Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Spatiotemporal integration of tactile information in human somatosensory cortex

Zhu, Zhao, Disbrow, Elizabeth A., Zumer, Johanna M., McGonigle, David ORCID: https://orcid.org/0000-0001-9595-6352 and Nagarajan, Srikantan S. 2007. Spatiotemporal integration of tactile information in human somatosensory cortex. BMC Neuroscience 8 (1) , 21. 10.1186/1471-2202-8-21

[thumbnail of Zhu 2007.pdf]
Preview
PDF - Published Version
Download (2MB) | Preview

Abstract

Background Our goal was to examine the spatiotemporal integration of tactile information in the hand representation of human primary somatosensory cortex (anterior parietal somatosensory areas 3b and 1), secondary somatosensory cortex (S2), and the parietal ventral area (PV), using high-resolution whole-head magnetoencephalography (MEG). To examine representational overlap and adaptation in bilateral somatosensory cortices, we used an oddball paradigm to characterize the representation of the index finger (D2; deviant stimulus) as a function of the location of the standard stimulus in both right- and left-handed subjects. Results We found that responses to deviant stimuli presented in the context of standard stimuli with an interstimulus interval (ISI) of 0.33s were significantly and bilaterally attenuated compared to deviant stimulation alone in S2/PV, but not in anterior parietal cortex. This attenuation was dependent upon the distance between the deviant and standard stimuli: greater attenuation was found when the standard was immediately adjacent to the deviant (D3 and D2 respectively), with attenuation decreasing for non-adjacent fingers (D4 and opposite D2). We also found that cutaneous mechanical stimulation consistently elicited not only a strong early contralateral cortical response but also a weak ipsilateral response in anterior parietal cortex. This ipsilateral response appeared an average of 10.7 ± 6.1 ms later than the early contralateral response. In addition, no hemispheric differences either in response amplitude, response latencies or oddball responses were found, independent of handedness. Conclusion Our findings are consistent with the large receptive fields and long neuronal recovery cycles that have been described in S2/PV, and suggest that this expression of spatiotemporal integration underlies the complex functions associated with this region. The early ipsilateral response suggests that anterior parietal fields also receive tactile input from the ipsilateral hand. The lack of a hemispheric difference in responses to digit stimulation supports a lack of any functional asymmetry in human somatosensory cortex.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Psychology
Subjects: B Philosophy. Psychology. Religion > BF Psychology
R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Additional Information: Pdf uploaded in accordance with publisher's policy at http://www.sherpa.ac.uk/romeo/issn/1471-2202/ (accessed 26/02/2014)
Publisher: BioMed Central
ISSN: 1471-2202
Date of First Compliant Deposit: 30 March 2016
Last Modified: 19 May 2023 04:23
URI: https://orca.cardiff.ac.uk/id/eprint/26644

Citation Data

Cited 48 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics