Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Horizon area-angular momentum inequality in higher-dimensional spacetimes

Hollands, Stefan 2012. Horizon area-angular momentum inequality in higher-dimensional spacetimes. Classical and Quantum Gravity 29 (6) , 065006. 10.1088/0264-9381/29/6/065006

Full text not available from this repository.


We consider n-dimensional spacetimes which are axisymmetric—but not necessarily stationary—in the sense of having isometry group U(1)n − 3 and which satisfy the Einstein equations with a non-negative cosmological constant. We show that any black hole horizon must have area , where J± are distinguished components of the angular momentum corresponding to linear combinations of the rotational Killing fields that vanish somewhere on the horizon. In the case of n = 4, where there is only one angular momentum component J+ = J−, we recover an inequality of Acena et al. Our work can hence be viewed as a generalization of this result to higher dimensions. In the case of n = 5 with horizon of topology S1 × S2, the quantities J+ = J− are the same angular momentum component (in the S2-direction). In the case of n = 5 with horizon topology S3, the quantities J+, J− are the distinct components of the angular momentum. We also show that, in all dimensions, the inequality is saturated if the metric is a so-called near horizon geometry. Our argument is entirely quasi-local, and hence also applies e.g. to any stably outer marginally trapped surface.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Mathematics
Subjects: Q Science > QA Mathematics
Publisher: Institute of Physics
ISSN: 0264-9381
Last Modified: 10 Oct 2017 14:32

Citation Data

Cited 17 times in Google Scholar. View in Google Scholar

Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item