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Abstract 

 

Predictive maintenance (PdM) can be beneficial to the industry in terms of lowering 

maintenance cost and improve productivity. Remaining useful life (RUL) prediction is an 

important task in PdM. The RUL of an automobile can be impacted by various surrounding 

factors such as weather, traffic and terrain, which can be captured by the geographical 

information system (GIS). Recently, most researchers have conducted studies of RUL 

modelling based on sensor data. Owing to the fact that the collection of sensor data is expensive, 

while maintenance data is relatively easy to obtain. This study aims to establish an automobile 

RUL prediction model with GIS data through a data-driven approach. In this approach, firstly, 

due to the data type and sampling rate of the maintenance data and GIS data are different, a 

data integration scheme was researched. Secondly, the Cox proportional hazard model (Cox 

PHM) was introduced to construct the health index (HI) for the integrated data. Then, a deep 

learning structure called M-LSTM (Merged-long-short term memory) network was designed 

for HI modelling based on the integrated data which contains both sequential data and ordinary 

numeric data. Finally, the RUL was mapped by predicted HI and the Cox PHM. An 

experimental study using a sizable real-world fleet maintenance dataset provided by a UK fleet 

company revealed the effectiveness of the proposed approach and the impact of the GIS factors 

on the automobiles under investigation. 
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1. Introduction 

 

In the era of smart manufacturing, there is a high demand in the development of advanced PdM 

techniques. It is of great importance to the industry as it can improve the decision support for 

maintenance management [1]. With the advanced PdM techniques, the maintenance cost can 

be minimised and the productivity and profitability of a company can be leveraged [2]. The 

prediction of RUL is a challenging task in industry, such as automobile fleet management. If 

the RUL of an automobile can be accurately predicted, appropriate maintenance can be 

scheduled in advance to avoid serious failure, lower the maintenance cost and machine 

downtime. 

 

Recently, various emerging PdM techniques have been proposed. There are two main research 

areas in PdM, which are condition-based PdM and statistical-based PdM [2]. Condition-based 

PdM is the prevailing type in PdM. It aims to model the equipment or system degradation based 

on sensor data [3]. However, the deployment of sensors and data collection needs extra 

investment, which may not be affordable for some companies. Without available sensor data, 

the implementation of conditioned based PdM is still challenging. Statistical PdM, as another 

type of PdM, also can be a useful tool in the industry. In comparison with the condition based 

PdM base on the real-time data, statistical-based PdM aims at failure prediction modelling base 

on the event data such as maintenance data [4], which is more available in the industry in 

comparison with the sensor data.   

 

The automobile lifecycle is impacted by various factors such as automobile design, driver 

behaviour and working environment. For a fleet management company that possesses a large 

number of automobiles, the automobiles can be allocated in different areas. The geographical 

factors which may affect automobile lifecycle, such as weather, terrain, and traffic, are different 

from area to area. Hence, introducing these factors into the study of PdM can bring tangible 
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benefits to the fleet management company. GIS is a system designed to capture, store, 

manipulate, analyse, manage, and present various types of geographical data [5]. With the help 

of GIS, the GIS data which may relevant to the automobile lifecycle can be collected. After the 

GIS data is collected, an issue that needs to be addressed is integrating these data with 

maintenance data. 

 

Data integration is an essential part of machine learning. The data integration approaches can 

be classified as three types: (1) Early integration: projecting or concatenating the different 

datasets to a larger dataset and feed it to a machine learning algorithm; (2) Intermediate 

integration: fusing different datasets via a joint machine learning algorithm such as deep neural 

networks; (3) Late integration: Training different machine learning models using different 

datasets, and taking a majority vote to determine the final output [6]. However, it is hard to 

directly implement the above data integration approaches for maintenance data and GIS data. 

The reasons are: Firstly, both maintenance dataset and GIS dataset may contain sequential data, 

ordinary numeric data and nominal data. The data types in both datasets are different; 

Furthermore, the sampling rate of the sequential data in both datasets is different, which 

requires data transformation before data integration. Hence, an appropriate data integration 

scheme needs to be explored to integrate maintenance data and GIS data. Deep learning, as a 

subset of machine learning, has gained increasing attention [7]. Deep learning components such 

as a fully-connected layer, convolutional layer, and long-short term memory layer are good at 

processing ordinary numeric data, image data, and sequential data, respectively. In the research 

of deep learning, merged neural network as an emerging neural network structure, can combine 

different sub neural networks and therefore enable the data integration of multi-source data  [8, 

9]. Hence, it can be a useful tool in modelling based on the maintenance dataset and GIS dataset. 

 

Recently, deep learning algorithms have been widely studied in the studies of RUL modelling 

[10-17]. However, most of the existing studies are only based on sensor data. The GIS factors 
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that may impact the equipment or system lifecycle has not been considered. In this paper, an 

automobile RUL modelling approach with the consideration of GIS data is proposed. In this 

approach, maintenance data is first transformed and integrate with GIS data. Secondly, a Cox 

PHM is deployed to construct the health index (HI) of the integrated data. Thirdly, a merge 

neural network called M-LSTM network is designed for HI modelling. Finally, the predicted 

HI is used to map the RUL based on the Cox PHM obtained from step 2. The main contributions 

of this work are listed as follow: (1) Different from the existing RUL prediction approach based 

on sensor data which is expensive to obtain, an RUL prediction approach based on maintenance 

data is proposed; (2) This is the first time that GIS data was introduced into the study of PdM 

to improve the RUL prediction accuracy; (3) A data integration scheme was proposed to 

integrate maintenance data and GIS data from multi-source; (4) M-LSTM network, a multi-

model neural network, was designed to learn and fuse the high-level representation of the 

sequential data and ordinary numeric data. The rest of this paper is organised as follows: The 

relevant studies in PdM using machine learning and GIS research using machine learning are 

reviewed in Section 2. Section 3 details the problem statement. Section 4 introduces the 

methodology of this study. Section 5 reports an experimental study. The experimental results 

are demonstrated in Section 6 and discussed in Section 7. Finally, the conclusions were drawn 

in Section 8. 

 

2. Literature Review 

 

2.1. The Studies of Predictive Maintenance Using Machine Learning 

 

Deep learning has been prevailing in the research of PdM, especially in the condition based 

PdM. Various deep learning structures, such as transformers neural network [16], deep 

convolutional neural network [10], dual-LSTM network [17], dilated convolution neural 

network [11], deep adversarial neural networks [12], and multi-scale deep convolutional neural 
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network [13], were proposed and verified using NASA’s Commercial Modular Aero-

Propulsion System Simulation (C-MAPSS) dataset. Most of the deep learning structures 

developed for RUL modelling have only one training path. Al-Dulaimi et al. (2019) [14] 

proposed a noisy and hybrid CNN and BLSTM-based deep (NBLSTM) network that contains 

a CNN path and bi-directional LSTM path. Zhang et al. (2020) [15] proposed a merged LSTM 

network that contains two LSTM sub-networks. The inputs of both merged neural network 

mentioned above are the same.  

 

In order to model the machinery RUL of dependent competing failure processes (DCFPs), Yan 

et al. (2021) [18] researched an RUL modelling approach with the consideration of both soft 

and hard failure. In this approach, the first passage time-based analytical expression of 

degradation is derived. Then, the offline RUL estimation and online parameters update are 

jointly conducted. In order to achieve long term accurate prediction of RUL. To reduce the 

effect of time‐lagged correlations on the feature extraction, Zhang et al. (2018) [19] deployed 

a curve‐registration method to evaluate the time lags among sensors. After the time lags of 

sensors were adjusted, the data was then used to establish an LSTM network model to predict 

upcoming failure. In order to model the degradation of manufacturing systems, a hidden 

Markov model with auto-correlated observation was proposed. The current state of this model 

depends on both the corresponding hidden system state and the previous observations. Besides, 

EM (expectation maximum) was adopted to estimate the unknown parameters. Based on the 

prediction of RUL, an optimised maintenance policy was developed [20]. Right-censored data 

represents the maintenance was scheduled before an asset completely failed. In the right-

censored scenario, the maintenance time located arbitrarily before the failure. In order to model 

the asset degradation, a method called Relative Entropy Weibull-SAX was proposed using HI 

and HS degradation modelling method for multivariate asset data. In this approach, the HI of 

an asset can be constructed using relative entropy. The experimental results based on C-MAPSS 
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show that this method was able to represent the health stage of observed engine [21]. Li et al. 

(2021) [22] researched an RUL prediction method based on a multi-sensor data fusion model, 

which a state transition function and a Wiener process are deployed to express the degradation 

process of the system state. In order to deploy the training model in different operational 

scenarios, Zhang et al. (2021) [3] proposed a transfer learning approach using deep 

representation regularisation for RUL prediction. In this approach, the healthy state and 

degradation direction of the data from the target domain and source domain are aligned before 

the RUL is predicted. 

 

Statistical based PdM is based on the event data such as maintenance data or log data. In order 

to reduce the machine downtime, a data-driven approach was proposed to predict failures of 

healthcare machine. In this study, raw system log information including time, id and description 

were extracted and then used to establish an SVM model for failure classification [23]. In order 

to address the data imbalance issue in log data, Dangut et al. (2021) [24] proposed a hybrid 

approach based on natural language processing techniques and ensemble learning to predict the 

aircraft component failure. Calabrese et al. (2020) [25] researched the Gradient Boosting 

algorithm for the fault classification of woodworking industrial machines based on log data. In 

this study, temporal feature engineering techniques were deployed to enhance the performance 

of the Gradient Boosting machine. Kobayashi et al. (2017) [26] proposed a method based on a 

graph-based algorithm to extract failures and their causes from network system log data. In this 

method, a graph-based algorithm called PC algorithm is firstly introduced to infer causal 

structure from event time series efficiently. Then, data pre-processing and post-processing 

methods from a set of log messages were proposed to improve the performance of the PC 

algorithm. It can be seen that the RUL prediction approaches in the existing literature are all 

based on sensor data, while the mainstream of statistical PdM focuses on failure classification 

or cause mining. Furthermore, the existing studies have not considered the impact of GIS 

factors on RUL modelling. 
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2.2. The studies of GIS Using Machine Learning  

 

Pham et al. (2017) [5] combined several ensemble methods with multiple perceptron neural 

Networks to establish a landslide classification model. GIS features such as slope, slope aspect, 

elevation, curvature and plan curvature were adopted for modelling. In order to identify the 

contribution of the features to the landslide, a feature selection method called Relief-F method 

was used. Tehrany et al. (2014) [27] proposed a flood susceptibility mapping approach based 

on the data collected from the records of flood occurrence. The terrain features used in this 

study included flood inventory, slope, stream power index, topographic wetness index, and 

altitude, etc. The weight-of-evidence method was applied to measure the relevant weight of 

each factor. Then, the data contains these features were reclassified using the acquired weights, 

before the data is sent to the support vector machine model to evaluate the correlation between 

flood occurrence and each conditioning factor. Four types of kernel-based SVMs (linear, 

polynomial, radial basis function and sigmoid) were used for modelling. The results indicate 

that the RBF kernel-based SVM has achieved the best performance. 

 

Naghibi et al. (2016) [28] investigated groundwater potential mapping using tree-based 

algorithms. The purpose of this study was to produce groundwater spring potential maps in 

Koohrang, Iran. These GIS factors include slope degree, slope aspect, altitude, topographic 

wetness index, lithology, and land use, etc. The groundwater spring potential was modelled and 

mapped using classification and regression tree, random forest, and boosted regression tree 

algorithms. Another study of potential groundwater mapping is that Rahmati et al. (2016) [29] 

deployed random forest and maximum entropy models for groundwater potential mapping is 

investigated at Mehran Region, Iran. Massawe et al. (2018) [30] proposed a mapping approach 

for soil taxa mapping based on heterogeneous data, which was collected from different sources 

including satellite image, digital elevation map and digital soil map. The collected features 
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include soil classes, effects of living organisms (vegetation), terrain parameters and spatial 

location. Random forest and J48 algorithms were used to train the soil profile classification 

model separately.  

 

In order to build a classifier for different elements using spectral and spatial data, a spectral-

spatial feature-based classification (SSFC) framework was proposed to lower the dimension of 

spectral data and extract the features from spatial data. In this framework, a dimension reduction 

method called balanced local discriminant embedding (BLDE) was proposed to lower the 

dimension of hyperspectral images (spectral data with high resolution). CNN was used to 

extract the abstract features from spatial images. The features obtained from BLDE and CNN 

were then combined and used to train a classifier [31]. The rapid development of electric 

vehicles can significantly alleviate environmental problems and energy tension. Zhang et al. 

(2019) [32] proposed a multi-objective optimisation model based on particle swarm 

optimisation to plan the placement of the charging station of the electric vehicle. GIS was used 

in this study to identify the intersection of power system and traffic system maps. The 

intersections of the maps are the candidates of the charging stations. In the research based on 

GIS data, machine learning has become a useful tool. However, there is no existing study that 

concerns using GIS data in the study of PdM. 

 

3. Problem Statement 

 

PdM has become a big concern for various industry sectors. In an automobile fleet maintenance 

company, the prevailing maintenance policies are corrective maintenance and preventive 

maintenance. Corrective maintenance, also known as run to failure, will lead to high 

maintenance cost because it leads to considerable uncertainty in fleet management. Preventive 

maintenance can lower the maintenance cost to some extent, while the schedule check period 

needs to be well considered [33]. A too long and too short schedule check period leads to a high 
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accident rate and high maintenance cost, respectively. From the state-of-the-art, most of the 

research in PdM has been carried out based on the sensor data, which can reveal the health 

status of equipment at a certain time. In contrast, the maintenance data can only provide 

information when a failure occurs. The demonstration of sensor data and maintenance data in 

the automobile lifecycle is shown in Figure 1. The RUL prediction is the main focus of the 

study of PdM. When the RUL can be accurately predicted, the maintenance can be scheduled 

in an appropriate time. Since the maintenance data does not cover the information that can 

reveal the health status of equipment, it is challenging that using maintenance data to establish 

an equipment RUL prediction. 

 

 

Figure 1. The demonstration of sensor data and maintenance data 

 

In PdM, most research has studied the equipment lifecycle either based on the sensor data or 

maintenance data. However, to the best of our knowledge, there is no research to consider the 

impact of GIS factor on the product lifecycle. For an automobile, its lifecycle can be affected 

by various surrounding factors such as weather, traffic, and terrain. With the enrichment of GIS 
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data, the automobile RUL prediction accuracy can be improved. Moreover, it can offer insights 

into how the GIS factors affect automobile lifecycle, which can help a fleet management 

company to optimise its maintenance policy. Our previous study introduced GIS data into 

automobile time-between-failure (TBF) modelling through a data-driven approach. The 

maintenance data and GIS data were directly concatenated and fed into a deep forest algorithm 

for training. The experimental results showed that prediction accuracy was promoted with the 

enrichment of GIS data [34]. However, the data integration of maintenance data and GIS data 

can be further investigated.  

 

The identification of the data characteristics is important to the integration of maintenance data 

and GIS data. Automobile maintenance data is originated from the automobile maintenance 

record. In comparison with the sensor data, which can reveal the automobile health status, 

maintenance data records the automobile information in a maintenance event. Each data entry 

in maintenance data contains the basic automobile information such as mileage, age, last time 

to repair and model in the automobile start date (i.e. the date automobile after maintenance or 

first used). The output of each data entry is the next TBF. Hence, a maintenance data entry is 

collected in a certain timestamp. Besides, maintenance data can be further classified as two 

specific types which are sequential data and ordinary numeric data. The data which has 

sequential property is relevant to the maintenance history, such as the repaired time, automobile 

age, and mileage. Because the next TBF of an automobile tends to be shorter than the last TBF, 

the sequential features in the last TBF are relevant to the next TBF [35]. The ordinary numeric 

features in maintenance data are constants such as model. In our previous study, all the ordinary 

numeric features are considered as sequential features. The data which contained these features 

were fed into an LSTM network for training. The algorithm performance in terms of model 

correlation coefficient and root mean square error is better than that of a fully-connected neural 

network [36]. However, when the number of ordinary numeric features increases, the algorithm 

performance of LSTM network could be compromised. Hence, a new data integration technique 
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needs to be explored for automobile RUL modelling based on these two types of data. 

A maintenance data entry can only be collected when maintenance is implemented. Different 

from maintenance data, GIS data can be collected continuously and chronologically. For 

example, the weather data can be collected daily, weekly, and monthly, etc. If a GIS feature is 

collected monthly in a year, it is a one-dimension array. If multiple GIS features are collected 

in a long period according to a certain sampling frequency, a two-dimensions array can be 

obtained. Figure 2 shows the automobile maintenance data and GIS data. The features in 

maintenance dataset, which contains both sequential and ordinary numeric features, is a one-

dimension array.  

 

 

Figure 2. The automobile maintenance data and GIS data 

 

Hence, the research question in this study is: how to integrate the maintenance data and GIS 

data for automobile RUL prediction? In this study, we propose a new approach that contains a 

novel deep learning structure to integrate data from different sources and establish an 

automobile RUL prediction model.  
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4. Methodology 

 

In our proposed approach, firstly, the maintenance data needs to be collected from the garage 

of a fleet management company, while the GIS data needs to be collected according to the 

automobile working area. The dataset is split into two parts, where the first part is used for data 

integration, and the second part is used for HI construction for the integrated data. Secondly, 

the maintenance data and GIS data are integrated. In this stage, both datasets are classified into 

two parts which are sequential data and ordinary numeric data. Both types of data from 

maintenance data and GIS data are concatenated. The details of data integration are introduced 

in Section 4.2. Thirdly, Cox PHM is deployed to estimate the HI using the maintenance data in 

conjunction with the statistical GIS data (i.e. the features of mean and standard deviation). 

Fourthly, a merged neural network called M-LSTM network is designed for automobile HI 

modelling. Finally, the predicted HI obtained from M-LSTM network is used to map the RUL 

of an automobile according to Cox PHM. Figure 3 shows the flow chart of the proposed method. 
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Figure 3. The flow chart of the proposed approach 

 

4.1. GIS Data Collection 

 

Automobile lifecycle can be affected by various factors includes weather, traffic and terrain. A 

fleet management company processes a large number of automobiles which the conditions of 

the working environment can be very different in terms of the GIS factors mentioned above. 

Hence, the GIS data of a certain working area need to be summarised and extracted using GIS 

software. Weather data such as temperature, rainfall, and sunshine hours of a certain working 

area can be obtained from the weather observation stations within the working area. Automobile 

lifecycle also can be affected by traffic condition. In an area with heavy traffic, the frequency 

of acceleration and deceleration tends to be higher, which may accelerate the failure of the 

automobile. Traffic data of a certain working area, such as traffic flow statistics, can be 

collected from the traffic department. The terrain is another aspect that can impact automobile 

life. In the mountainous area, automobiles have to frequently accelerate and decelerate, which 

speed up the failure of the automobile. The terrain data regarding elevation and slope in a certain 

working area can be analysed and extracted from the elevation map in GIS software. The 

taxonomic graph of the maintenance data and GIS data is shown in Figure 4. It is interesting to 

note that some GIS factors such as weather and traffic are changing along the time, while other 

factors such as terrain are relatively stable in a period. In other words, weather and traffic data 

can be considered as sequential data, while terrain data can be considered as ordinary numeric 

data in the study of PdM.  
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 Figure 4. The taxonomic graph of the maintenance data and GIS data 

 

4.2. Data Integration 

 

After the maintenance data and GIS data is collected, they need to be integrated for automobile 

RUL modelling. Figure 5 shows the data integration of maintenance data and GIS data. Both 

maintenance data and GIS dataset consist of ordinary numeric data and sequential data. Firstly, 

the sequential data in both maintenance data and GIS dataset needs to be integrated. A 

maintenance data entry is denoted as {xi, yi}, where xi is the sequential part of the input vector, 

yi is the TBF (days). The sequential part of a GIS data entry is denoted as gi . yi ranges from a 

month to a few years, while gi represents the average GIS condition in a month (30 days). The 

GIS data entries corresponding to xi and yi can be expressed by: 

 

௜ܩ        ൌ ሼ݃௜ሺଵሻ, ݃௜ሺଶሻ, ݃௜ሺଷሻ, … . , ݃௜ሺ௡ሻሽ	                                              (1) 

where n = 
௬iଷ଴ 
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To integrate the sequential part of maintenance data and GIS data. yi needs to be segmented by 

a month and xi needs to be approximated correspondingly, which can be expressed by: 

 

௜ݕ  → ሼݕ௜ሺଵሻ, ,௜ሺଶሻݕ ,௜ሺଷሻݕ … , ௜ݔ ௜ሺ௡ሻሽ                                        (2)ݕ → ሼݔ௜ሺଵሻ, ,௜ሺଶሻݔ ,௜ሺଷሻݔ … ,  ௜ሺ௡ሻሽ                                        (3)ݔ

where n = 
௬iଷ଴ 

 

After the sequential part of the maintenance data is transformed, it is concatenated with the 

sequential part of the GIS data. ݖ௡is denoted as the data entry of the integrated sequential dataset 

Z, which can be expressed by: 

௡ݖ  ൌ ሼൣݔ௜ሺ௡ሻ, ݃௜ሺ௡ሻ൧,  ௜ሺ௡ሻሽ                                                (4)ݕ

 

The ordinary numeric data in maintenance dataset is transformed from nominal data such as 

automobile model, garage and area. Autoencoder, a deep learning algorithm, is used to 

transform the one-hot representation generated by nominal data into robust representation, 

which was detailed in our previous work [37]. An ordinary numeric data entry in maintenance 

dataset is denoted as oi, while an ordinary numeric data entry in GIS dataset is denoted as hi. 

Due to the transformation of the sequential data, the data volume is expanded. Both oi and hi 

need to be duplicated to match the data size of the sequential dataset. Finally, the ordinary 

numeric data in maintenance dataset and GIS dataset is concatenated.  
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Figure 5. Data integration of maintenance data and GIS data 

 

4.3. Health Index Construction 

 

After the maintenance data and GIS data is integrated, the HI need to be estimated. The data 

label yi is segmented by month and become time-to-failure (TTF). If TTF is used as the data 

label, automobile degradation is assumed to follow a linear distribution, which is not a common 

pattern in automobile failure modelling. An appropriate data label that can represent the 

automobile health condition needs to be determined. It can be seen from the literature that 

various methods have been deployed to construct the HI of machine, system or component. 

However, most of the existing methods are used to estimate the HI based on sensor data, which 

is strongly correlated to the actual health condition of machine, system or component. When 

the sensor data is not available, most of the existing methods are not available. Cox PHM, as a 

prevailing statistical method in reliability analysis, is used to estimate the degradation trend of 

the automobile based on maintenance data.  

 

Cox PHM is used to analyse the relationship between different features and hazard 
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function. The covariate is denoted as ߚ௣ and the input vector is denoted as ܺ௣. The Cox PHM 

is denoted as:        

 ݄ሺݐ, ܺሻ ൌ ݄଴ሺݐሻexp	ሺߚଵݔଵ ൅ ଶݔଶߚ ൅⋯൅  ௣ሻ                      (5)ݔ௣ߚ

 

where ݄଴ሺݐሻ is the maximum likelihood estimator proposed by Breslow [38].  

 

Then a Cox PHM is established using the data in the HI construction set. For the 

construction of Cox PHM, the mean and standard deviation (StD) of the sequential GIS data 

(before automobile start to run) are first extracted. Then, the extracted GIS features are adopted 

in conjunction with the features in maintenance data to build a Cox PHM. The data in data 

integration set is fed into the Cox PHM to obtain the hazard function of the automobile. The 

hazard function of a Cox PHM is shown in Figure 6. Since the automobile TBF is segmented 

by n times and therefore n survival times are obtained. The corresponding HI in the integrated 

dataset is approximated by sending the survival time to the hazard function. When a HI is 

predicted, the hazard function is used to map the RUL.  

 

 

Figure 6. The hazard function of a Cox PHM 
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4.4. M- LSTM: A Novel Deep Learning Structure for Data Integration 

 

Each typical deep learning structure has its expertise. For example, LSTM network is good at 

processing sequential data, and FCNN is good at process ordinary numeric data. In order to 

process both types of data mentioned above, a novel deep learning structure called M-LSTM 

network is designed for modelling HI based on both sequential data and ordinary numeric data. 

The structure of M-LSTM network takes the advantages of LSTM network and fully-connected 

network to handle the sequential data and ordinary numeric data simultaneously. Figure 7 

indicates the structure of M-LSTM network. There are three major paths in M-LSTM network:  

 

1. Ordinary numeric data processing path: Since an ordinary numeric data entry is a one-

dimensional vector, the ordinary numeric data obtained from Section 4.2 is directly 

processed by fully-connected layers in the neural network. Hence, a two-layers fully- 

connected sub-network is designed in this path. 

 

2. Sequential data processing path: LSTM network is expertise in learning the sequential 

patterns within data. The technical details of the LSTM network can be found in [39]. The 

sequential data obtained from Section 4.2 is further processed to three-dimensional format 

(i.e. features, data size and times). In order to learn the hidden patterns within the 

sequential data, a two-layer LSTM sub-network is deployed in this path. Moreover, a 

flatten layer is set to transform the output of LSTM layer for further data integration. 

 

3. Data integration path: After the abstract representation is learnt by both paths mentioned 

above, a data integration path is needed to fuse the representation and implement the 

regression task to predict the automobile HI. In this path, a concatenate layer is deployed 

to concatenate the output from both sub-networks. Then, two fully- connected layers are 
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employed to fuse the concatenated representation further and learn the hidden patterns 

relevant to automobile HI. 

 

There are several essential components and parameters in M-LSTM network, such as optimiser, 

the number of neurons and batch size, need to be determined in the actual case. Besides, to 

avoid overfitting, batch normalisation, l2 regularizer and dropout techniques are deployed in M-

LSTM network.  

 

 

Figure 7. The structure of M-LSTM network 

 

After the HI is predicted, it is used to estimate automobile RUL using the hazard 

function of Cox PHM. The survival time of an automobile when HI is 0 is denoted as 
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௘ܶ, where the automobile is deemed as faulty. The True RUL at the time i is denoted as ௜ܶ. The predicted HI at the time i is denoted as ܴ௜. The hazard function of the automobile 

is denoted as ݂ሺሻ. The estimated RUL can be expressed by: 

  

 Estimated RULൌ ௘ܶ െ ݂ሺܴ௜ሻ                                       (6) 

 

The actual RUL of the automobile can be expressed by: 

 

Actual RULൌ ௘ܶ െ ௜ܶ                                              (7) 

 

In geography, since the terrain of an area is relatively stable during a period of time, the terrain 

is considered as constant along with time. The terrain data in RUL modelling is deemed as 

ordinary numeric data.  

 

5. Experimental Setup 

 

5.1. Data 

 

The maintenance data used in this study records the automobile engine maintenance 

history. It was provided by a sizable fleet service company in the UK. The company has a 

strong interest in the prediction of the maintenance time of an automobile. An accurate 

prediction of automobile RUL can be beneficial to the company in terms of maintenance 

planning, job scheduling and spare parts inventory management. Maintenance data records the 

relevant data when maintenance is implemented. Some automobiles experienced multiple 

maintenances in the past. It is challenging to construct the HI for the automobile which has 

multiple maintenances since the health condition after maintenance cannot be recovered to 1, 

and therefore it is hard to estimate. Hence, only the first maintenance record of automobiles is 

considered in this study. The maintenance dataset was collected from 2009 to 2017, which 

contains 6,584 data entries. The average TBF of the automobiles in the dataset is 1201.7 days, 

while the standard deviation is 591.7 days. The features relevant to the automobile life cycle 
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were extracted from the dataset. The features in maintenance data are shown in Table 1. 

 

Table 1. The features in maintenance data 

Numeric Features Nominal Features 

Feature Description Feature Description 

Vage The age of automobile Model The model of automobile 

CumM 
The cumulative miles when a 

failure occurs 
Garage The garage of automobile 

Model_Year The age of the automobile model Area The area of automobile 

Seq A time index for automobile   

Regions 
Four binary attributes used to 

identify regions 
  

 

The maintenance data was first pre-processed. The data entries with missing values and 

abnormal values were removed in this stage. The TBF of automobiles ranges from 0 to 2770. 

The early failure of an automobile is caused by multi-reasons, such as product quality and 

accidents. There are two types of features in the maintenance dataset, which are numeric 

features and nominal features. The numeric features were further classified into sequential 

features and ordinary numeric features. In this dataset, Vage, CumM, Model_Year, and Seq are 

the features change alone with time, and therefore these four features are deemed as sequential 

features, while Regions is considered as an ordinary numeric feature. The nominal features 

cannot be directly used for regression modelling. In our previous study, the nominal features 

were first converted to one-hot encoding format before a three-layers autoencoder was designed 

to transform the nominal data in one-hot encoding format to robust representation [37]. The 

dimensions of robust features converted from autoencoder are 16. The features mentioned 

above were used for RUL modelling. Besides these features, the maintenance data also contains 

the automobile start date and failure date, which are useful for the data transformation in the 

data integration stage. 

 

The GIS data was collected according to the mobility area and time. Firstly, there are over 60 

garages in the fleet management company. The garage location was set as the centre of the 
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mobility area for an automobile. With the consideration of the daily mileage of automobile, a 

circular area with a radius of 30km was set as the mobility area. The automobiles in the same 

garage are considered running in the same mobility area. All the garage location and mobility 

area were plotted in ArcGIS software. Figure 8 shows two examples of garage and mobility 

area. Secondly, the GIS data in this area between the automobile start date and failure date was 

extracted and summarised. There are three types of GIS data considered in this study, which 

are weather, traffic and terrain.  

 

 

Figure 8. Examples of automobile garage and mobility area 

 

Weather condition may affect the performance of the automobile. The weather data was 

collected from the website of the MET office [40], UK. There are approximately 40 weather 

observation stations all around the UK, with data collected from 2009 to 2017. Some mobility 

areas may cover multiple weather observation stations, and therefore the mean value of the data 

from these weather observation stations was adopted. Meanwhile, some other mobility areas 

do not cover any weather observation station, a linear approximation based on the data of 

several near weather observation stations was implemented to yield the weather data in these 

mobility areas. The weather data used in this study was sampled monthly and includes the 
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following features: Name of observation station, Time, Rainfall, Max_temp, Min_temp, Days 

of air frost, and Sunshine. With the Name of observation station, the location of weather 

observation station was identified and plotted in ArcGIS software. Then, the weather data in 

each mobility area was summarised.  

 

Traffic condition is another impact that can affect automobile lifecycle. The traffic data was 

collected from the public dataset of the department of transport, UK. The traffic data of over 

200 local authorities all around the UK, which was collected from 2009 to 2017, were available. 

The traffic data was sampled yearly and includes the following features: Local authority name, 

Year, Link length (km), Link length (miles), Cars and taxis, and All motor vehicles. In the above 

features, Link length (km) and Link length miles were converted to each other. Hence, link 

length (km) was dropped. Similar to the process of weather data, the Local authority name is 

used to identify the locations of the local authority in ArcGIS software, before the traffic data 

of each mobility area was summarised. 

 

The automobile lifecycle also can be impacted by the terrain condition. The terrain data used 

in this study was extracted from the elevation map in ArcGIS software. The terrain features of 

a mobility area were directly extracted and summarised. The terrain data includes the following 

features: Mean elevation, Maximum elevation, Minimum elevation, StD of elevation, Mean 

slope, Maximum slope, StD of slope, Mean aspect, Longitude and Latitude. The summarisation 

of all the GIS data is shown in Table 2. 

 

Some features in GIS data can be highly correlated. The redundant features may damage the 

algorithm performance. Hence, it is necessary to remove redundant features. Heat map is a data 

visualisation tool to identify the correlation between different features. Figure 9 shows the heat 

map of the extracted features of the GIS data. The highly correlated features (correlation 

coefficient close to 1 or -1) which correlation coefficient is over 0.8 were identified via heat 
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map and then were removed. In the heat map, there are 42 features in total. After the removal 

of the GIS features, only 22 features were kept for further modelling. 

Table 2. The summarisation of the GIS data 

Types 
Sampling 

frequency 
Feature Description Feature Description 

Weather Monthly 

Rainfall The rainfall (mm) Max_temp 
The maximum 

temperature (°C) 

Min_temp 
The minimum 

temperature (°C) 

Days of air 

frost 
The days of air frost 

Sunshine The sunshine hours   

Traffic Yearly 

Link length 

(km) 

The total length of each 

junction to junction link 

on the major road 

network 

Cars and 

taxis 
The amount of cars and taxis 

All motor 

vehicles 

The amount of all motor 

vehicles  
  

Terrain NIL 

Mean 

elevation 

The mean elevation of 

mobility area 

Maximum 

elevation 

The maximum elevation of 

mobility area 

Minimum 

elevation 

The minimum elevation of 

mobility area 

StD of 

elevation 

The Standard deviation of 

elevation of mobility area 

Mean slope 
The mean slope of mobility 

area 

Maximum 

slope 

The maximum slope of 

mobility area 

StD of slope 
The Standard deviation of 

slope of mobility area 
Mean aspect 

The mean aspect of mobility 

area 

  Longitude The latitude of the longitude Latitude The latitude of the garage 
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Figure 9. The heatmap of the GIS features 

 

5.2. Experimental Setup 

 

After both maintenance data and GIS data were collected and identified, the first step is to 

integrate the data. There are 6,584 data entries in the maintenance dataset. 5-fold cross-

validation was adopted. In each experiment of 5-fold cross-validation, 20% of data entries in 

maintenance dataset were used for data integration and then RUL modelling. After the data 

transformation, 20% of the data will generated over 64,000 data entry, which is sufficient to 

train a neural network with satisfactory performance. Meanwhile, the HI construction is 

important. The rest 80% of data entries were used in HI construction to establish a reliable Cox 

PHM. It can be seen that the sampling frequency of maintenance data and three types of GIS 
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data are different. The maintenance data is collected only when the event of automobile failure 

occurs, which cannot follow a specific sampling frequency. 

 

The weather and traffic data were collected monthly and yearly, respectively. Hence, they were 

deemed as sequential data in this study. The terrain data is relatively stable for a long period. 

Therefore, it was deemed as constant. In order to integrate both maintenance data and GIS data, 

the data needs to be transformed. Firstly, the sequential data in both maintenance dataset and 

GIS dataset was integrated. In this study, all the data was transformed to the monthly level. The 

idea was detailed in Section 4.2. Since the automobile start date and failure date of each 

maintenance data entry are known, each maintenance data entry was segmented by month. The 

monthly segments of all automobiles constituted a new maintenance dataset. Meanwhile, the 

weather data is sampled monthly, and therefore it can be directly used for data integration. The 

traffic data is sampled yearly. Hence, the segmentation approach was also implemented to the 

traffic data to generate a new traffic dataset with the monthly approximation. After all the 

sequential data was transformed, the sequential maintenance data, weather data and traffic data 

were concatenated in the feature direction. Besides, the terrain data and the ordinary numeric 

data in the maintenance dataset were duplicated and concatenated. After the data was integrated, 

a new sequential dataset and a new ordinary numeric dataset which contain over 64,000 data 

entries was generated. Then the sequential data further processed using time window approach. 

The sequence length was set as 5, which means the input data of the previous 5 step is used to 

predict the HI in the next step. 

 

Cox PHM is an important model in reliability analysis. In order to establish a reliable Cox PHM, 

not only the features in maintenance dataset were adopted, but the terrain features and the 

statistical features (weather and traffic) of weather and traffic data were taken. Cox PHM is 

sensitive to the covariates. Hence, all the features were first used to establish a Cox PHM. By 

calculating the model coefficient of each feature, the redundant features were identified. Those 
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features which coefficient is negligible were removed from the dataset to enhance the 

robustness of the model. After a Cox PHM was established, it is used to approximate the HI of 

the automobiles in data integration set. The hazard function of each automobile in the data 

integration set can be produced via the established Cox PHM. The hazard function is then used 

to calculate the HI of the integrated dataset obtained from the data integration stage. The 

approximated HI was used as the new label of the integrated data. Also, the hazard function of 

each automobile in the data integration set is used to estimate the RUL using the predicted HI. 

The data in this stage was ready for HI modelling and then RUL mapping. 

 

After the data for RUL modelling was prepared, the parameters of the merged neural network 

need to be determined. Firstly, the size of the neural network is an important parameter in a 

neural network. After several trials, the number of neurons of each layer in the ordinary numeric 

data processing path and sequential data processing path was set as 100. The number of 

lookbacks in LSTM layer was set as five, which means the variables of the previous five steps 

is used to predict the HI of the next stage. The number of neurons of in the first and second 

layers in the data integration path was set as 600 because the data dimension obtained from the 

two sub-networks were 600. The number of neurons in the output layer was set as one due to 

the neural network is designed for regression. The rectified linear unit was adopted as the 

activation function of all the fully-connected layers except the output layer. The activation 

function of the output layer was set as linear due to the modelling mission is regression. 

Secondly, the parameters relevant to the training process were determined. RMSprop [41] was 

selected as the optimiser with the learning rate set as 0.005. The batch size, training epochs and 

dropout rate were set as 300, 10, and 0.5, respectively.  

 

In this study, in order to reveal the performance of M-LSTM network, four algorithms were 

deployed for benchmarking. The benchmarking algorithms are artificial neural network 

(FCNN), long-short term memory (LSTM) network, deep convolutional neural network 
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(DCNN) [10], and support vector machine (SVM). Two scenarios were set in the experimental 

study. In scenario 1, the five algorithms mentioned above were adopted for RUL modelling 

based on the maintenance data. The algorithm performance of M-LSTM network was revealed 

with the comparison to that of the benchmarking algorithms. In scenario 2, the GIS data was 

introduced. Whether the RUL modelling accuracy can be leveraged with the enrichment of GIS 

data can be revealed. Meanwhile, the identification of the impact of GIS features on automobile 

lifecycle needs to be revealed. Due to the training mechanism of deep learning, the results of 

deep learning are slightly different from time to time. Besides, the GIS features are not strongly 

correlated to the automobile lifecycle and therefore, it is challenging to reveal the impact of a 

specific GIS feature on automobile RUL. Hence, the impact of group features which are 

weather, terrain and traffic factors on automobile lifecycle were studied. All tests were 

conducted on an Intel i5-7300 2.80Ghz laptop with Nvidia GeForce GTX 1050 graphics card.  

 

5.3. Performance Evaluation 

 

There are two metrics adopted in this experiment to reveal the algorithm performance, which 

are the model correlation coefficient (MCC) and root mean square error (RMSE). These two 

metrics are widely used in the study of regression. MCC is used to measure the correlation 

between two variables and can be expressed mathematically as: 

 

MCC	ൌ ௌುಲඥௌುௌಲ,                                          (8) 

where, 

ܵ௉஺ ൌ ∑ ሺ݌௜ െ ሻሺܽ௜̅݌ െ തܽሻ௜ ݊ െ 1 ;	ܵ௉ ൌ ∑ ሺ݌௜ െ ሻଶ௜̅݌ ݊ െ 1 ; 
஺ܵ ൌ ∑ ሺܽ௜ െ തܽሻଶ௜ ݊ െ 1 ; 

݅݌  is the predicted value and ݌ത is the average of the predicted value. ܽ݅ is the actual value and 
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the തܽ is the average actual value. ݊ is the number of training data. 

 

RMSE is a scale-dependent metric which measures the difference between the prediction value 

and the actual value. It is 0 if there is no difference between the prediction value and the actual 

values. The expression of RMSE is:  

RMSE=ට∑ ሺ࢏ࢇି࢏࢖ሻ૛࢏ ࢔                                                                 (9) 

Besides, the training time of each algorithm, which is the modelling time for HI, were compared 

to reveal the computational cost.  

 

6. Experimental results  

 

6.1. Scenario 1: The comparison of M-LSTM network with the Prevailing Machine 

Learning Algorithms 

 

In this scenario, in order to reveal the algorithm performance of M-LSTM network, 

four machine learning algorithms, which are LSTM network, FCNN, DCNN and SVM 

were used for modelling based on maintenance data. After 5-fold cross-validation, the StD 

of MCC and RMSE of HI and RUL prediction were compared to reveal the algorithm 

performance. 

 

The modelling results of five machine learning algorithms were shown in table 3. It can 

be seen that M-LSTM network achieved the highest MCC and lowest RMSE in RUL 

modelling, while the algorithm performance of LSTM network in terms of MCC and 

RMSE are more stable due to the lower StD. The algorithm performance in terms of 

MCC and RMSE for M-LSTM network RUL modelling is slightly better than that of 

FCNN. Meanwhile, SVM not only showed the worst algorithm performance in terms 

of MCC and RMSE, but also it took the longest time for HI modelling. Hence, the deep 

learning algorithms show merits in RUL modelling. 
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Table 3. The results of RUL modelling based on maintenance data 

 M-LSTM LSTM FCNN DCNN SVM 

MCC_Mean 0.9778 0.9713 0.9743 0.9711 0.9578 

MCC_StD 0.0071 0.0041 0.0103 0.0059 0.0045 

RMSE_Mean (days) 349.4 368.7 356.5 393.1 396.7 

_RMSE_StD (days) 28.4 19.5 31.7 48.2 29.8 

Training time (s) 66.5 109.4 11.7 21.9 3120.5 

 

 

6.2. Scenario 2: RUL Modelling with the Enrichment of GIS Data  

 

In this scenario, the GIS data was introduced into HI and RUL modelling. The pre-

processed weather and traffic data were concatenated with the sequential part of the 

maintenance data, while the pre-processed traffic data were concatenated with the 

ordinary numeric part of the maintenance data. The algorithms were used for HI and 

RUL modelling based on the enriched dataset. 

 

Figure 10 and 11 reveals the results of RUL modelling in terms of MCC and RMSE based 

on maintenance data in conjunction with/ without GIS data. It can be seen that the MCC of all 

the algorithms were promoted with the enrichment of GIS data, except DCNN. The algorithm 

performance of M-LSTM network in terms of MCC was promoted by 0.13%, while the StD 

shrunk by 63.2%. With the enrichment of GIS data, M-LSTM network still achieved the highest 

MCC. LSTM network got the most considerable improvement with the help of GIS data, while 

its StD enlarged dramatically. Meanwhile, with the help of GIS data, the algorithm 

performance in terms of RMSE of all the algorithms was decreased except LSTM 

network. M-LSTM network witnessed the largest decrease in terms of RMSE, which is 

about 3.9%. The lowest RMSE achieved in this case is 335.8 days. What is also 

apparent is that the StD of RMSE for M-LSTM network is far lower than other 

algorithms with the help of GIS data. 
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Figure 10. The MCC of RUL prediction based on maintenance data with/ without GIS 

data 

 

 

Figure 11. The RMSE of RUL prediction based on maintenance data with/ without 

GIS data 
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M-LSTM network achieved the best performance in comparison with the 

benchmarking algorithms. In order to further reveal how the GIS features impact the 

automobile lifecycle, it is worthwhile the plot the actual RUL and the predicted RUL 

with and without GIS features of some automobiles. Figure 12 shows the predicted 

RUL for automobile #21, #23, #28 and #15, which are deemed representative for most 

automobiles. The RUL prediction of these four automobiles shows different patterns. 

Figure 12 (a) shows the error of predicted RUL of both models trained with and without 

GIS features for automobile #21 was large in the beginning and ending stage, while the 

middle stage was relatively accurate. Figure 12 (b) indicates that the RUL prediction 

error of automobile #23 was large in the beginning, and then it shrank in the next ten 

months. With GIS features, the prediction errors in the first three months are lowered, 

while the errors are enlarged in the ending stage. The predicted RUL in Figure 12 (c) 

reveals that the predicted error of automobile #28 was stable and not dramatic. With 

GIS features, the prediction errors of automobile #23 and #28 in the beginning stage 

are lowered, while the errors are enlarged in the ending stage. The predicted error of 

Figure 12 (d) was large in all the stages without convergence.  

 

The merits of the RUL prediction of automobile #15 with GIS features are obvious. It 

can be seen from the four figures that the trend of the predicted RUL was highly 

correlated to the actual RUL, while the predicted error varies from each other. The 

comparison of the RUL prediction from the M-LSTM network trained with and without 

GIS features is further revealed in Table 4. It can be seen that with the help of GIS 

features, the MCC of M-LSTM network can be promoted. The RMSE of #21 and #15 

obviously decreased with the help of GIS features, while the RMSE of # 23 and #28 

slightly increased.  
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Figure 12. The predicted and actual RUL for four automobiles 

 

Table 4. The results of RUL modelling for four automobiles 

Automobile 21 23 28 15 

MCC 

No GIS 0.9799 0.9574 0.9801 0.8698 

GIS 0.9896 0.9672 0.9919 0.9764 

RMSE 

No GIS 144.1 235.0 192.7 830.5 

GIS 110.8 247.4 204.3 769.9 

 

Since M-LSTM network showed merits in RUL modelling with the enrichment of GIS 

data, it was used to identify the impact of the group GIS features on automobile lifecycle. 

Figure 13 shows the MCC and RMSE of RUL modelling using M-LSTM network 

based on the maintenance data with different types of GIS data. With the help of 

different types of GIS data, the MCC of M-LSTM network improved and the RMSE 

reduced, which indicate that all three types of GIS features under investigation have a 

positive impact on automobile RUL modelling. Among these three types of features, 

M-LSTM network achieved higher MCC with the help of traffic features and achieve 

lower RMSE with the enrichment of weather features. Furthermore, with the 

enrichment of weather and traffic data, the Std of RMSE for LSTM network decreased 
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considerably. In contrast, the impact of terrain data on automobile lifecycle modelling 

is relatively low.  

 

Figure 13. The MCC and RMSE of RUL modelling using M-LSTM network based on 

the maintenance data with different types of GIS data 

 

7. Discussions 

 

From the results of scenario 1, what obvious is that the M-LSTM network shows merits in 

modelling based on heterogeneous data, which contains sequential data and ordinary numeric 

data. It promoted the algorithm performance in terms of MCC and RMSE, while it requires less 

computational load than the LSTM network. Hence, it can be useful in heterogeneous data 

modelling. Meanwhile, the results of scenario 2 indicated the introduction of individual groups 

of GIS features promoted the algorithm performance of most algorithms used in this study in 

terms of MCC and RMSE. The introduction of the weather data has the largest positive impact 

on the algorithm performance in terms of MCC and RMSE of M-LSTM network, which 

indicate that weather factors have a higher impact on the automobile lifecycle. The algorithm 

performance of M-LSTM network in terms of MCC and RMSE is better than that of the 
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benchmarking algorithms, which indicates that M-LSTM network is more suitable in modelling 

based on multi-sources data. In the results, it can be seen that the predicted error was large 

when the overall life is lower than 1000 days. In the historical maintenance dataset, the 

feature values of data entry that TBF is lower than 1000 are similar to that of the data 

entry which TBF is higher than 1000. Since the automobile which TBF is lower than 

1000 is the minority, it poses a challenge to the algorithm to correctly estimate its health 

status. 

 

The introduction of GIS data promoted the algorithm performance of all the algorithms except 

DCNN witnessed the performance improvement in terms of MCC and RMSE with the 

enrichment of three types of GIS data. Among these algorithms, M-LSTM network achieved 

the highest MCC and lowest RMSE, which demonstrated that M-LSTM network shows merits 

in modelling with GIS data. However, the improvement of the algorithm performance in terms 

of MCC and RMSE are still limited. The main reason can be the GIS data collected in this study 

does not match the actual surrounding factors of the automobile mobility area of each 

automobile. For example, if there are a mountainous area and a plain area in the data collection 

area, the maximum elevation and the slope tends to be dramatic. However, there is not likely 

too many roads in such a mountainous area. Hence, the collected terrain data did show a positive 

impact on automobile RUL modelling. Its actual impact needs to be further investigated.  

 

In the future, firstly, with the development of IIoT, the real-time telematics data of automobile 

can be collected during the in-use period. With the GPS information, the real-time GIS data can 

be collected from external data sources and then be transmitted to the cloud. How to integrate 

real-time telematics data, real-time GIS data, and maintenance data in the study of PdM will be 

further explored. The prediction accuracy of the automobile RUL prediction model can be 

further leveraged with the introduction of real-time telematics and GIS data and a more suitable 

data integration scheme. Secondly, the architecture of M-LSTM network can be further 
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explored. The M-LSTM designed in this paper adopted two sub-networks, which are FCNN 

and LSTM network, for feature extraction. Then the extracted features are sent to concatenated 

layer for integration before an FCNN is deployed for the final RUL prediction.  

 

With the development of machine learning, there are various emerging algorithms proposed 

recently. It is worthwhile to explore how to improve the feature extraction in deep learning so 

to promote the RUL prediction accuracy. Furthermore, the actual impact of GIS features on 

automobile lifecycle needs to be further investigated. Since deep learning is a type of black-

box algorithm, which cannot indicate how the features affect the final output, it cannot offer 

too many insights into the fleet management company. The GIS features are highly correlated, 

which leads to the difficulty of the identification of feature importance. If the relationship 

between the correlated GIS features and the automobile RUL can be identified, it can be 

beneficial to the fleet management company to optimise maintenance management. Hence, 

future works also target on developing a new approach to identify how correlated GIS features 

impact automobile lifecycle. 

 

8. Conclusion 

In automobile PdM, existing studies only focus on modelling using sensor data or maintenance 

data which is directly relevant to automobile failure. Other relevant factors, such as weather, 

traffic and terrain, which can also impact automobile lifecycle, have not been considered in 

automobile PdM. To fill this research gap, in this paper, we have initiated the research on an 

M-LSTM network-based predictive maintenance enriched by GIS data. In this approach, the 

data collection and pre-processing schemes for GIS data were studied, which enable the 

integration of GIS data and historical maintenance data. Furthermore, a new deep learning 

structure called the M-LSTM network was proposed for the modelling based on multi-source 

data. The experimental study based on the real-world data obtained from a fleet management 

company validated the effectiveness of the proposed approach. Experimental results have 
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revealed that the M-LSTM network has shown its merits in multi-source data modelling, while 

the integration of GIS data is beneficial in improving the prediction accuracy of RUL. Based 

on the promising results achieved, it encourages the fleet management company to further 

exploit GIS data jointly with archived maintenance data for fleet health and maintenance 

management, better job scheduling and garage operational management, etc. 
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