii) it sheds light
to the general trade-off between stable forecast parameters (low smoothing constant values) the
filter noise rather effectively but fail to react to changes in demand quickly and responsive
forecast parameters (relatively haghsmoothing constant values) that however are noise
sensitive.

Fourth, for high levels of positive autocorrelation in the original series the aggregation approach
may be outperformed by the non-aggregation one. This is an intuitive finding since at any time
the most recent demand information is so precious in that case that the disaggregate proces
works better as it fully exploits such recent information. However, on the contrary, for low
positive autocorrelation when the recent demand informagioot that crucial then a more long

term view on demand is preferable, which can be obtained as discussed above by selecting hig
aggregation levels and low smoothing constants. This is also an important empirical insight
since managers may know what to expect (in terms of any potential gains) based on the
autocorrelation levels present in their series.

Our discussions with practitioners have revealed a misconception that aggregation reduces variability
something that is clearly not the case. Aggregation does though reduce the coefficient of variation
leading to lower uncertainty. Practitioners have also expressed concerns with regards to itleyintuit
appealing loss of information associated with temporal aggregation. However, this concern is
conditioned to short demand histories. Should long demand series be available the loss of informatior
resulting from aggregation is outweighed by the benefits of uncertainty reduction.

Given the current under-consideration of temporal aggregation in inventory forecasting software
solutions and given its value as a promising uncertainty reduction time series transformation approact
that this study has revealed, research into any of the following areas would appear to be merited.
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e There is a lack of empirical evidence in the area of temporal aggregation and a gdetd ne
expand the current knowledge base. Research on more extensive datasets (as well as analysis
empirical forecasting performance on measures other than the MSE) should allow a better
understanding of the difficulties and benefits associated with aggregation.

e Expansion of the analytical work discussed in this paper on higher order stationary processes
and more importantly on non-stationary processes is a very important issue both from an
academic and practitioner perspective. Similarly, the consideration of other populastiogeca
methods is an important issue as well.

e The interface between (and the potential of combining) temporal and cross-sectional aggregatior
has received minimal attention both in academia and industry and this is an issue that we plan tc
investigate in the next steps of our research.

e The extension of the work described here to cover inventory/implication metidd allow a
linkage between forecasting and stock control.

e Finally, the analytical and empirical consideration of Integer ARMA (INARMA) processes
offers a great opportunity for advancements in the area of aggregation. Such procesaes bea
considerable relevance to intermittent demands where the benefits of aggregation may be evel
higher due to the reduction of zero observations.
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APPENDIX A: COVARIANCE BETWEEN THE NON-AGGREGATED DEMAND AND
AGGREGATED FORECAST FOR THE MA(1) AND AR(1) PROCESSES

The covariance between the non-aggregated demand and the forecast of aggregated dedmeand can
calculated as follows:

Cold,,F; )=Covd,, 3 B(1— B)*Dy_,) = ACoW(d,, Dy ) +
B p)CoUd,,D,_,)+ f(1— B)>CoUd,,D, ) +... (A-1)

For an MA(1) process, by substituting (3) into (A-1) and conside@iogd,,d, ,)=0 for all k > 1
we have:

CO\(dt P ) = pCoMd,.d,) = Br, (A-2)

For an AR(1) process, by substituting (12) into (A-2) and performing some simplifications, we have

_ BHe 1" _
CO\(dt’FT)_l_¢m+ﬁ¢m 1_¢ (A 3)

APPENDIX B: VARIANCE OF THE AGGREGATED FORECAST FOR THE MA(L) AND
AR(1) PROCESSES

The variance of the aggregated forecast can also be determined as in (10) but with different
parameters. In order to obtain the value of the variance of the forecast error, we need to calculate th
covariance between the aggregated demand and its forecast, tsmiw by deriving the covariance
between the aggregated forecast and the demand in period
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1(1_,3) ) DT—k): (B-l)

Co\(D;,D; ,)+...)

[Ms

CoV(D; ,F; )=CoD;, Y A1~ #)'D;.,) = ACoUD,

plCov(D, Dy ) + (L B)CoUD; , Dy _,) + (1 5)

=~
i

The variance of the forecast after aggregation can be derived as:

Var(FT) = Var(ﬁDT—l + (1_ IB)FT—l) = ﬁz\/ar(DT—l)_'_ (1_ ,B)ZVar(FT 1)

+2p(1- p)CoUD;_,, |:T_l_) (B-2)

For the MA(1) process, by substituti@wv(D;,D; ;) =y, andCov(D;,D;,)=0 forall k>1into
(B-1), we get:
Cov(D;,F; )= py! (B-3)

For the AR(1) procesdyy substitutingCov(D;,D;_,) =y, andCov(D;,D; ) =¢""y, forall k>1
into (B-1) we get:

pri
Cov(D; ,F )= —7—— -
( T T) 1_¢!+ﬂ¢r (B4)
Then, by using the fact thatr(F, )=Var(F,_,) , ColD;,F,)=CovD, ,.F, ) for all k=1 and the fact
that CoVD; ,,D; . )=Var(D, , )=y, for allk (the properties of stationary process) we have:

a) For the MA(1) process by substituti(ig-3) into (B-2):

Bry +2B(1- By,

Var(F, ) = >— 5 (B-5)
b) For the AR(1) process by substituting (B-4) into (B-2):
Var(F, )= Byo + 2:3(1_:3)71 (B-6)

C2-p8 (2-pN1-¢'+ B9

APPENDIX C. PROOF OF THEOREM 1

By consideringvSE,,/MSE,, >1 and some simplifications, the quadratic function given by (C-1) should
be negative

(20 — 2m0)B? + (MPn + m(L+ 67) + 2me) S — 2mPy (C-1)
where
2
77:a+a9 +2a6?. (C-2)
2—«a

Moreover, ly investigating the sign of (C-1) we can obtain the conditions under which
MSE;,/MSE,, is smaller, equal and greater than one. Now, we verify if the quadratic function (C-1)

has real roots. To do so, we define the discriminaot (C-1) as follows

A = ((mPn + ML+ 62) + 2mo) | + 826 — 2mo)niyy (C-3)

23



Now we use the fact thatl< 8 <1, O<a <l andm=>2 to obtain the values oh. If A<O it
means that (C-1) has no real roots and ¥ Oit means (C-1) has two real roots. We can show shat
in (C-3) is always positive, therefore (C-1) has two different roots denotgl agd S, , whereg, is
defined in (31) and

(M%7 + m(L+ 62) + 2mé) \/((m;r’;; m(+ HZ)J 820 - 2m¢9)m277]
+

(C-4)

pe= 226 - 2mo)
We can show that i <0 , 5, is always smaller than zero alk £, <lor 1< g, andé>0, g, is
greater than one andl< g, <lorl< g, .
We know that the sign of the (D-1) between the two roots g, and £, is opposite to the sign of
A, where A=(20-2m@) is the sign of the coefficient of °, Otherwise it is that the same as
the sign of A. Now by considering g,, £, and A that is positive forg <0 and negative fore >0,
we determine the sign of (C-1). So we have
= If <0, B, is always smaller than zerd. 0< £, then (C-1) is negative in the interval
[ B>, p1] and it is positive outside this interval.
» If >0, B, is greater than one amee can show that 0< g, < 3, thus (C-1) is positive in
the interval [ S,, ,] and it is negative outside this interval.
From the above expressions we can see that when g < g,, (C-1) is negative, otherwise when
S > p,, itis positive and when g = 3, (C-1) is equal to zero. Equivalently
» If p<p,, the ratio of MSE,,/MSE,, is greater than one and consequently the

aggregation approach outperforms non-aggregatiorapproach.
» If g=p,, the ratio of MSE,,/MSE,, is equal to one and both strategies perform equally

» If g>p,, the ratio of MSE,,/MSE,, is smaller than one and the non-aggregation
approach outperforms the aggregation approach.

APPENDIX D: SELECTION PROCEDURE FOR THE AR(1) PROCESS

ConsideringMSE,,/MSE,, >1 is equivalent to having the quadratic function (D-1) negative, which
subsequently is equivaletat
(6709~ 219z, + 2ml—g") gm0 g )57
+-pmJa- g + 21-9)z, - amgli- g™ ? 2™ (1~ P+ w2 L™ - )5 (D-1)
—2m?{1-¢™1-¢)
For the quadratic function given by (D-1), the value of the discriminaand the roots3, and 3,
can be defined as follows:

=(1-¢™)a-9), + AL 9)z, — Amgl— ¢ ) - 2mPP" (A g+ M (L- 4" N1~ 40)  (D-2)
+ 8" p), - A1 P)z, + 2mplL— $7 )+ MPP (L Pl kP (L g™ N1 g)7)

g™ gl + 21— gl — amgl— g™ - 20Pp™ (1= g+ ML g™ 1 gl )+ VA)
. (D-3)

has R I S L Y

oo™ )y + 20— 9l — amgla— g™)- 202%™ 1= gy Pl g™ - ghi)- V) (0-a)
2p™a- )zt - 21— ), + 2mgl— g™ ]+ mZp™ (- g)y)
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where

& =(m+ Ez(m—k);b"j , (D-5)

&= (Z kg* +§k¢2”] , (D-6)

y= (—3a¢+a+a2¢). (D-7)
2-a)l-¢+ap)

We define the coefficient gf#* in (D-1) as follows

A=g"(1- )z, — A1 P)E, + 2mg(1— g™ )+ mPg™ (1— )7 . (D-8)

1. if A< Othen the non-aggregation approach is always provides more accurate forecasts, otherwise
» If B, < B < B then the aggregation approach works better.

» If g=p, = p,then both approaches are identical.
» If g> p,and/or g < S, then the non-aggregation approach works better.

APPENDIX E: PROOF OF THEOREM 2 AND THEOREM 3

Case 1. Using the fact tha3<¢ <1, m>2 and by considering the optimal smoothing constant,
o’ =(3¢-1)/2¢ used to calculatdISE,,, we can show that the discriminafitdefined in(D-2) is

negative, so there is no real root for (D-1). Consequently, the sign of (D-1) is the same asdha sign
defined in (D-2), we can show that the signfos always positive, therefore (D-1) is always positive

and MSE,, /MSE,, is smaller than one. Hence, the non-aggregation approach always works better for

the whole range gf and for any value of the aggregation lewvel,

Case 2. —1< ¢ <1/3. Using the fact that 1< ¢ <1/3, m> 2 and by considering the small value of the
smoothing constant before aggregatian,< 0.05, it is straightforward to show that the discriminant
definedin (D-2) is positive, so (D-1) has two different roots denoteggpynd 5, defined ifD-3) and
(D-4) respectively.

We can show that the value gf is either less than zero or greater than one. Now by considering the
roots f,, S, and the sign oA, whereA is defined in (D-8), we can determine the sign of (D-1) and
consequently show the superiority of eaghroach.

= If 8,<0 andg, >0, then (D-1) is negative in the interval [ B,, f;] and it is positive
outside this interval.
= If g, >1, we can show that O< 3, < 8, and (D-1) is positive in the interval [ ,, #,] and

it is negative outside this interval.
= Now from the above expressions we can get the following results:

*|f p <p1, thenMSE,,/MSE,, >1.
= |f g = p1, thenMSE,, /MSE,, =1.
= Otherwise,MSE,,/MSE,, <1.
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