Core stability: Evaluation of a therapeutic intervention followed by two progression exercises.

K. Jones, J. Wray, V. Price, M. McBride, J. Donohoe, S. Eddy
Department of Physiotherapy, Cardiff University. E-mail: Joneskj@cf.ac.uk

Introduction
Poor core stability can be a very disabling factor in terms of the ability to utilise the upper and lower limbs in functional activities (Davies, 1990) and is reflected in poor predictive measures of activities of daily living (Hsieh et al, 2002). Prior to functional rehabilitation of the core stabilisers patients need to be able to isolate these muscles independently. This may be achieved by facilitation of a neutral lumbar spine (Akuthota and Nadler, 2004). This facilitation technique is based on a sound theoretical rationale however, until now this technique has not been objectively evaluated in any population.

Aim
To investigate core muscle activity post facilitation and then following two progression exercises.

Method
A same subject experimental design was implemented using twenty two healthy volunteer subjects (mean age 46 years SD ±5.25). Averaged normalised surface electromyography (SEMG) was recorded from bilateral Superficial Multifidus (MT), Transverse Abdominus/Internal Oblique (TA/IO), ExternalOblique (EO) and Erector Spinae Longissimus Thoracis (ESLT).

Measurements were obtained for i) baseline upright sitting ii) post facilitation and during iii) a bilateral arm lift and iv) a unilateral leg lift in sitting.

In brief, the facilitation technique is performed from slump sitting. Initially a downward stretch is applied to lumbar MT to stimulate a stretch reflex. To enhance proprioception the thumbs are then simultaneously moved upward with vibration and the subject is instructed to extend/grow from the base of the lumbar spine.

The attainment of a neutral lumbar spine was evaluated visually (figure1). SEMG was then recorded over 3.5 seconds.

Results
1) Pre and post intervention
Descriptive and statistical analyses shown in Graph 1 and 2 indicate that the increase in average SEMG activity for all muscles was statistically significant, with that of the local stabilisers (TA/IO and MT) being highly significant.

Graph 1: Means and Standard Deviations (SD) for back extensors.

** denotes significance p<0.001; * denotes p<0.005)

Graph 2: Means and SD for abdominals.

2) Progressions
Descriptive and statistical analyses shown in Graph 3 and 4 indicate that:-

i) for the arm lift there was a highly statistically significant increase in activity in the back extensor muscles.

Graph 3: Means and SD for back extensor muscles at baseline, arm lift and right leg lift.

Graph 4: Means and SD for abdominal muscles at baseline, arm lift and right leg lift.

Conclusions
Clinically, this study provides evidence for the potential use of this facilitation technique as a therapeutic intervention in the rehabilitation of general core stability and specifically to enhance recruitment of the local stabilisers. The results also signify that a bilateral arm lift is a useful progression primarily for the back extensor muscles and a right leg lift primarily for the abdominal muscles. Limitations – the results cannot be directly applied to patient populations as the sample consisted of healthy individual.

Acknowledgements
Research Centre for Clinical Kinesiology, Cardiff University.
Introduction

First...
Check with conference organisers on their specifications for all matters related to the poster, including size, orientation, before you start your poster design. MU can scale to fit a smaller or larger size, when printing. Be aware that if you need a different shape start with either a portrait (vertical) or a square poster template. Bear in mind you do not need to fill the whole space allocated by some conference organisers (eg. 8ftx4ft in the USA). Do not make your poster bigger than necessary just to fill that given size.

Method

Tips for making a successful poster...
- Re-write your paper into poster format.
- Simplify everything, avoid data overload.
- Headings of more than 6 words should be in upper and lower case, not all capitals.
- Never do whole sentences in capitals.
- Spell check and get someone else to proof-read.

- Title text boxes can be moved up or down depending on how big or small your ‘Introduction’, ‘Aim’, ‘Method’, ‘Results’ and ‘Conclusion’ are.
- The body text / font size should be between 24 and 32 points. Arial, Times New Roman or equivalent, bold characters instead.
- When laying out your poster leave breathing space around you text. Don’t overcrowd your poster.
- Try using photographs or coloured graphs. Avoid long numerical tables.
- Spell check and get someone else to proof-read.

Results

Importing / inserting files...
Images such as photographs, graphs, diagrams, logos, etc, can be added to the poster.
- To insert scanned images into your poster, go through the menus as follows: Insert / Picture / From File…
- Then find the file on your computer, select it, and press OK.
- The best type of image files to insert are JPEG or TIFF, JPEG is the preferred format.

- Be aware of the image size you are importing. The average colour photo (13 x 18cm at 180dpi) would be about 3Mb (1Mb for B/W greyscale). Call MIU if unsure.
- Do not use images from the web.

Notes about graphs...
For simple graphs use MS Excel, or do the graph directly in PowerPoint.

- Graphs done in a scientific graphing programs (eg. Sigma Plot, Prism, SPSS, Statistica) should be saved as JPEG or TIFF if possible. For more information see MIU.

Conclusion

For more information on:

Contact:
Medical Illustration Unit
Prince of Wales Hospital
Ph: 9382 2800
Email: miunsw@unsw.edu.au
Web: http://miu.med.unsw.edu.au

Acknowledgements

Just highlight this text and replace with your own text. Replace this with your text.