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Abstract. This paper addresses a problem arising in the reverse en-
gineering of solid models from depth-maps. We wish to identify and fit
surfaces of known type wherever these are a good fit. This paper presents
a set of methods for the least-squares fitting of spheres, cylinders, cones
and tori to three-dimensional point data. Least-squares fitting of surfaces
other planes, even of simple geometric type, has been little studied.
Our method has the particular advantage of being robust in the sense
that as the principal curvatures of the surfaces being fitted decrease (or
become more equal), the results which are returned naturally become
closer and closer to those surfaces of ‘simpler type’, i.e. planes, cylinders,
cones, or spheres which best describe the data, unlike other methods
which may diverge as various parameters or their combination become
infinite.

1 Introduction

The motivation for this paper lies in reverse engineering of the geometric shape
of simple mechanical components. A laser scanner is used to capture three-
dimensional point data from the surface of an object. From this we wish to con-
struct a boundary representation solid model of the object’s shape. In particular,
we wish to identify and fit particular simple surfaces to portions of the boundary
wherever these are in good agreement with the point data. The problem can
be decomposed into two logical steps: segmentation, where the data points are
grouped into sets each belonging to a different surface, and fitting, where the best
surface of an appropriate type is fitted to each set of points. The new results
in this paper concern the latter problem, but we first outline the segmentation
method used, as it has a significant effect on the final model created. We present
new results on the fitting of spheres, cylinders, cones and tori, after giving a
review of previous approaches. Detailed analysis and explicit formulae for the
partial derivatives used in the non-linear least-squares optimisation can be found
in [16].
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Fig. 1. Initial 3D data; seed placement

2 Segmentation

Segmentation is the problem of grouping the points in the original dataset
into subsets each of which logically belongs to a single primitive surface. Var-
ious approaches exist for segmenting simple surfaces from three-dimensional
data [1,2,3,5,7,10,15]. Most commonly, segmentation is treated as a local-to-
global aggregation problem with similarity constraints employed to control the
process. Often several stages are required, mostly applied in a sequential fashion,
ranging from the estimation of local surface properties such as curvature, to
more complex feature clustering such as symmetry seeking. Typically, small
initial seed regions are chosen at random positions. These are then grown and
homogeneous regions are merged together. However, such approaches tend to
isolate the segmentation stage from the representation stage with the result
that the data partitioning may not agree well with the given primitive types. In
addition, the sensitivity of these methods to noise in the data (especially outliers)
may also lead to misclassification and, hence, poor results [12]. An efficient and
reliable segmentation process thus depends on employing geometric knowledge
of the primitive types, firstly, to guide the detection and grouping processes,
and secondly, to assure the coherence and consistency of models throughout the
whole segmentation process [1].

The approach used for segmentation in our reverse engineering project is the
recover and select paradigm of Leonardis et al.[11,13,12,14]. Here an iterative
process recovers and selects specific instances of the required geometric primitives
(planes, spheres, cylinders, cones and tori). The basic approach partitions the
data according to primitives by choosing the models such that the description
is best in terms of global shape and error of fit. Initially seed regions are placed
at arbitrary locations in the data and models of each primitive approximated
(Fig. 1). Grossly mismatching models may be rejected at this stage. An iterative
grow and select phase is then operated. All valid models are grown for an equal
number of steps (see left of Fig. 2); note that the models are allowed to overlap.
The resulting models are then inspected and some are selected for further grow-
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Fig. 2. Grown and selected regions at an intermediate stage; final segmentation

ing. Optimal models from the overlapping sets are selected on the basis of the
following criteria:

Area — the number of image elements contained in the model

Error of Fit — the maximum or average distance to the model

Quality of Fit — the number of parameters used to describe the model

Surface Type — the class of surface of the model

When different models have similar goodness of fit, some types of model may
be preferred to others, and the Surface Type is used to impose an ordering of
selection in the way suggested by Besl and Jain [2,3]. This is, typically, done in
terms of increasing surface type complexity (i.e. plane, sphere, cylinder, cone,
torus), where the simpler surface would be chosen first. A weighted sum of the
above criteria is used as a cost-benefit measure to select the optimal model or
models.

Models that simply have a poor error of fit (even if not overlapping other
models) are also rejected at the selection stage.

The rest of this paper discusses novel fitting methods for spheres, cylinders,
cones and tori which are used in this segmentation framework.

3 Surface Fit and General Nonlinear Least-Squares

Initially, we outline some basic concepts for least-squares fitting of simple geo-
metric surfaces, and then review previous approaches to this problem.

Let us assume that each of the three-dimensional points pi for i = 1, . . . , m
lies close to the same member of a family of surfaces which can be parameterized
by s ∈ G ⊆ Rs where G is an open set. Let d be a function which is defined as
the distance of the point pi ∈ R3 from that surface in the family identified by s.
Throughout, d will be called the ‘true’ distance function of the surface (fitting
methods generally rely on approximations to this distance as will be explained
later).
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A surface which goes through all the points can be viewed as that member
of the family which corresponds to the solution of the simultaneous system of m
equations:

d(s,pi) = 0, for i = 1, . . . , m. (1)

Since the number of pointsm is usually much greater than the number of degrees
of freedom s, this system of equations is overdetermined and in general cannot
be solved. However it is possible to solve it in the least-squares sense, i.e. to find
that surface which is the best fit to the points ‘on the average’, minimising

m∑

i=1

d(s,pi)
2 (2)

Sometimes we may have additional non-linear constraints expressed as

H(s) = 0 ∈ Rt (3)

for t < s. For example, the surface form in use might describe a general quadric,
but we may wish to impose that the surface found is a cylinder, which can by
done by imposing constraints on s. Using the principle of Lagrangian multipliers
to include these constraints, a non-linear generalised eigenvalue problem results,
which is not easy to solve. A simpler approach is to use Eqn. 3 to eliminate t
unknowns, to reduce the problem to an unconstrained optimisation problem in
a lower dimensional space. This is the method we use.
Usually the family of surfaces is defined as points satisfying an implicit

equation:

f(s,x) = 0, for x ∈ R3, (4)

where s is the family parameter. Although if we fix s, f and d have the same roots
in space, they may behave quite differently for points which do not lie on the
surface. Thus, if instead of Expression 2, one minimises

∑
f2 this may give quite

different results. However, this approach can be justified if both the function f
and the constraint H in Eqn. 3 are of particularly simple form. If f is linear
and H is quadratic in terms of the parameters then linear generalised eigenvalue
techniques work (e.g. see [8]). If f is non-linear but H is still quadratic then
one can try Taubin’s generalised eigenvector fit [21]. Nevertheless, the choice
of form for f influences the behaviour of the non-linear fitting algorithm, and
consequently the quality of the solution. For fitting ellipses, Rosin [20] shows
that choosing f carelessly can lead to severely biassed estimates for s. Below
we give ‘fairly good’ f functions (i.e. for which f behaves much like d near the
surface) which are highly non-linear, and which have no additional constraints
on the parameters s.

4 Approximating the True Distance

As far as possible one has to avoid singularities of d(s,pi) in the range where
solutions may lie. These may be places where some denominator in d(s,pi)
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vanishes, or where the distance function is not differentiable. Using Euclidean
metrics such singularities arise frequently since the Euclidean distance from a
given fixed point is itself singular in this sense. Nevertheless, most of these
nonlinear singularities are only computational, i.e. inessential discontinuities in
the mathematical sense, meaning that a limiting value of the distance function
can still be found for the critical parameter value. Even so, the computation of
the distance function (or its derivatives) can be unstable at such points, since it
may require the subtraction of similar quantities etc.
Avoiding the effects of singularities uses various techniques. Firstly, one uses

a suitable parameterization where the critical values do not lie on the border
of G. Secondly, one changes the definition of d(s,pi) slightly in order to get rid
of singularities. We shall say that this modified definition is faithful to the true
Euclidean distance function if, firstly, the function is 0 where the true distance is
0, and, secondly, at these points, the derivatives with respect to the parameters
are the same for the true distance and the modified definition.
Faithful distance functions can be obtained if one approximates square roots

within d(s,pi) in the following way. Suppose that the distance function is of the
following form:

d(s,pi) =
√
g − h, (5)

where both g and h may depend on the parameter vector s and on the point pi
in three space. In order to get rid of the square root we might try to minimise∑
(g − h2)2 instead of Eqn. 2 since d = 0 when g = h2. Unfortunately, the

effect is now that we are searching for the surface which fits best in terms of the
square of the distance instead of the distance. This transformation undesirably
amplifies the importance of the further points, and flattens the goal function in
the neighbourhood of the solution. Instead, let us put

d̃ =
g − h2
2h

= d+
d2

2h
. (6)

and let us minimise

∑
d̃2(s,pi) =

∑ (
g(s,pi) − h2(s,pi)

)2

4h2(s,pi)
. (7)

Under very general assumptions (see [16]), this function is faithful to the Euclid-
ean distance.
In summary, in our approach we start with an exact expression for the dis-

tance d. This is replaced by a simplification which is easier to compute, but which
still has the same zero set and derivatives at the zero set. In contrast, similar work
by Taubin [21] starts from a parameterized family of implicit functions f = 0.
He notes that while f itself is not a good approximation to d, f/|∇f | is much
better, i.e. he replaces the original implicit function with a new one whose value
is a better approximation to d. Although Taubin does not state so explicitly, it is
clear that it is better because the derivatives with respect to spatial parameters of
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this function are the same as those of the distance function. In practice Taubin’s
approach can be used only if f is linear with respect to the parameters, and the
system to be solved then includes a quadratic constraint. Another difference is
that our approach is better behaved with respect to singularities.

5 Fitting Spheres, Cylinders, Cones and Tori

The linear least-squares fitting of second order curves and surfaces has been
considered by several authors recently (see [18], [19], [9], [8]). However, specific
linear methods still do not exist for right cylinders and cones—the reason is
that the equations expressing the conditions for a quadric to be a right cylinder
or a cone are not quadratic. If general linear methods are used for algebraic
second order surfaces the solutions found are usually not right cylinders or cones
and may even be very different from the optimum surfaces of such type. In this
sense, algebraic techniques which use the value of the implicit quadratic form as
the ‘distance’ from the surface approximate the true geometric distance in an
unfaithful way.

The situation is much simpler for spheres since straightforward algebraic
methods work in this case: under a suitable normalisation the minimised al-
gebraic distance will reflect the geometric distance as well. For example, the
method in [18] minimises

∑

i

(
A(x2i + y

2
i + z

2
i ) +Dxi +Eyi + Fzi +G

)2
(8)

under the condition

D2 + E2 + F 2 − 4AG = 1 (9)

which is basically equivalent to our minimisation in Eqn. 7. (Note that the simple
constraintA = 1 may give quite unfaithful results as shown in [18].) Nevertheless,
we give our non-linear method for spheres in the next section as an illustration
of our method, as it has certain advantages.

Nonlinear methods which take into account the true geometric distance
match well with the requirements of our reverse engineering method. Those
points belonging to the same surface are selected by means of a segmentation
technique which usually provides an initial approximation for the parameters of
each surface. Starting from these, at the expense of some computing time, one
can obtain a more accurate fit. Our nonlinear methods also work well in other
applications where an initial approximate fit for the surface is known.

Earlier nonlinear estimation approaches usually worked with cylinders and
spheres. As a rule the equations contain positional parameters of centres or axes
and so they become ill-conditioned in limiting situations (see e.g. [4]), which is
unacceptable if automatic segmentation is the objective. Our nonlinear methods
have been carefully designed to overcome this problem.
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5.1 Sphere Fitting

For non-linear least-squares fit the parameterization of the sphere will be the
following. Suppose that the closest point of the sphere (not its centre) to the
origin is ̺n, where |n| = 1 and the radius of the sphere is 1/k. Then if p is an
arbitrary point in space, the distance of this point from the surface of the sphere
is:

d(s,p) =

∣∣∣∣p− (̺+
1

k
)n

∣∣∣∣−
1

k
=

√
〈p− (̺+ 1

k
)n,p− (̺+ 1

k
)n〉 − 1

k
(10)

Since this function is of the form Eqn. 5 we can apply Approximation 6 to give

d̃(s,p) =
k

2

(
|p|2− 2̺〈p,n〉+ ̺2

)
+ ̺− 〈p,n〉, (11)

or if one introduces the notation

p̂ = p− ̺n, (12)

one obtains

d̃(s,p) =
k

2
|p̂|2 − 〈p̂,n〉. (13)

Note that here p̂ is the expression of p with respect to an origin at ̺n. Now let
us parameterize n using polar coordinates, so in the usual way

n = (cosϕ sinϑ, sinϕ sinϑ, cosϑ) , (14)

where ϑ is the angle between n and the z axis and ϕ is the angle between the
projection of n onto the plane z = 0 and the x axis. Differentiating n with respect
to ϕ and ϑ one obtains two partial derivative vectors which are orthogonal to
each other and to n (superscripts denote derivatives); these will be used later:

nϕ = (− sinϕ sinϑ, cosϕ sinϑ, 0) (15)

nϑ = (cosϕ cosϑ, sinϕ cos ϑ,− sinϑ) . (16)

Thus n and hence d̃ can be parameterized without constraints by s = (̺, ϕ, ϑ, k).
Note that unlike Expression 8, Eqn. 11 is nonlinear but it behaves well as

the curvature of the sphere decreases, as in that case, k → 0, all the terms are
bounded, and Eqn. 11 reduces to the expression that would be used for least-
squares plane fitting. In contrast, observe that some of the terms will tend to
infinity both in the objective function given in Eqn. 8and in the constraint given
in Eqn. 9.

5.2 Right Circular Cylinder Fitting

The parameterization used for the cylinder is similar to that for the sphere. The
closest point of the cylinder to the origin is ̺n, where |n| = 1. Assume that
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n O

p
i

Fig. 3. Parameterization of the cylinder

the direction of the axis of the cylinder is a with |a| = 1, and the radius of the
cylinder is 1/k. Note that 〈n, a〉 = 0. Now let us suppose that p is an arbitrary
point in space whose distance from the surface of the cylinder is to be found. This
is done by finding its distance from the symmetry axis and from that subtracting
the radius of the cylinder (see Fig. 3):

d(s,p) =

∣∣∣∣(p− (̺+
1

k
)n)× a

∣∣∣∣ −
1

k

=

√
|p− (̺+ 1

k
)n|2 − 〈p− (̺+ 1

k
)n, a〉2 − 1

k
(17)

Since this function is of the form in Eqn. 5 we can apply Approximation 6 to
obtain

d̃(s,p) =
k

2

(
|p|2− 2̺〈p,n〉 − 〈p, a〉2 + ̺2

)
+ ̺− 〈p,n〉 = k

2
|p̂× a|2 − 〈p̂,n〉,

(18)

where p̂ = p− ̺n as in Eqn. 12. Using appropriate parameterizations for n and
a we wish to minimise the function

∑

i

d̃2(s,pi).

Let us make some observations about the right hand side of Eqn. 18. Firstly, it
is linear in the curvature k if all other parameters are fixed, which results in a
separable non-linear least squares problem (see e.g. [6]). Such problems can be
easier to solve than the fully non-linear case. Clearly, an initial estimate for k
is not needed if we have estimates for the other parameters, as an initial value
for k can be found by solving a linear least-squares problem in which all other
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parameters are fixed. Note that Eqn. 18 behaves well as k gets smaller (̺ is
bounded within sensible limits by the geometric configuration of the scanner);
compare Eqn. 17 which subtracts two large quantities as k becomes small. In
the limit as k → 0 we get d̃ = ̺− 〈p,n〉, and as before the problem reduces to
linear least-squares fitting of a plane.
Again, we wish to parameterize n and a to satisfy the constraints

|n| = |a| = 1, 〈n, a〉 = 0;

again we use polar coordinates. The parameterization for n was introduced in
Eqn. 14, and Eqns. 15 and 16 are the partial derivatives of n. Thus if we put

nϕ = (− sinϕ, cosϕ, 0) = nϕ

sinϑ
, (19)

then nϑ, nϕand n form an orthonormal basis. Thus we can parameterize a as
follows:

a = nϑ cosα+ nϕ sinα, (20)

where α is the angle between a and nϑ. Thus, n and a are parameterized through
ϕ, ϑ and α by means of Eqns. 14, 16, 19 and 20.

5.3 Right Circular Cone Fitting

The parameterization used for the cone is similar to that for the cylinder. Let ̺n
with |n| = 1 be that point on the cone surface for which a line in the direction of
the surface normal passes through the origin. (Hence n is a normal to the cone.)
Let the non-zero principal curvature of the cone at the point ̺n be k. Let us
denote the unit direction of the axis of the cone by a. n is parameterized by ϕ
and ϑ as in Eqn. 14. Since n and a are not in this case perpendicular, a can be
parameterized freely by two polar coordinate angles, σ and τ

a = (cosσ sin τ, sinσ sin τ, cos τ ) , (21)

where τ is the angle between a and the z axis and σ is the angle between
the projection of a onto the plane z = 0 and the x axis. The six parameters
(̺, ϕ, ϑ, k, σ, τ) characterise the right circular cone surface.
In order to understand how this works, let the half angle of the cone be ψ

(see Fig. 4), and the position of the apex of the cone be c; we shall express ψ
and c using the above parameters later. Let the angle between the axis of the
cone and p−c be ω. Using these, the distance of p, an arbitrary point, from the
cone surface is given by (note that p may not lie in the plane of n and a)

d(s,p) = |p− c| sin(ω − ψ) = |p− c| sinω cosψ − |p− c| cosω sinψ.

Without loss of generality we can suppose that both ψ and ω are acute angles.
Since the direction of the axis, a is a unit vector we have:

d(s,p) = |(p− c) × a| cosψ − |〈p− c, a〉| sinψ. (22)
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Fig. 4. Parameterization of the cone

Moreover since the angle between n and a is the complementary angle to ψ we
have:

cosψ = |n× a| sinψ = |〈n, a〉|. (23)

Thus from Eqn. 22 one obtains:

d(s,p) = |(p− c) × a| |n× a| − |〈p− c, a〉〈n, a〉|

= |n× a|
√
|p− c|2 − 〈p− c, a〉2 − |〈n, a〉〈p− c, a〉| .

(24)

Again this function is of the form given in Eqn. 5, and using Approximation 6
gives

d̃(s,p) =
|p− c|2 cos2 ψ − 〈p− c, a〉2

2〈p− c, a〉 sinψ =
|p− c|2 |n× a|2 − 〈p− c, a〉2

2〈p− c, a〉〈n, a〉 . (25)

We now express the position of the apex c in terms of the normal vector n(ϕ, ϑ),
the distance ̺, the curvature k and the axis of the cone a(σ, τ ):

c = (̺+
1

k
)n+ γa.

Now 〈c,n〉 = ̺, so γ = −1/(k〈n, a〉), and thus

c = (̺+
1

k
)n− a

k〈n, a〉 . (26)

Substituting this into Eqn. 25 one obtains (again p̂ = p− ̺n)

d̃ =
|n× a|2

(
|p̂− n/k|2− 〈p̂− n/k, a〉2

)
− (〈p̂− n/k, a〉〈n, a〉+ 1/k)2

2 (〈p̂− n/k, a〉〈n, a〉+ 1/k) ,
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Using Pythagoras’ theorem it is easy to see that the coefficient of 1/k2 in the
numerator is zero. Multiplying both the numerator and the denominator by k
we arrive at

d̃(s,p) =
k
2
(|n× a|2|p̂|2 − 〈p̂, a〉2)− 〈p̂,n〉|n× a|2

k〈p̂, a〉〈n, a〉+ |n× a|2 . (27)

5.4 Torus Fitting

Our approach for tori is again similar. A torus can be parameterized through
seven unconstrained parameters. A torus can be obtained as a surface swept
by a circular disc rotated around an axis in the plane of the circle. We call
the radius of the disc the ‘minor radius’ and the distance of the centre of the
disc from the axis the ‘major radius’ of the torus. Tori whose major radius is
smaller then the minor one can also be considered. In this case the resulting
surface is self-intersecting, and it is necessary to distinguish the different parts
in the following. The smaller arcs sweep a ‘lemon-torus’ (i.e. the inner part of
the torus surface), while the larger arcs sweep an ‘apple-torus’ (i.e. the outer
part of the torus surface); we will also refer to a non-self-intersecting torus as
‘apple-shaped’. In special cases the torus may degenerate into a sphere, as the
major radius vanishes, or or into a cone, as the minor radius tends to infinity. Our
equations appropriately reduce to those for sphere or cone fitting. (If the major
radius tends to infinity the torus becomes a cylinder. This case will be singular,
but mathematically will be close to the cylinder fit.) The parameterization used
for the torus is the following. As before, the point on the torus where a line
through the surface normal passes through the origin is ̺n, where |n| = 1. The
principal curvature of the torus corresponding to the minor radius at the point
̺n is k (i.e. the radius of the disk is 1/k). The other principal curvature is s,
and the corresponding centre of curvature lies on the axis of the torus. Let the
unit direction vector of the torus axis be a. (See Fig. 5.) We parameterize n by
ϕ and ϑ as in Eqn. 14 and the unit vector a as in Eqn. 21:

a = (cos σ sin τ, sinσ sin τ, cos τ ) .

The unconstrained parameters (̺, ϕ, ϑ, k, s, σ, τ) entirely characterise the torus
surface.
We may now state (the proof may be found in [16]) that a non-linear distance

function for tori which is faithful up to the first derivative is

d̃(s,p) = d̃0(̺, ϕ, ϑ, k,p)− δǫ(̺, ϕ, ϑ, k, s, σ, τ,p) (28)

where d̃0 is the approximate distance function for the sphere given in Eqn. 11:

d̃0 =
k

2

(
|p|2 − 2̺〈p,n〉+ ̺2

)
+ ̺− 〈p,n〉 = k

2
|p̂|2 − 〈p̂,n〉,

while

δǫ = (
k

s
− 1)

[
ǫ · sign(k

2

s
− k)|(p̂− n/s) × a||n× a|+ 〈(p̂− n/s)× a,n× a〉,

]

(29)
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Fig. 5. Parameterization of the torus

where ǫ = +1 for an apple torus surface and ǫ = −1 for a lemon torus surface.
This function behaves well in limiting situations. If k = s then from Eqn. 29

we simply get the distance expression for a sphere given in Eqn. 13. If k→ 0 and
s is bounded from below then either for ǫ = −1 or for ǫ = +1 we get the distance
expression for a cone given in Eqn. 24. If s → 0 then Eqn. 28 degenerates to
the distance function of a cylinder given in Eqn. 18 with axis direction n × a.
(See [16].)

6 Initial Estimates

To find the solution of any of the above nonlinear least-squares problems, an
iterative technique is used; in practice we use the Levenberg-Marquardt method
(see [6]). Any such algorithm requires some good initial estimate of the solution
which is then refined. Here we give one method of finding such initial estimates.
The first step of this process is to find an estimate of the rotational axis

(except for sphere fitting). A method is given to do this in [16] which is based
only on estimates of the surface normal vector. It computes the axis from a
number of four-tuples of normals. An alternative approach which finds the best
(least-squares) rotational axis has recently been suggested by Pottmann [17].
We then pick a surface point at which we have a normal vector estimate and

locate the origin at this point, which we call the ‘base point’. Thus we have an
estimate for n and hence ϕ, ϑ; the initial estimate for ̺ is 0. (Note that the
solution surface need not pass through the base point, since ̺ can change.)
For sphere fitting, these values alone are sufficient, and an estimate for k can

now be found by solving a linear least-squares problem as mentioned earlier.
For cylinder fitting, we adjust the normal to be perpendicular to the axis.

We then compute α as the angle between a and nϑ and compute the distance
of the base point from the axis, which is 1/k signed with the direction of n.
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Fig. 6. Simulated part depth-map; seed placement

Fig. 7. Simulated part intermediate grown regions; final segmentation

In the case of cone fitting, after estimating the rotational axis a we compute
the distance of the base point from the axis along the estimated normal line in
order to obtain 1/k.

In the torus case, for better conditioning one has to pick a base point at
which the normal subtends as large an angle as possible with the estimated axis.
We get 1/s as the distance along the normal between the base point and the
estimated axis. For simplicity, we can put k = 0 (i.e. start from a cone) and try
fitting both ǫ = +1 (apple-torus) and ǫ = −1 (lemon-torus). More robustly, one
can opt to estimate principal curvatures of the surface at the base point. As s
is one of the principal curvatures we can compute the other, k, even if we only
estimate the Gaussian curvature. We can then determine ǫ by noting on which
sheet of the torus the base point lies. Thus ǫ = +1 if |k| > |s| or ks < 0 and
ǫ = −1 otherwise (the decision should be clear provided we have chosen a well
placed base point as described above). We assume here that the point set being
fitted does not contain points belonging to both the apple and lemon sheets
of the same torus simultaneously. This is very unlikely to happen in practice,
but if it is considered to be a possibility, before fitting we should separate the
points into two sets, one for each sheet, using curvature estimates and the given
criterion.
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Fig. 8. Heriot-Watt part depth-map; seed placement

Fig. 9. Heriot-Watt part intermediate grown regions; final segmentation

7 Results and Conclusion

The fitting routines described in this paper have been tested using the segmen-
tation approach outlined earlier. In the case of simulated 3D point data, which
was accurate to five significant digits, in all cases the models recovered fitted
the data to an accuracy of at least four significant digits, and segmentations
consistent with the underlying geometric primitives were obtained. An example
of the final segmentation obtained for the peg composed of a cylinder and sphere
shown in Fig. 1 is given in Fig. 2. A further example containing a cone, a cylinder
and two spheres is shown in Figs. 6 and 7.
Our fitting methods also work well in practice with real scanner data, which

is somewhat less accurate than the simulated data. The segmentation process
for a depth-map of the well-known ‘Heriot-Watt’ test part captured using a 3D
Scanners Replica device is illustrated in Figs. 8 and 9. The segmentation results
here are not as clean as for the simulated parts, but are adequate for input to
the further model building processes of our reverse engineering system.
Whilst our motivation is the reverse engineering of boundary representation

solid models from three-dimensional depth-maps of scanned objects, we believe
that the fitting methods described in this paper are of interest to the computer
vision and CAD communities in general.



Fitting of Spheres, Cylinders, Cones and Tori 685

In summary, we have described novel methods for the least-squares fitting of
spheres, cylinders, cones and tori to point data. We have outlined how they can
be used in a segmentation strategy that is capable of extracting these surfaces
from three-dimensional data. Initial results show that the accuracy achieved by
these methods is good, although space limitations preclude a full presentation
here. Our fitting methods have the major advantage of being robust in the sense
that as the principal curvatures of the surfaces being fitted decrease (or as they
become more equal), the results which are returned naturally become closer and
closer to surfaces of ‘simpler type’, i.e. planes, cylinders, or cones (or spheres,
in the case of equal curvatures) which best describe the data. Furthermore, our
methods inherently avoid all singularities (except in the case of the torus, for
which the problem can readily be overcome by choosing the origin appropriately).
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