Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer

Patani, Neill, Jiang, Wen Guo and Mokbel, Kefah 2011. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell International 11 , pp. 23-30. 10.1186/1475-2867-11-23

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Introduction Brain-derived neurotrophic factor (BDNF) has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC). However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007). The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009). Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047). Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR) (p = 0.0014), death from BC (p = 0.018) and poor prognosis overall (p = 0.013). After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS) (106 vs. 136 months, p = 0.006). BDNF emerged as an independent prognostic variable in multivariate analysis for disease free survival (DFS) (p = 0.026) and approached significance for OS (p = 0.055). Conclusion BDNF expression was found to be significantly higher in BC specimens compared to normal tissue. Higher transcript levels were significantly associated with unfavourable pathological parameters including nodal positivity and increasing NPI; and adverse clinical outcomes including LR, death from BC, poor prognosis, reduced DFS and OS. BDNF offers utility as a prognostic marker and potential for targeted therapeutic strategies.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
Publisher: BioMed Central
ISSN: 1475-2867
Date of First Compliant Deposit: 30 March 2016
Last Modified: 04 Jun 2017 03:53
URI: http://orca-mwe.cf.ac.uk/id/eprint/28752

Citation Data

Cited 42 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics