Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A Cenozoic record of the equatorial Pacific carbonate compensation depth

Pälike, Heiko, Lyle, Mitchell W., Nishi, Hiroshi, Raffi, Isabella, Ridgwell, Andy, Gamage, Kusali, Klaus, Adam, Acton, Gary, Anderson, Louise, Backman, Jan, Baldauf, Jack, Beltran, Catherine, Bohaty, Steven M., Bown, Paul, Busch, William, Channell, Jim E. T., Chun, Cecily O. J., Delaney, Margaret, Dewangan, Pawan, Dunkley Jones, Tom, Edgar, Kirsty M., Evans, Helen, Fitch, Peter, Foster, Gavin L., Gussone, Nikolaus, Hasegawa, Hitoshi, Hathorne, Ed C., Hayashi, Hiroki, Herrle, Jens O., Holbourn, Ann, Hovan, Steve, Hyeong, Kiseong, Iijima, Koichi, Ito, Takashi, Kamikuri, Shin-ichi, Kimoto, Katsunori, Kuroda, Junichiro, Leon-Rodriguez, Lizette, Malinverno, Alberto, Moore Jr, Ted C., Murphy, Brandon H., Murphy, Daniel P., Nakamura, Hideto, Ogane, Kaoru, Ohneiser, Christian, Richter, Carl, Robinson, Rebecca, Rohling, Eelco J., Romero, Oscar, Sawada, Ken, Scher, Howie, Schneider, Leah, Sluijs, Appy, Takata, Hiroyuki, Tian, Jun, Tsujimoto, Akira, Wade, Bridget S., Westerhold, Thomas, Wilkens, Roy, Williams, Trevor, Wilson, Paul A., Yamamoto, Yuhji, Yamamoto, Shinya, Yamazaki, Toshitsugu and Zeebe, Richard E. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488 (7413) , pp. 609-614. 10.1038/nature11360

Full text not available from this repository.

Abstract

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Subjects: Q Science > QE Geology
Uncontrolled Keywords: Earth sciences; Geology; Geophysics; Climate science
Publisher: Nature Publishing Group
ISSN: 0028-0836
Last Modified: 19 Mar 2016 23:03
URI: https://orca.cardiff.ac.uk/id/eprint/36686

Citation Data

Cited 287 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item