Geographic and Temporal Trends in Isolation and Antifungal Susceptibility of *Candida parapsilosis*: a Global Assessment from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005

M. A. Pfaller, D. J. Diekema, D. L. Gibbs, V. A. Newell, K. P. Ng, A. Colombo, J. Finquelievich, R. Barnes and J. Wadula

Published Ahead of Print 16 January 2008.

Updated information and services can be found at: http://jcm.asm.org/content/46/3/842

REFERENCES

These include:

This article cites 55 articles, 32 of which can be accessed free at: http://jcm.asm.org/content/46/3/842#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more»](http://journals.asm.org/site/misc/reprints.xhtml)

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Geographic and Temporal Trends in Isolation and Antifungal Susceptibility of *Candida parapsilosis*: a Global Assessment from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005

M. A. Pfaller,1* D. J. Diekema,1,2 D. L. Gibbs,3 V. A. Newell,3 K. P. Ng,4 A. Colombo,5 J. Finquelievich,6 R. Barnes,7 J. Wadula,8 and the Global Antifungal Surveillance Group

Departments of Pathology1 and Medicine,2 Carver College of Medicine, University of Iowa, Iowa City, Iowa; Giles Scientific, Inc., Santa Barbara, California3; University Malaya, Kuala Lumpur, Malaysia4; Federal University of Sao Paulo, Sao Paulo, Brazil5; Center de Micologia, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina6; Cardiff University, Cardiff, United Kingdom7; and Baragwanath Hospital, Johannesburg, South Africa8

Received 2 November 2007/Returned for modification 13 December 2007/Accepted 2 January 2008

We examined data from the ARTEMIS DISK Antifungal Surveillance Program to describe geographic and temporal trends in the isolation of *Candida parapsilosis* from clinical specimens and the in vitro susceptibilities of 9,371 isolates to fluconazole and voriconazole. We also report the in vitro susceptibility of bloodstream infection (BSI) isolates of *C. parapsilosis* to the echinocandins, anidulafungin, caspofungin, and micafungin. *C. parapsilosis* represented 6.6% of the 141,383 isolates of *Candida* collected from 2001 to 2005 and was most common among isolates from North America (14.3%) and Latin America (9.9%). High levels of susceptibility to both fluconazole (90.8 to 95.8%) and voriconazole (95.3 to 98.1%) were observed in all geographic regions with the exception of the Africa and Middle East region (79.3 and 85.8% susceptible to fluconazole and voriconazole, respectively). *C. parapsilosis* was most often isolated from blood and skin and/or soft tissue specimens and from patients hospitalized in the medical, surgical, intensive care unit (ICU) and dermatology services. Notably, isolates from the surgical ICU were the least susceptible to fluconazole (86.3%). There was no evidence of increasing azole resistance over time among *C. parapsilosis* isolates tested from 2001 to 2005. Of BSI isolates tested against the three echinocandins, 92, 99, and 100% were inhibited by concentrations of ≤2 μg/ml of anidulafungin (621 isolates tested), caspofungin (1,447 isolates tested), and micafungin (539 isolates tested), respectively. *C. parapsilosis* is a ubiquitous pathogen that remains susceptible to the azoles and echinocandins; however, both the frequency of isolation and the resistance of *C. parapsilosis* to fluconazole and voriconazole may vary by geographic region and clinical service.

Candida parapsilosis is the most common non-*albicans* species of *Candida* isolated from blood cultures in most regions of the world outside of the United States (2, 3, 8, 12, 24, 37, 44, 45, 50). *C. parapsilosis* is an exogenous pathogen that may be found on skin rather than mucosal surfaces (3, 5, 10, 18, 36, 56, 58). *C. parapsilosis* is known for the ability to form biofilms on catheters and other implanted devices (6, 10, 13, 17, 18, 20, 53), for nosocomial spread by hand carriage, and for persistence in the hospital environment (3, 8, 10, 14, 18, 20, 35, 48, 50, 51, 58). It is also well known for causing infections in infants and neonates (10, 15, 18, 21, 22, 45, 49, 51, 52, 59).

The frequency of invasive candidiasis due to *C. parapsilosis* has increased in recent years (44, 45), most notably in Spain (3) and in Latin America (8, 11, 20, 24, 37, 50). Fortunately, bloodstream infection (BSI) due to this species is associated with a significantly lower mortality rate than are infections due to other common species of *Candida* (1, 2, 16, 29, 31, 48).

Although *C. parapsilosis* is not considered prone to developing antifungal resistance (2, 8, 12, 14, 16, 29, 37, 44, 45, 48, 54, 55), several recent reports suggest that decreased susceptibility of *C. parapsilosis* to azoles and echinocandins may be cause for concern (3, 5, 8–10, 25, 26, 29, 46, 51, 54, 55, 57). As early as 1994, Nguyen et al. (29) noted that *C. parapsilosis* was the most common non-*albicans* species of *Candida* recovered in fluconazole-breakthrough fungemia in a prospective multicenter observational study of candidemia. Two recent outbreaks of *C. parapsilosis* BSI, one in an adult intensive care unit (ICU) (10) and one in a neonatal ICU (NICU) (51), serve to emphasize the importance of the confluence of patient, organism, and environmental or behavioral factors in perpetuating the spread of this exogenous pathogen. In both instances, extensive use of fluconazole, suboptimal hand hygiene and catheter care, and a seriously ill patient population conspired to generate an epidemic strain of *C. parapsilosis* with decreased susceptibility to fluconazole that was transmitted throughout the respective ICU environments. It was postulated that the decreased susceptibility of the epidemic strains to fluconazole provided a selective advantage, allowing *C. parapsilosis* colonization of skin and catheter surfaces with subsequent transmission facilitated by poor handwashing practices (10, 51).

The fact that *C. parapsilosis* is intrinsically less susceptible to the echinocandin class of antifungal agents relative to that of *C. albicans* or *C. glabrata* is well known (30, 38–41, 45, 47) and...
is characteristic of the species and confer reduced susceptibility to all three echinocandins (anidulafungin, caspofungin, and micafungin) (33, 34). Furthermore, caspofungin has been shown to exhibit markedly delayed killing kinetics against C. parapsilosis compared to C. albicans (4). Although in their phase III clinical trials both caspofungin (25) and micafungin (19) were found to be as effective against C. parapsilosis as amphothericin B deoxycholate and liposomal amphothericin B, respectively, it is notable that in the subgroup of patients with C. parapsilosis infection, 5 of 20 patients had persistently positive cultures at the end of caspofungin therapy compared to none in the amphothericin B group. Likewise, Reboli et al. reported that anidulafungin had a lower rate than fluconazole (69% versus 88%, respectively) at mediating microbiological eradication of C. parapsilosis invasive infection (46).

Perhaps the most alarming evidence regarding the emergence of echinocandin resistance in C. parapsilosis is that reported by Moudgal et al. (26) and Vazquez et al. (57) from Detroit, MI. In a case report of C. parapsilosis prosthetic valve endocarditis, Moudgal et al. (26) described the emergence of resistance to fluconazole, voriconazole, caspofungin, and micafungin (but not anidulafungin) after initial therapy with fluconazole and caspofungin. Subsequently, Vazquez et al. (57) documented an increase in the recovery of multi-echinocandin, multi-azole-resistant C. parapsilosis from patients in the burn unit of their hospital. The development, and subsequent nosocomial expansion, of echinocandin- and azole-resistant C. parapsilosis has important clinical implications. Continued monitoring for the emergence of this multidrug-resistant phenotype of C. parapsilosis is clearly warranted.

Despite the importance of C. parapsilosis as a nosocomial fungal pathogen, few studies have addressed the global epidemiology and antifungal susceptibility profile of C. parapsilosis (3, 58). Most of the available information regarding C. parapsilosis comes from single institutions (5, 10, 24, 26, 48, 50, 51) or represents a limited geographical region (3, 8, 29) and does not address frequency of isolation or resistance over time and among various clinical services or specimen types. Given the potential for decreased susceptibility of C. parapsilosis to azoles and echinocandins, it seems prudent to gather additional information regarding this opportunistic fungal pathogen. In the present study, we use the extensive database provided by the ARTEMIS DISK Antifungal Surveillance Program (44) to describe geographical and temporal trends in the isolation of C. parapsilosis from clinical specimens collected in 124 medical centers worldwide between 2001 and 2005, the types of specimens and clinical services in which C. parapsilosis infections are recognized, and the in vitro susceptibilities of 9,371 clinical isolates, including 2,834 BSI isolates of this species, to fluconazole and voriconazole, as determined by standardized disk diffusion testing. The in vitro susceptibility of BSI isolates to caspofungin, anidulafungin, and micafungin was also determined by using Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) methods.

MATERIALS AND METHODS

Organisms and test sites. A total of 141,383 isolates of Candida spp., including 9,371 isolates of C. parapsilosis, from 124 different medical centers in various regions—Asia-Pacific (25 sites), Latin America (16 sites), Europe (64 sites), Africa and the Middle East (11 sites), and North America (10 sites)—were collected and tested against fluconazole and voriconazole between January 2001 and December 2005. All Candida spp. considered pathogens from all body sites (e.g., blood, normally sterile body fluids [NSBF], deep tissue biopsy, genital tract, urine, respiratory tract, skin, and soft tissue) and isolates from all in-hospital and outpatient locations during the study period from 2001 thru 2005 were tested. Of the 2,834 BSI isolates of C. parapsilosis collected, 1,447 were sent to the University of Iowa (Iowa City) for testing against caspofungin; 621 of these isolates were also tested against anidulafungin, and 539 were tested against micafungin based on the availability of the antifungal agents from their respective manufacturers.

Data for C. parapsilosis were stratified by year of isolation, geographic region, clinical service (hospital location), and specimen type. Candida spp. considered by the local site investigator to be colonizers, i.e., not associated with pathology, were excluded, as were duplicate isolates (the same species and the same susceptible-resistant biotype profile within any 7-day period). Identification of isolates was performed in accordance with each site’s routine methods (44).

Susceptibility test methods. Disk diffusion testing of fluconazole and voriconazole was performed as described previously (44) and in accordance with CLSI document M44-A (28). Agar plates (90, 100, or 150 mm in diameter) containing Mueller-Hinton agar (obtained locally at all sites) supplemented with 2% glucose and 0.5 μg of methylene blue per ml at a depth of 4.0 mm were used. The agar surface was inoculated by using a swab dipped in a cell suspension adjusted to the turbidity of a 0.5 McFarland standard. Fluconazole (25 μg) and voriconazole (1 μg) disks (Becton Dickinson, Sparks, MD) were placed onto the surfaces of the inoculated plates, and the plates were incubated at 35°C and 37°C for 18 to 24 h. Zone diameter endpoints were read at 80% growth inhibition by using a BIOMIC image analysis plate reader system (Giles Scientific, Santa Barbara, CA) (44).

The MICs of anidulafungin, caspofungin, and micafungin were determined by BMD as described previously (39–41). All isolates were tested in RPMI broth with 24 h of incubation and a prominent reduction in growth (≥50%) relative to control (MIC–2) endpoint criteria.

The interpretive criteria for fluconazole and voriconazole disk diffusion tests were those of the CLSI (28, 42, 43) and are as follows: susceptible (S), zone diameters of ≥19 mm (fluconazole) and ≥17 mm (voriconazole); susceptible dose dependent (SDD), zone diameters of 15 to 18 mm (fluconazole) and 14 to 16 mm (voriconazole); and resistant (R), zone diameters of ≥14 mm (fluconazole) and ≥13 mm (voriconazole). The corresponding MIC breakpoints (27, 42, 43) are as follows: S, MICs of ≤8 μg/ml (fluconazole) and ≤5 μg/ml (voriconazole); SDD, MICs of 16 to 32 μg/ml (fluconazole) and 2 μg/ml (voriconazole); and R, MICs of ≥64 μg/ml (fluconazole) and ≥4 μg/ml (voriconazole).

The interpretive criteria for all three echinocandins were those recently assigned by the CLSI (June 2007): S, ≤2 μg/ml; a category of R has not been established for the echinocandins due to the paucity of “resistant” isolates treated with an echinocandin. Isolates for which the echinocandin MIC is >2 μg/ml are designated “nonsusceptible” (NS).

QC. Quality control (QC) was performed in accordance with CLSI documents M44-A (fluconazole and voriconazole) and M27-A2 (all other agents) by using C. albicans ATCC 10209, C. parapsilosis ATCC 22019, and C. krusei ATCC 6258 (27, 28). More than 99% of the QC results were within the acceptable limits (44).

Analysis of results. All disk zone diameters were read by electronic image analysis and interpreted and recorded with the BIOMIC plate reader system (Giles). Test results were sent by e-mail to Giles Scientific for analysis. The zone diameter, susceptibility category (S, SDD, or R), and QC results were all recorded electronically. Patient and doctor names, duplicate test results (same patient, same species, and same biotype results), and uncontrolled results were automatically eliminated by the BIOMIC system prior to analysis. In the present study, the fluconazole and voriconazole S, SDD, and R results for C. parapsilosis were stratified by year of collection, geographic region, clinical specimen type, and hospital location.

RESULTS

Isolation rates of C. parapsilosis were low and by geographic region. A total of 141,383 isolates of Candida spp. were isolated and identified at 124 study sites between January 2001 and December 2005 (44). C. parapsilosis ranked fourth among 22 different species of Candida, accounting for 6.6% of all isolates (Table 1). Although the overall frequency of C. parapsilosis increased from 4.8% in the years 1997 to 2000 to 6.6%
in the years 2001 to 2005 (44), the annual isolation rates were relatively stable during the latter time period ranging from 6.9% in 2001 to 7.3% in 2003 and 5.6% in 2005.

C. parapsilosis was most frequently isolated in North America (14.3% of all *Candida* isolates) and Latin America (9.9%), although the frequency of isolation varied considerably within each of the five geographic locations, ranging from 0% (Indonesia) to 16.9% (Australia) in the Asia-Pacific region, from 1.3% (Slovakia) to 7.8% (Spain and Turkey) in Europe, and from 1.2% (Ecuador) to 12.8% (Brazil) in Latin America (Tables 1 and 2).

Geographic variation in susceptibility of *C. parapsilosis* to fluconazole and voriconazole. Table 2 represents the in vitro susceptibilities of *C. parapsilosis* to fluconazole and voriconazole stratified by country and geographic region of origin, as

<table>
<thead>
<tr>
<th>Region or country</th>
<th>Fluconazole</th>
<th>Voriconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N S SDD R</td>
<td>N S SDD R</td>
</tr>
<tr>
<td>Asia-Pacific</td>
<td>2,263 90.8 4.6 4.6</td>
<td>2,092 95.3 2.6 2.1</td>
</tr>
<tr>
<td>Australia</td>
<td>124 99.2 0.8</td>
<td>124 99.2 0.8</td>
</tr>
<tr>
<td>China</td>
<td>121 87.6 4.1 8.3</td>
<td>121 92.6 3.3 4.1</td>
</tr>
<tr>
<td>India</td>
<td>32 90.6 6.3 3.1</td>
<td>31 100.0</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1,521 89.2 5.5 5.3</td>
<td>1,353 94.6 3.4 2.0</td>
</tr>
<tr>
<td>South Korea</td>
<td>186 99.5 0.5</td>
<td>185 99.5 0.5</td>
</tr>
<tr>
<td>Taiwan</td>
<td>262 92.0 3.4 4.6</td>
<td>261 94.6 1.6 3.8</td>
</tr>
<tr>
<td>Thailand</td>
<td>17 88.2 11.8 180.0</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>3,388 95.8 1.8 2.4</td>
<td>3,298 98.1 0.8 1.1</td>
</tr>
<tr>
<td>Belgium</td>
<td>104 98.1 1.9</td>
<td>103 98.1 1.9</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>300 99.0 1.0</td>
<td>283 100.0</td>
</tr>
<tr>
<td>France</td>
<td>94 84.0 8.6 7.4</td>
<td>77 96.1 2.6 1.3</td>
</tr>
<tr>
<td>Germany</td>
<td>135 99.3 0.7</td>
<td>135 99.3 0.7</td>
</tr>
<tr>
<td>Greece</td>
<td>36 83.3 5.6 11.1</td>
<td>36 94.4 2.8 2.8</td>
</tr>
<tr>
<td>Hungary</td>
<td>259 90.3 3.5 6.2</td>
<td>237 95.4 1.2 3.4</td>
</tr>
<tr>
<td>Italy</td>
<td>374 97.9 1.0 1.1</td>
<td>374 99.2 0.5 0.3</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>151 95.4 2.6 2.0</td>
<td>151 96.7 1.3 2.0</td>
</tr>
<tr>
<td>Norway</td>
<td>7 100.0</td>
<td>7 100.0</td>
</tr>
<tr>
<td>Poland</td>
<td>68 91.2 1.4 7.4</td>
<td>68 95.6 1.5 2.9</td>
</tr>
<tr>
<td>Portugal</td>
<td>215 96.7 0.5 2.8</td>
<td>215 97.7 0.4 1.9</td>
</tr>
<tr>
<td>Russia</td>
<td>213 87.8 3.7 8.5</td>
<td>213 96.7 1.9 1.4</td>
</tr>
<tr>
<td>Slovakia</td>
<td>47 91.5 4.2 4.3</td>
<td>47 93.6 6.4</td>
</tr>
<tr>
<td>Spain</td>
<td>496 99.0 0.6 0.4</td>
<td>496 99.6 0.2 0.2</td>
</tr>
<tr>
<td>Switzerland</td>
<td>88 98.9 1.1</td>
<td>89 100.0</td>
</tr>
<tr>
<td>Turkey</td>
<td>109 96.3 1.9 1.8</td>
<td>93 98.9 1.1</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>692 96.8 1.9 1.3</td>
<td>674 97.9 1.2 0.9</td>
</tr>
<tr>
<td>Latin America</td>
<td>1,960 93.7 4.0 2.3</td>
<td>1,910 97.8 1.2 1.0</td>
</tr>
<tr>
<td>Argentina</td>
<td>715 93.7 4.8 1.5</td>
<td>702 98.4 1.0 0.6</td>
</tr>
<tr>
<td>Brazil</td>
<td>500 97.2 1.2 1.6</td>
<td>496 97.8 1.0 1.2</td>
</tr>
<tr>
<td>Colombia</td>
<td>465 89.9 5.4 4.7</td>
<td>440 96.4 1.8</td>
</tr>
<tr>
<td>Ecuador</td>
<td>32 87.5 12.5</td>
<td>32 96.9 3.1</td>
</tr>
<tr>
<td>Mexico</td>
<td>98 95.9 3.1 1.0</td>
<td>88 98.9 1.1</td>
</tr>
<tr>
<td>Venezuela</td>
<td>150 93.3 4.0 2.7</td>
<td>152 98.7 0.6 0.7</td>
</tr>
<tr>
<td>Africa and Middle East</td>
<td>348 79.3 5.2 15.5</td>
<td>345 85.8 2.9 11.3</td>
</tr>
<tr>
<td>South Africa</td>
<td>256 74.2 5.5 20.3</td>
<td>253 81.0 4.0 15.0</td>
</tr>
<tr>
<td>Israel</td>
<td>54 94.4 3.7 1.9</td>
<td>54 100.0</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>38 92.1 3.3 2.6</td>
<td>38 97.4 2.6</td>
</tr>
<tr>
<td>North America</td>
<td>1,412 94.3 1.8 3.9</td>
<td>1,396 97.1 0.9 2.0</td>
</tr>
<tr>
<td>Canada</td>
<td>69 97.1 1.5 1.4</td>
<td>69 100.0</td>
</tr>
<tr>
<td>United States</td>
<td>1,343 94.2 1.8 4.0</td>
<td>1,327 96.9 0.9 2.2</td>
</tr>
<tr>
<td>Total</td>
<td>9,371 93.3 3.0 3.6</td>
<td>9,041 96.8 1.4 1.9</td>
</tr>
</tbody>
</table>

All isolates were tested by the disk diffusion method performed in accordance with CLSI standard M44-A. S, susceptible, with zone diameters of ≥19 mm for fluconazole and ≥17 mm for voriconazole; SDD, susceptible dose dependent, with zone diameters of 15 to 18 mm for fluconazole and 14 to 16 mm for voriconazole; R, resistant, with zone diameters of ≤14 mm for fluconazole and ≤13 mm for voriconazole.
The 35 countries were susceptible to voriconazole. Land, Israel, and Canada. More than 98% of isolates in 17 of 100% in India, Thailand, Czech Republic, Norway, Switzerland, England, Israel, and Canada. More than 98% of isolates in 17 of the 35 countries were susceptible to voriconazole.

A surprising degree of variation in the susceptibility of C. parapsilosis to fluconazole was observed across the first five broad regions: isolates from Europe were the most susceptible (95.8% S, 2.4% R), and the lowest overall susceptibility was seen among isolates from the Africa and Middle East region (79.3% S, 15.5% R), the latter being largely accounted for by isolates from South Africa (74.2% S, 20.3% R). No other country reported susceptibility rates of less than 80%; however, the susceptibility rates were less than 90% in eight countries: China (87.6%), Malaysia (89.2%), Thaïland (88.2%), France (84.0%), Greece (83.3%), Russia (87.8%), Colombia (89.9%), and Ecuador (87.5%). More than 95% of isolates were susceptible to fluconazole in 16 countries: Australia (99.2%), South Korea (99.5%), Belgium (98.1%), the Czech Republic (99.0%), Germany (99.3%), Italy (97.9%), The Netherlands (95.4%), Norway (100%), Portugal (96.7%), Spain (99.0%), Switzerland (98.9%), Turkey (96.3%), the United Kingdom (96.8%), Brazil (97.2%), Mexico (95.9%), and Canada (97.1%).

Voriconazole was always more active against C. parapsilosis than fluconazole, irrespective of geographic region. In contrast to fluconazole, only a slight variation in voriconazole activity was observed across the different countries and regions, ranging from a low of 81% susceptible in South Africa to a high of 100% in India, Thailand, Czech Republic, Norway, Switzerland, Israel, and Canada. More than 98% of isolates in 17 of the 35 countries were susceptible to voriconazole.

Trends in resistance to fluconazole and voriconazole among C. parapsilosis isolates over time. There was no evidence of increasing resistance to the azoles among C. parapsilosis isolates tested between 2001 and 2005. Resistance to fluconazole ranged from 4.2% in 2001 to 3.1% in 2003 and was 4.2% in 2005. Resistance to voriconazole was 1.9% in 2001, peaked at 2.3% in 2002, and was 1.9% in 2005.

Variation in the frequency of isolation and antifungal susceptibility profile of C. parapsilosis by clinical service. The clinical services reporting the isolation of C. parapsilosis from patient specimens included the hematology-oncology service, medical and surgical services, intensive care units (medical, surgical, and neonatal), the dermatology service, the urology service, and the outpatient service (Table 3). Those strains from services with only a few isolates and those for which a clinical service was not specified were included in the category “other, not otherwise specified (NOS)”.

Candida parapsilosis was isolated most frequently from patients on the Dermatology service (20.9%) and least frequently from patients on the Hematology-Oncology service (3.6%). Only 6% of the Candida spp. isolated from ICU patients in the present study were C. parapsilosis. However, C. parapsilosis was isolated much more frequently from patients in the NICU (15.4% of all Candida spp. from NICU).

There was little variation in susceptibility to either triazole across the different services. More than 90% of isolates were susceptible to both fluconazole and voriconazole irrespective of the different clinical services.

Variation in the frequency of isolation and antifungal susceptibility profile of C. parapsilosis by clinical specimen type. The major specimen types yielding C. parapsilosis as a putative
pathogen included blood, NSBF, urine, respiratory, skin and soft tissue, and genital specimens (Table 4). The isolates from uncommon specimen types and those for which a specimen type was not recorded were grouped under the category "Misc., NOS" (miscellaneous, not otherwise specified).

C. parapsilosis was isolated most frequently from blood and skin and soft tissue specimens and was isolated infrequently from urine, respiratory, and genital tract specimens. Both fluconazole and voriconazole were quite active against isolates of *C. parapsilosis* irrespective of specimen type.

Activity of echinocandin antifungal agents against bloodstream isolates of *C. parapsilosis*. Previously, we and others have shown that echinocandin MICs are consistently higher for *C. parapsilosis* than for *C. albicans* when tested by BMD methods (30, 39–41). When tested against anidulafungin, caspofungin, and micafungin using the CLSI BMD method, 93.2, 99.6, and 100% of the BSI isolates of *C. parapsilosis* were susceptible to the three echinocandins, respectively, at the recently assigned (June 2007) CLSI breakpoint concentration of ≤2 μg/ml (Table 5). The differences in potency among the three agents are best reflected by the modal MICs: caspofungin (0.25 to 0.5 μg/ml), micafungin (1.0 μg/ml), and anidulafungin (2.0 μg/ml). This pattern was unchanged across the different geographic regions (data not shown). Importantly, we did not observe a multi-echinocandin, multi-azole-resistant phenotype such as that reported by Moudgal et al. (26) and Vazquez et al. (57). Among nine isolates that were found to be resistant to fluconazole (MIC, ≤64 μg/ml), all were susceptible (MIC, ≤2 μg/ml) to anidulafungin (range, 1 to 2 μg/ml), caspofungin (range, 0.25 to 2 μg/ml), and micafungin (range, 1 to 2 μg/ml). Likewise, the Detroit phenotype for echinocandin resistance (i.e., caspofungin- and micafungin-resistant, anidulafungin-susceptible) was not detected among 539 isolates tested against all three echinocandins.

DISCUSSION

The results of this extensive survey of *C. parapsilosis* both confirm and extend previous observations regarding this species (1, 3, 8, 15, 29, 48, 50, 58). We have demonstrated that the frequency of isolation of *C. parapsilosis* varies considerably among countries, clinical services, and specimen types and confirm the increased frequency in Latin America, neonatal ICUs, and blood and dermatologic specimens. Likewise, we confirm the general susceptibility of *C. parapsilosis* to both fluconazole and voriconazole and yet document an unusual pocket of azole resistance in South Africa.

Although fluconazole is well known to have good activity...
against C. parapsilosis, it is clear from this survey that decreased susceptibility may occur in certain geographic regions and in select institutions (10, 26, 51, 57), suggesting that monitoring of local susceptibility profiles may be useful. Decreased susceptibility to fluconazole among C. parapsilosis may be enhanced by the proclivity of this species to form extensive biofilms on catheters and other devices (13, 17, 18, 20). Because the source of C. parapsilosis fungemia is a vascular catheter in more than 50% of cases and such infections occur commonly in patients who had received prior antifungal treatment (3), an adequate response to fluconazole alone may not be achieved, and administration of this agent should be coupled with prompt removal of the catheter to ensure an optimal response (32). Furthermore, despite excellent overall activity of voriconazole against C. parapsilosis, it must be recognized that only 36.7% of fluconazole-resistant isolates of C. parapsilosis retain susceptibility to voriconazole (44).

Given that C. parapsilosis is well known as a superficial colonizer of cutaneous surfaces and as a cause of onychomycosis (5, 7, 23, 56), it is not surprising that we found it to be isolated commonly from skin and soft tissue infections in patients on the Dermatology service. Bonassoli et al. (5) found a high frequency of C. parapsilosis colonization of the hands of healthy volunteers and health care workers and noted that these colonizing strains exhibited the same potential virulence characteristics as those isolated from sites of infection. Thus, hand colonization with virulent strains of C. parapsilosis coupled with poor hand washing and catheter care may serve as a nosocomial threat to seriously ill patients (10, 18).

Although C. parapsilosis is often reported to cause infections among patients hospitalized in the ICU (1, 3, 10, 51), only 6% of the Candida spp. isolated from ICU patients in the present study were C. parapsilosis. However, C. parapsilosis was isolated much more frequently from patients in the NICU (15.4% of all Candida spp.) than from those in the medical (5.8%) or surgical (3.4%) ICU. This finding supports previous observations regarding candidiasis in the NICU (15, 21, 22, 49, 51, 52, 58, 59).

Although the role of C. parapsilosis as a pathogen when isolated from nonsterile sites such as the respiratory, urinary, and genital tracts is debated, isolation from blood and NSBF must be considered significant. Thus, it is worth noting that the single most common specimen to yield C. parapsilosis in culture was blood (Table 4). Prior colonization of mucosal sites is rare among patients with C. parapsilosis fungemia, further confirming the exogenous nature of this pathogen (3).

Perhaps the most encouraging information from this survey is the lack of any multi-azole, multi-echinocandin-resistant strains of C. parapsilosis. Although this species is innately less susceptible to the echinocandins than many other species of Candida, the vast majority of isolates remain susceptible to all three echinocandins (Table 5). Specifically, the epidemic phenotype reported from Detroit, MI (57), was not detected. Potency differences among the three echinocandins were detected; however, previous studies have found that such differences in vitro were normalized by the addition of serum to the test medium and did not prove to be important in vivo (34). Nevertheless, the experience in Detroit (26, 57) and the less-than-stellar results against C. parapsilosis in clinical trials (25, 46, 54) suggest that this species should be carefully monitored with respect to emerging echinocandin resistance.

In summary, we have used the extensive and validated database of the ARTEMIS DISK Antifungal Surveillance Program (44) to increase our understanding of C. parapsilosis as an opportunistic pathogen. Our findings confirm that this species is an emerging pathogen in Latin America and is also important in North America. This species may exhibit decreased susceptibility to fluconazole in some geographic locations and is generally susceptible to voriconazole and the echinocandins. It is most likely to be isolated from blood and is often associated with intravascular catheters and parenteral nutrition. The detection of BSIs with C. parapsilosis should raise a “red flag” regarding breaks in catheter care and infection control procedures, since it usually signifies the exogenous introduction of the offending pathogen into an already compromised host (3, 10, 44, 58).

ACKNOWLEDGMENTS

Linda Elliot and Tara Schroeder provided excellent support in the preparation of the manuscript.

This study was supported in part by grants from Pfizer, Astellas, and Merck.

We express our appreciation to all ARTEMIS participants. Contributing participants from 2001 to 2005 include Jorge Fingquelievich, Buenos Aires University, Buenos Aires, Argentina; Nora Tiraboschi, Hospital Escuela Gral, Buenos Aires, Argentina; David Ellis, Women’s and Children’s Hospital, North Adelaide, Australia; Dominique Fameree, CHU de Jumet, Jumet, Belgium; Anne-Marie van den Abeele, St. Lucas Campus Heilige Familie, Gent, Belgium; Jean-Marc Senterre, Hôpital de la Citadelle, Liege, Belgium; Arnaldo Lopez, Coimbro, Federal University of Sao Paulo, Sao Paulo, Brazil; Robert Rennie, University of Alberta Hospital, Edmonton, Alberta, Canada; Stephen Sanche, Royal University Hospital, Saskatoon, Saskatchewan, Canada; Hu Bijie, Zhong Shan Hospital, Shanghai, China; Yingchun Xu, Peking Union Medical College Hospital, Beijing, China; Wang Fu, Hua Shan Hospital, Shanghai, China; Nan Shan Zhong, Guangzhou Institute of Respiratory Disease, Guangzhou, China; Pilar Rivas, Instituto Nacional de Cancerologı´a, Bogota, Colombia; Catalina de Bedout, CIB, Medellin, Colombia; Matilde Mendez and Ricardo Vega, Hospital Militar Central, Bogota, Colombia; Nada Mallatowa, Hospital Ceske Budejovice, Ceske, Czech Republic; Stanislava Dobiasova, Zdravotni ustav se sidlem Ostrave, Ostrava, Czech Republic; Julio Ayabaca, Hospital FF, AA HG1, Quito, Ecuador; Jeanette Zurita, Hospital Mujeres, Quito, Ecuador; M. Malhue, Faculte de Pharmacie, Montpellier, France; E. Candolfi, Institut de Parasitologie, Strasbourg, France; W. Fegeler, Universitaet Muenster, Münster, Germany; P. D. G. Haase, RWTH Aachen, Aachen, Germany; A. Rodloff, Institut F. Med. Mikrobiologie, Leipzig, Germany; W. Bar, Carl-Thiem Klinikum, Cottbus, Germany; V. Czaika, Hauke, Klinikum, Bad Saarow, Germany; Petros Ge, Laikon General Hospital, Athens, Greece; Erzsebet Puskas, BAZ County Institute, Miskolc, Hungary; Ilona Doci, University of Szeged, Szeged, Hungary; Gyula Mestyanyi, University of Pecs, Pecs, Hungary; Radka Nikolova, Szt Laszlo Hospital, Budapest, Hungary; Uma Banerjee, All India Institute of Medical Sciences, New Delhi, India; Nathan Keller, Sheba Medical Center, Tel Hashomer, Israel; Vivian Tulio, Universidade degli Studi di Torino, Turin, Italy; Gian Carlo Schito, University of Genova, Genoa, Italy; Domenico D’Antonio, Pescara Civil Hospital, Pescara, Italy; Gian Carlo Schito, University of Genoa, Genoa, Italy; Domenico D’Antonio, Pescara Civil Hospital, Pescara, Italy; Pietro Martino, Departamento di Biotechnologia, Rome, Italy; N. G. Kee Peng, University Malaya, Kuala Lumpur, Malaysia; Celia Alpuche and Jose Santos, Hospital General de Mexico, Mexico City, Mexico; Rayo Morfin Ortero, Universidad de Guadalajara, Guadalajara, Mexico; Mussaret Zaidi, Hospital General O’Horan, Merida, Mexico; Jacques F. Meis, Sanias Hospital, Amsterdam, The Netherlands; Egil Lingaas, Rikshospitalet, Oslo, Norway; Danuta Dzierzanowska, Children’s Memorial Health Institute, Warsaw, Poland; Wacław Pawliwiczyn, Pracownia Baktieriologii, Krakow, Poland; Mariada Luz Martins, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal; Luis Albu-
REFERENCES

RESISTANCE IN CANDIDA PARAPSILOSIS

Downloaded from http://jcm.asm.org on February 22, 2014 by Cardiff Univ