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Abstract 
 

Cerebrovascular disease accounts for approximately 30% of the global burden 

associated with cardiovascular diseases [1]. According to the World Stroke 

Organisation, there are approximately 13.7 million new stroke cases annually, 

and just under six million people will die from stroke each year [2]. The 

underlying cause of this disease is atherosclerosis – a vascular pathology 

which is characterised by thickening and hardening of blood vessel walls. 

When fatty substances such as cholesterol accumulate on the inner linings of 

an artery, they cause a progressive narrowing of the lumen referred to as a 

stenosis. 

Localisation and grading of the severity of a stenosis, is important for 

practitioners to assess the risk of rupture which leads to stroke. Ultrasound 

imaging is popular for this purpose. It is low cost, non-invasive, and permits a 

quick assessment of vessel geometry and stenosis by measuring the intima 

media thickness. Research is showing that 3D monitoring of plaque 

progression may provide a better indication of sites which are at risk of 

rupture. Various metrics have been proposed. From these, the quantification 

of plaques by measuring vessel wall volume (VWV) using the segmented 

media-adventitia boundaries (MAB) and lumen-intima boundaries (LIB) has 

been shown to be sensitive to temporal changes in carotid plaque burden. 

Thus, methods to segment these boundaries are required to help generate 

VWV measurements with high accuracy, less user interaction and increased 

robustness to variability in di↵erent user acquisition protocols. 
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This work proposes three novel methods to address these requirements, to 

ultimately produce a highly accurate, fully automated segmentation algorithm 

which works on intensity-invariant data. The first method proposed was that 

of generating a novel, intensity-invariant representation of ultrasound data by 

creating phase-congruency maps from raw unprocessed radio-frequency 

ultrasound information. Experiments carried out showed that this 

representation retained the necessary anatomical structural information to 

facilitate segmentation, while concurrently being invariant to changes in 

amplitude from the user. The second method proposed was the novel 

application of Deep Convolutional Networks (DCN) to carotid ultrasound 

images to achieve fully automatic delineation of the MAB boundaries, in 

addition to the use of a novel fusion of amplitude and phase congruency data 

as an image source. Experiments carried out showed that the DCN produces 

highly accurate and automated results, and that the fusion of amplitude and 

phase yield superior results to either one alone. The third method proposed 

was a new geometrically constrained objective function for the network's 

Stochastic Gradient Descent optimisation, thus tuning it to the segmentation 

problem at hand, while also developing the network further to concurrently 

delineate both the MAB and LIB to produce vessel wall contours. Experiments 

carried out here also show that the novel geometric constraints improve the 

segmentation results on both MAB and LIB contours. 

In conclusion, the presented work provides significant novel contributions to 

field of Carotid Ultrasound segmentation, and with future work, this could lead 

to implementations which facilitate plaque progression analysis for the end-

user. 
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1 

Introduction 

 

1.1 Cardiovascular Disease - an overview 

According to statistics presented by the World Health Organisation (WHO), 

cardiovascular diseases are the leading cause of death around the world, 

taking the lives of approximately 17.9 million people each year, and accounting 

for 31% of all deaths [3]. From all deaths associated with cardiovascular 

diseases, 85% are due to heart attacks and strokes [3]. The most common 

cause behind all this is a pervasive condition called Atherosclerosis, which lies 

silent and asymptomatic in the large majority of people for many years, before 

it finally surfaces with debilitating consequences [4; 5]. 

Cardiovascular diseases (CVDs) include within them diseases associated with 

the heart, vascular diseases of the brain, as well as diseases of blood vessels [1; 

6]. The underlying conditions of CVDs may be di↵erent, with the most common 

being atherosclerosis. This may lead to ischaemic heart and coronary artery 

disease, such as heart attacks; cerebrovascular diseases like stroke; and 

diseases of the aorta and arteries, including those related to peripheral 
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vasculature and hypertension [1; 6]. Other CVDs may be caused by congenital 

or rheumatic conditions, cardiomyopathies, as well as cardiac arrhythmias. 

Atherosclerosis is particularly common because it is mediated by several risk 

factors, including behaviour (tobacco use, physical inactivity), obesity and 

advancing age [1; 7]. It is a complex vascular pathology, developing over many 

years and characterised by the thickening and hardening of blood vessel walls 

[8]. When plaque deposits itself in the inner lining of vessels, it causes their 

inner surface to become irregular and narrow, and in turn makes it harder for 

blood to flow through [1; 6]. The vessels themselves also become less pliable, 

and if the plaque ruptures, an embolus may be carried by the blood further 

upstream, causing an occlusion in a narrower part of the vessel. 

Rheumatic heart disease is caused by rheumatic fever, which leads to damage 

of the heart muscle and heart valves [1]. Other structural defects in the heart, 

such as holes in the septum, or abnormal valves and chambers, may be present 

at birth as congenital defects[1; 7]. Other disorders such as cardiomyopathies, 

or disorders of the electrical conduction system of the heart (cardiac 

arrhythmias) are also possible, although somewhat less common than heart 

attacks and strokes[1; 7]. 

1.2 Cerebrovascular Disease 

Cerebrovascular disease accounts for approximately 30% of the global burden 

associated with cardiovascular diseases [1]. According to the World Stroke 

Organisation, there are approximately 13.7 million new stroke cases annually, 

and just under six million people will die from stroke each year [2]. 
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The pathophysiology behind stroke may be either ischaemic or haemorrhagic 

in nature. Ischaemic events occur due to the formation of thrombi or emboli 

which occlude a vessel in the brain. Thrombotic cerebral infarctions result 

from atherosclerotic occlusion of cerebral and cervical arteries, with 

ischaemia taking place in part or all of the region of occluded artery. This may 

occur due to either the obstruction at the site of the main atherosclerotic 

plaque rupture, or due to a thromboembolism forming from this site and 

travelling to other distal cerebral arteries [9; 1]. A common example of the 

latter is due to atherosclerotic plaque forming and rupturing within the 

common carotid artery. 

Embolic cerebral infarctions are due to embolism of a clot, plaque contents, or 

other particles in the cerebral arteries, originating from other parts of the 

arterial system. These may originate from atherosclerotic lesions in di↵erent 

vessels, cardiac lesions at the site of the heart or valves, or else due to rhythm 

disturbances such as atrial fibrillation, which may lead to stasis of blood and 

clotting within the heart [9; 10]. If the symptoms of an ischaemic event are 

short (less than 1 hour in duration), and show no evidence of infarction on 

imaging, then these are termed Transient Ischaemic Events (TIA) [11]. 

Intracerebral haemorrhages are commonly due to arteriolar hypertensive 

disease [9]. Less commonly, they may also occur due to coagulation disorders 

and vascular malformation within the brain, or due to the diet. Subarachnoid 

haemorrhages on the other hand mainly occur due to ruptures of aneurysms 

at the bifurcations of large arteries within the inferior surface of the brain [9; 

1]. 
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In countries which are demographically developed, the average age at which 

stroke occurs is approximately 73 years [9]. This reflects the older age 

structure exhibited by these countries. A patient who has experienced a stroke 

is at the highest risk of death in the first weeks after the event. Indeed, between 

20% and 50% of patients die within the first month of the event, depending on 

the type of stroke, severity and presence of any co-morbidities [9]. Surviving 

patients may be left with no disability, but may also experience severe 

disability [9]. Risk factors which increase the incidence of stroke include 

inherent biological traits (age, sex, high blood pressure etc), behaviours such 

as smoking, alcohol consumption, poor diet and physical inactivity, as well as 

social characteristics such as education, social class and ethnicity [9; 1; 7]. 

1.3 Atherosclerosis 

1.3.1 Anatomy and Physiology 

The vascular system is an organ system which consists of arteries, veins and 

capillaries [12]. In combination with the lymphatic system, it is primarily 

responsible for circulating blood and other fluids around the body, in order to 

transport nutrients to other cells and to drain away tissue waste matter. 

Together, these mechanisms help to ensure that the body remains nourished, 

and that homeostasis is maintained [12]. 

Blood moves through the circulatory system through two main pathways of 

circulation, these being the venous and arterial routes [12]. In brief, the former 

route returns blood to the lungs for it to be oxygenated and for carbon dioxide 

to be removed; the latter then distributes the oxygenated blood throughout 

the rest of the system, in order for oxygen to be transported to cells [12]. 
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Figure 1.1: A cross-sectional cutout of the (a) arterial layers, (b) venous layers 

and (c) capillaries. Reproduced with permission from [13]. 

Capillaries themselves are very small blood vessels, which are only one cell in 

thickness, and which form the junction between arteries and veins [12]. 

The arteries are relatively large vessels made of three di↵erent layers. The 

innermost layer is called the tunica intima, and this is lined with simple 

squamous epithelial cells to form the endothelium. The latter provides for a 

very smooth surface in the arterial wall to permit normal flow of blood and to 

prevent abnormal clotting [12]. The middle layer is called the tunica media, 

and is made of smooth muscle cells and elastic connective tissue. Its role is to 
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maintain normal blood pressure, particularly the diastolic pressure when the 

heart is relaxed. The third and outer layer is called the tunica adventitia, and is 

made of fibrous connective tissue [12]. This layer is strong, and helps to 

prevent the rupture of the larger arteries that carry blood under higher 

pressures. 

A graphical representation of these layers is given in Figure 2.1a. 

Veins are composed of the same three tissue layers as those present in arteries. 

There are however some small di↵erences in structure [12]. Firstly, while the 

inner layer of veins is also made of smooth endothelium, the lining is folded at 

regular intervals to form valves. This is also shown in Figure 2.1b. These valves 

prevent the back-flow of blood, and are found in relatively large quantities in 

the veins of the legs, where the blood must return to the heart against the force 

of gravity [12]. The middle and outer layers of veins are thinner than those in 

arteries, because veins do not regulate blood pressure, and neither do they 

have to sustain high blood pressures like those found in arteries [12]. 

Throughout the circulatory network, both arteries and veins branch out to 

smaller vessels called arterioles and venules respectively. The latter two 

vessels are then joined together through capillaries, which are in e↵ect just an 

extension of the inner lining of arteries and veins, as shown in Figure 2.1c [12]. 

Since capillary walls are just one cell in thickness, this gives them a 

permeability, which allows for exchange of nutrients and oxygen between 

themselves and surrounding tissue. The blood flow through the capillary 

networks is regulated through smooth muscle cells called pre-capillary 

sphincters [12], which constrict or dilate accordingly, depending on whether 

the surrounding tissue needs more blood flow or otherwise [12]. 
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During the process of exchange between capillaries and surrounding tissue, a 

 

Figure 1.2: The lymphatic system drains away tissue waste from the 

extracellular space. Reproduced with permission from [13]. 

certain amount of tissue fluid is formed – only part of which is re-absorbed into 

the blood and back into the capillaries [12]. Thus if this process were to 

continue, the total amount of blood present would be depleted. The excess 

tissue fluid, therefore, is siphoned back through lymph capillaries, whereby it 

is eventually returned to the blood again to be recycled as plasma [12]. This is 

shown in Figure 2.2. The lymphatic system is composed of lymph vessels, 

lymph nodes and nodules, the spleen and the thymus gland. It is generally 

responsible for returning the said tissue fluid to the blood and for protecting 

the body against foreign materials [12]. 

1.3.2 Natural History of Atherosclerosis 

Atherosclerosis is a vascular pathology characterised by the thickening and 

hardening of walls of large and medium sized arteries, particularly in societies 
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where food, which is rich in cholesterol, is abundant and cheap [8], [14]. The 

condition commences in childhood. On the assumption that there are no 

external factors to accelerate its development, it will accumulate slowly until 

it is relatively widespread by old age [14]. There are however di↵erent genetic 

and environmental factors, which may a↵ect the progression of 

atherosclerosis, as well as the shape and size of vessel walls. 

The vessel wall is continually subjected to biochemical and biomechanical 

stressors that a↵ect functional and adaptive responses [15]. If blood flow 

acutely increases for instance, the increases wall shear stress is sensed by the 

endothelial cells, causing relaxants to be released [16]. These lead to vessel 

dilation, which counteracts the increase in wall shear stress sensed initially 

[15]. If this e↵ect were to be sensed long-term, the response provokes 

diameter adaptation. Wall thickness changes (referred to as vascular 

remodelling) are seen in response to a multitude of biological processes, 

including changes in blood pressure, ageing, inflammation, oxidative stress 

and lipid accumulation [15; 17; 18]. 

In vasculature, two types of remodelling may be clearly seen: inward and 

outward remodelling. Both types may respectively exhibit hypertrophy 

(thickening) or hypotrophy (thinning) of the vessel walls[15]. This is shown in 

Figure 1.3. Aneurysm formation, for instance, is characterised by an increase 

in the diameter of the vessel, with a thinning of the vessel wall. This is termed 

outward hypothrophic remodelling [15; 19]. In early atherosclerosis, the 

initial remodelling tends to be an outward remodelling which preserves or 

increases lumen size [20]. However, although protective in the long-term, a 

matrix degradation takes place in this process, and this may predispose the 

atherosclerotic plaques to rupture. In advanced atherosclerosis, lesions may 
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cause inward remodelling, causing the vessels to shrink rather than enlarge, 

and thus exacerbating the stenosis [20]. 

 

Figure 1.3: Di↵erent types of vascular remodelling. Reproduced with 

permission from [15]. 

Atherosclerosis is considered an inflammatory disease, commencing with 

endothelial stress and subsequent monocyte infiltration. When fatty 

substances such as cholesterol, triglycerides, or cellular waste products such 

as calcium and fibrin, start to accumulate on the inner linings of an artery, they 

cause a progressive narrowing of the lumen and consequently restrict the free 

flow of blood [17]. This build-up is referred to as plaque, and may eventually 

lead to the total or partial occlusion of a blood vessel. Atherosclerosis thus 
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leads to vascular insu ciency in the limbs, poor circulation in the renal system, 

or even rupture of large arteries. The formation of intravascular clots also 

potentially lead to life threatening conditions of the heart and brain. [14]. 

Atherosclerotic plaque develops from lesions caused by deposits of low 

density lipoproteins (LDL) in the 

arterial intima. Under normal 

circumstances, a healthy intimal surface 

will already contain deposits of low den- 

sity lipoproteins, but these would be 
Figure 1.4: Recruitment of present at 

much lower concentrations 
macrophages to engulf LDL. Re- 

[21]. The reason for the eventual in- 

produced with permission from [17]. crease in concentration of such lipid 

deposits is thought to arise from the 

absence of lymphatic vessels in the arterial intima [22; 23]. As described 

earlier, lymph vessels act as sumps, which drain away excess macromolecules 

and tissue waste within the extracellular space, as shown in Figure 2.3. 

However, since lymph vessels operate at low pressure, they would presumably 

fail to function correctly or collapse altogether when subjected to the high 

hydrostatic pressures present within arteries [22]. Thus, without e↵ective 

siphonage of macromolecules such as LDL, the stage is already set for an 

accumulation of these lipids over time. A secondary e↵ect, which exacerbates 

the situation, is the mechanical forces that certain arterial regions are exposed 

to. At points where arteries branch, there is a tendency for the endothelium, 

which lines the intima, to be pulled along or deformed by flowing blood. This 

results in shear stress of the endothelium, and is where the lipids generally 

tend to accumulate [14]. A greater length of exposure of the lumen surface to 
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circulating atherogenic particles also gives rise to a greater influx of lipids into 

the intima 

[21]. 

The LDL particles traverse the arterial 

intima very slowly across the 

endothelial cells, while other LDL 

particles would slowly be crossing the 

endothelial barrier in the opposite 

direction. The slowness of this two-way 

migration causes the lipid particles to 

reside within the intima for weeks or 

months, and this maximises the 

opportunity for enzymatic and 

oxidative processes to take place. Such 

processes disrupt the integrity of the 

Figure 1.5: Accumulation of plaque individual LDL particles, leading to 
(top) and rupture (bottom). Repro- 

their chemical alteration and to two 
duced with permission from [17]. main consequences [22]. 

The first is that the enzymatic and oxidative processes break down the 

resistance of the lipid particles to coalescence, causing them to fuse together 

[22]. Taking this in conjunction with the progressive accumulation of LDL in 

the arterial intima will often lead to the formation of large lipid droplets, which 

then eventually lead to even larger lipid cores or pools [22]. These cores are 

less mobile than their constituents, and thus more di cult to remove from the 

arterial wall [22]. The second e↵ect caused by the chemical alteration of the 

LDL particles is that they are taken up by inflammatory scavenger cells called 

macrophages [17]. Part of the natural response of the body to foreign objects 
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is to cause inflammation to combat it. The macrophages are recruited into the 

intima, where they engulf the LDL deposits, convert them into 

cholesterolesters and become enlarged foam cells [17]. The foam cells then 

express the cholesterol-esters back into the intima, where they combine with 

high-density lipoproteins and traverse the endothelial barrier back into the 

blood stream [17]. The latter process is however slow, and the presence of 

cholesterol-esters in the intima slowly starts to cause the death of surrounding 

smooth muscle cells [17]. 

This process of smooth muscle cell death and accumulation of cholesterol 

creates a core of atherosclerotic plaque deep within the intima [17]. As a 

further inflammatory response therefore, fibrogenic mediators are released to 

promote the replication of smooth muscle cells at the surface, in between the 

atherosclerotic core and the endothelial surface [17]. Thus, a strong fibrous 

cap is formed, which keeps the atherosclerotic plaque contained and reduces 

the risk of it rupturing, as shown in Figure 2.4 (top) [17]. The downside to this 

is that excessive fibroproliferation of muscle cells will cause the fibrous cap to 

be too thick, thus choking o↵ the flow of blood within the artery [17]. This is 

the primary mechanism of how a stenosis is formed, leading to typical 

ischaemic side-e↵ects. Additionally, the cholesterol within the atherosclerotic 

core typically eats away at the fibrous cap from within, rendering it weak [17]. 

Thus a point may be reached where the fibrous cap ruptures and the contents 

spill into the blood stream, as shown in Figure 2.4 (bottom). This may result in 

the formation of a thrombus, or the contents of the plaque rupture themselves 

may form an embolism. Either of these may result in a transient ischaemic 

attack, or more seriously, in a stroke or heart attack. 
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1.3.3 Clinical Manifestations of Atherosclerosis 

Atherosclerosis might not present any symptoms or sign of spread until it 

considerably narrows or totally blocks an artery. In many cases, people will be 

completely asymptomatic and unaware of having the disease until it is too late 

and they experience complications or a medical emergency, such as a stroke 

or a heart attack. Some signs and symptoms may, however, be present in some 

people, depending on which of the arteries are most severely a✏icted [24]. 

The carotid artery, for instance, supplies oxygen-rich blood to the brain. If 

accumulated plaque in an artery causes excessive narrowing, or a ruptured 

fibrous cap causes a thrombus or embolism, which partially or fully blocks the 

flow of blood, the ensuing event will be a transient ischaemic attack or, more 

severely, an ischaemic stroke, which deprives brain tissue of oxygen and 

causes death of brain cells within minutes.[24]. Amongst other symptoms, this 

would present as paralysis or numbness in the face, arm or leg - very 

commonly on just one side of the body; sudden weakness, loss of balance and 

confusion; trouble speaking and slurring of words or loss of consciousness. 

Similarly, when coronary arteries supplying blood to the heart become 

occluded, and depending on the patency of vessels to the vascular territory, 

this may result in angina pectoris. This presents initially as chest pain, which 

would feel like pressure or squeezing of the chest [24], and comes on often 

during exertion and disappears again with rest. If plaque forms in the heart’s 

smallest arteries, then the symptoms might include sleep problems, fatigue 

and lack of energy. If an atherosclerotic lesion results in a complete occlusion 

of the coronary artery, the myocardium supplied by that artery completely 

loses its blood supply and dies, causing a myocardial infarction [14] If the 
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occlusion is only partial, then the tissue is partially perfused, and may recover 

provided that the blockage is removed. 

1.3.4 Risk Factors 

A variety of environmental risk factors and genetic predispositions may 

accelerate the progression of atherosclerosis in an individual. Naturally, if one 

avoids conditions which are avoidable, or treats conditions for which a 

treatment is available, then such accelerating factors are minimised and the 

incidence of complications like stroke, infarctions etc. are reduced. Table 2.1 

provides a non-exhaustive list of example conditions which accelerate the 

progression of atherosclerosis, as well as the mechanisms behind the action. 

The presence of oestrogen for instance, is known to facilitate cholesterol 

removal by the liver, and this is evidenced by a slower progression of 

atherosclerosis in premenopausal women than in men. Additionally, there is 

epidemiologic evidence that shows that the cardiovascular system of 

postmenopausal women is protected when these are placed on oestrogen 

replacement therapy [14]. Cigarette smoking is one of the main predominant 

factors contributing to the progression of atherosclerosis in both men and 

women. Individuals who smoke 20 cigarettes a day increase their likelihood of 

death from ischaemic heart disease by approximately 70% when compared to 

non-smokers. Smoking is believed to damage the endothelial walls of vessels 

due to carbon monoxide induced hypoxia that is caused to the cells. The 

cessation of smoking is therefore highly e↵ective in slowing the progress of 

atherosclerosis [14]. 

The presence of hypertension also establishes an increased risk for 

atherosclerosis. An elevated blood pressure in the vessels causes increased 
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shear stress on the vessel walls, and this is thought to increase the progression 

of atherosclerosis [14]. Aside from primary causes of hypertension, which are 

idiopathic in nature, there are several secondary causes for which 

hypertension becomes a Table 1.1: List of conditions that accelerate 

progression of atherosclerosis [14]. 

Condition Mechanism of Action 

Gender (Male) 
Lack of Estrogen, which has e↵ect 

of lowering LDL 

Family History of heart disease / 

stroke 

Genetic predisposition 

Cigarette Smoking Likely injury to endothelial cells 

due to hypoxia induced by 

carbon-monoxide intake 

Hypertension Damage to endothelium as a 

result of shear stress caused by 

increased blood pressure 

Diabetes mellitus Impaired hepatic function when 

removing LDL, which in turn 

causes increased LDL binding to 

blood vessel walls 

Hypothyroidism Impaired formation of LDL 

receptors in the liver 

consequent e↵ect. Some examples include: renovascular hypertension, which 

have been described earlier, Cushing syndrome; hyperthyroidism; obesity; use 

of drugs such as decongestants, appetite suppressants and antidepressants; as 
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well as abuse of toxic substances such as cocaine, amphetamine and alchohol. 

Some secondary causes of hypertension may be simply avoided of course, but 

modern methods of treatment are also available to regulate the blood pressure 

to within normal levels [14]. 

When considering diabetes, one finds that there is a two-fold increase in the 

incidence of heart attacks in diabetics when compared to non-diabetics. 

Similarly, increased incidence of thrombotic strokes and circulatory deficiency 

leading to gangrene in peripheral areas, such as legs, are common in diabetics 

[14]. Treatment to control both blood pressure and glucose levels in patients 

su↵ering from diabetes is beneficial and e↵ective in reducing cardiovascular 

complications. Finally, in patients exhibiting hypothyroidism, the levels of 

plasma cholesterol and triglycerides levels increase. This is associated with a 

decreased formation of LDL receptors in the liver, and therefore with 

decreased lipoprotein lipase activity. The increased levels of cholesterol and 

triglycerides in turn accelerate the development of atherosclerosis [14; 25]. 

1.4 Clinical Diagnostics and Treament 

1.4.1 NICE Pathways for managing Stroke/TIA 

This section focuses on the diagnosis and treatment of stroke and transient 

ischaemic attacks, which are events which may typically occur to patients 

suffering from significant atherosclerosis in the carotid artery. The healthcare 

systems in di↵erent countries might follow di↵erent clinical pathways to 

diagnosing and treating occurrences of stroke and TIAs. In the United 

Kingdom, hospitals follow the pathways defined by the National Institute of 

Health and Care Excellence (NICE) [25]. If a person presents with sudden onset 
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of neurological symptoms, and stroke or TIA is suspected, a validated tool like 

FAST (Face Arm Speech Test) is used to carry out initial diagnosis [25]. 

In case a TIA is suspected, the patient is o↵ered medical treatment (such as 

Aspirin 300mg daily), followed by immediate referral to specialist TIA 

assessment within 24 hours of onset of symptoms [25]. The specialist 

assessment takes place in the form of urgent carotid ultrasound imaging in a 

TIA clinic, followed by possible brain imaging with MRI to determine the 

territory of ischaemia or to detect haemorrhage. During ultrasound carotid 

imaging, TIA patients presenting with carotid stenosis of between 50% to 99% 

according to North American Symptomatic Carotid Endarterectomy Trial 

(NASCET) criteria are o↵ered medical treatment and referred for urgent 

carotid endarterectomy [25]. This is a procedure whereby the carotid is 

opened and the plaque which is blocking the artery is removed [14]. In case 

endarterectomy is not possible, carotid artery stenting is considered [25]. In 

TIA patients who have symptomatic carotid stenosis of less than 50% 

according to NASCET criteria, or less than 70% according to European Carotid 

Surgery Trial (ECST) criteria, these are o↵ered medical treatment to control 

blood pressure and cholesterol as well as anti-platelet agents and lifestyle 

advice [25]. 

In case an acute stroke is suspected, the patient is referred immediately for 

brain imaging using non-enhanced CT within one hour. The patient is also 

provided blood sugar control and may be o↵ered supplemental oxygen 

therapy if blood saturation levels dip below 95% [25]. The brain imaging is 

used to determine if the patient has su↵ered an ischaemic stroke or a 

haemorrhagic stroke. In case of the former, the patient is treated with anti-

platelet medication, together with either thrombolysis, thrombectomy, or 
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both. In thrombolysis, the patient is given an intra-venous administration of 

recombinant tissue plasminogen activator (tPA) which breaks up the clot [26]. 

In some cases, the tPA may be administered directly inside the brain close to 

where the stroke is happening, via a catheter inserted through an artery in the 

groin. For thrombectomy, the patient needs to have a confirmed occlusion 

demonstrated by CT Angiography or MR angriography. In this procedure, a 

mesh device is inserted into the artery in one’s groin, moved up to the brain, 

and used to pull out clots in large arteries [25]. In case the stroke su↵ered was 

non-disabling, the patient is also referred for assessment of carotid stenosis. 

In a manner similar to that for TIAs, the NASCET / ECST criteria are used to 

determine the level of stenosis, and whether the patient is referred for medical 

or surgical treatment. 

If following initial CT scans, the patient is diagnosed with a haemorrhagic 

stroke, they are o↵ered medical or surgical treatment, depending on history, 

and patient condition [25]. Typical priorities would also be to reverse e↵ects 

of anticoagulation medical treatment in patients who were taking this, in order 

to return clotting levels to normal as soon as possible. Additionally, the blood 

pressure is typically reduced rapidly, unless there are conditions for which this 

is contraindicated [25]. 

1.4.2 Assessment of Carotid Stenosis in Stroke Units 

As mentioned in the preceding section, in case of non-disabling strokes or TIAs, 

patients are referred to specialist assessment, which includes carotid 

ultrasound imaging and grading of any stenosis according to criteria defined 

in the NASCET or ECST trials. In both cases, the trials sought to grade the 

degree of stenosis in order to stratify risk, however the methodologies used 
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for measuring stenosis severity were di↵erent [27; 28]. In the NASCET method, 

the diameter of the residual lumen in the stenotic segment was compared to 

the diameter of the normal Internal Carotid Artery (ICA), distal to the bulb. In 

the ECST method, the residual lumen in the stenotic segment was compared to 

an estimate of the diameter of the whole artery at the point of stenosis [28]. 

Both these methods may be visualised in Figure 1.6. 

 

Figure 1.6: Measurement of stenosis 

using NASCET and ECST methods. 

Reproduced with permission from 

[28]. 

All the randomised patients under the 

NASCET / ECST trials were imaged 

using intra-arterial angiography [27; 

28]. This practice has since been 

abandoned, due to the risk of 

angiography-related stroke [27]. 

Present day practice is to use Duplex 

ultrasound (DUS), due to its low cost 

and accessibility. B-Mode imaging and 

colour flow imaging are initially used 

to locate the stenosis, and DUS is then 

used to undertake Doppler flow 

velocity measurements, and de- 

termine stenosis based on the peak systolic velocity (PSV), end-diastolic 

velocity (EDV) and their ratios in the ICA and common carotid artery (CCA) 

[27]. The PSV and EDV measurements are taken in both the distal common 

carotid artery, and in the ICA at the site where the highest PSV is observed [28]. 

These four measurements allow the calculation of the recommended indices, 

shown here based on the NASCET criteria, in Table 1.2. A second operator 

repeats the examination to confirm the findings or to detect variation. [28]. 
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Trials such as NASCET and ECST have clarified the role of carotid 

endarterectomy in the management of patients with carotid stenosis [29]. 

According to the NICE guidelines, patients presenting with a NASCET graded 

stenosis greater than 50% (or equivalent ECST graded stenosis greater than 

70%) should be referred for urgent carotid endarterectomy. A study in 2006 

by Walker and Nayor [29] however showed, following an audit of UK practice, 

that 43% of clinics did not know what criteria they were reporting against 

Table 1.2: NASCET Diagnostic Criteria. Reproduced with permission from 

[28]. 

% Stenosis 

(NASCET) 

ICA 

cm/s 

PSV PSV ratio 

ICAPSV /CCAPSV 

St Mary’s ratio 

ICAPSV /CCAEDV 

< 50 < 125  < 2 < 8 

50 - 59 > 125  2 - 4 8 - 10 

60 - 69 > 230  > 4 11 - 13 

70 - 79 > 230  > 4 14 - 21 

80 - 89 > 230  > 4 22 - 29 

> 90 but less 

than near oc- 

clusion 

> 400  > 5 > 30 

Near occlu- 

sion 

High, low - 

string flow 

Variable Variable 

Occlusion No flow Not applicable Not applicable 

[29]. The same study stated that while North America predominantly used the 

NASCET criteria, some centres in Europe preferred to use the ECST indices 
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while others preferred the NASCET indices. In an attempt to standardise 

practice in the UK, a joint working group was set up between the Vascular 

Society of Great Britain and Ireland and the Society for Vascular Technology of 

Great Britain and Ireland [28]. In a report issued by Oates et al. in 2009 [28], 

the recommendations of that working group were presented, suggesting the 

use of NASCET criteria. As of 2017, the clinical practice guidelines of the 

European Society of Vascular Surgery [27] continue to adopt the NASCET 

criteria throughout the guidelines unless stipulated otherwise [27]. 

1.4.3 Intima Media Thickness and Plaque Burden 

Ultrasound technology also provides for additional metrics that are often 

associated with monitoring of atherosclerosis progression. Intima media 

thickness (IMT) is a metric which measures the thickness of the tunica intima 

and tunica media, the innermost two layers present on the wall of an artery 

[6]. Figure 1.7 shows a typical example being assessed via brightness mode 

imaging. 

The measure of IMT is often used in research studies to investigate the e↵ect 

of pharmacotherapeutic agents [31; 6]. Researchers hypothesise that 

longitudinal changes in carotid IMT are associated with CVD risk factors, but 

also that race, ethnicity, and use of anti-hypertensive and lipid-lowering 

medications 
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Figure 1.7: Measurement of IMT in longitudinal view of common carotid artery. 

Image reproduced with permission from [30]. 

a↵ect the progression of carotid IMT [31]. From a clinical perspective, a 

number of studies have demonstrated that increase in cardiac IMT 

independently predicts CVD events and increased risk [32; 33; 34; 35]. 

Concurrently however, conflicting results are obtained by many other studies 

as well [36; 37; 38]. This inconsistent predictive value of IMT may likely be 

associated with the variability in the image acquisition, IMT processing 

methods, operator errors, and also hardware. The annual change in carotid 

IMT is believed to be in the region of 0.01 to 0.04 mm, and is lower than the 

current-generation ultrasound pixel resolution of 0.1 to 0.2 mm [6]. This 

therefore makes it di cult to follow up carotid IMT change. 
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Given the inconsistent results related to predictive power of carotid IMT for 

CVD risk, it is unsurprising to see that recommendations for its use vary. The 

European guidelines on CVD prevention in clinical practice supported its use 

in the publication issued in 2012 [39], however in the latest version in 2016, 

its use is no longer recommended [40], with the task force citing that recent 

metaanalyses failed to demonstrate any added value of IMT in comparison to 

the Framingham Risk Score. Similarly, the 2013 American College of 

Cardiology / American Heart Association guidelines on Cardiovascular Risk 

Assessment do not advocate routine measurement of cardiac IMT, in view of 

concerns in meta-analyses of quality and standardisation of its measurement 

[41]. 

Now, although increasing evidence shows that IMT provides little added-value 

in terms of risk prediction of CVD events, the inclusion of plaque along cardiac 

IMT has been consistently shown to improve the predictive power for CVD and 

coronary events [42; 43; 44]. To improve the predictive power even further, 

the quantification of plaque burden (as opposed to simple plaque presence), 

has been developed as an interesting replacement to cardiac IMT 

measurement 
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Figure 1.8: Measurement of TPA in longitudinal view of common carotid artery. 

Image reproduced with permission from [30]. 

[45; 46]. Carotid plaque burden is measured as either the total plaque area 

(TPA) using 2D ultrasound planimetry, or using total plaque volume (TPV) by 

3D ultrasound (described in the next section). TPA is the total cross-sectional 

area of detected plaque when observed in longitudinal views as shown in 

Figure 1.8, whereas TPV is obtained by detecting plaque on axial views over a 

number of image frames as shown in Figure 1.9 [45]. 

Plaque burden quantification has been shown to be superior to IMT, since its 

progression strongly predicts cardiovascular events and high risk patients. 

Cardiac IMT changes by subtle values of 0.01 to 0.04 mm per year [6], and 

therefore is weak in predicting CVD risk or monitoring medical therapeutic 

e↵ects. In contrast, TPA and TPV changes are significantly more noticeable, 
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with values around 10 mm2/year and 50 to 100 mm3/year respectively [47]. 

This makes it easier to monitor changes, and allows for smaller sample sizes 

and shorter durations of follow ups required to observe e↵ects of new 

therapies [48]. Plaque burden may also be used to manage patients with 

asymptomatic carotid stenoses, whereby intensive medical therapy can be 

given to patients based on their plaque measurement, and thus resulting in a 

marked reduction in CVD events [30]. Finally, plaque burden may also be used 

in genetics research, since it allows for genotyping the sampled patients. 

Carotid ultrasound phenotypes are biologically di↵erent, signifying that IMT, 

plaque burden, stenosis and plaque rupture are a↵ected by di↵erent genetic 

factors 

[30]. [45]. 

The review paper by Stella et al. [30] discusses additional areas of research on 

 

Figure 1.9: Measurement of TPV in axial view from a number of US slices. 

Image reproduced with permission from [30]. 



Chapter 1 Introduction 

xliii 

plaque characterisation as a means of risk stratification. Characterisation of 

plaque by means of plaque echogenicity and morphology provides additional 

information to categorise vulnerable and non-vulnerable plaque, and this in 

turn may help risk stratification [30]. Plaque echolucency has been shown to 

be a strong marker for risk of ischemic stroke, and has been proven by means 

of histology to represent lipid rich necrotic cores or intraplaque haemorrhage 

[49]. Contrast enhanced ultrasound can be used to detect neovascularization 

and to quantify neovessels in the entire plaque. This technique has been 

suggested to be more reliable to predict risk of plaque rupture or intraplaque 

haemorrhage. [50]. Finally, abnormalities in plaque motion have been 

observed with high resolution ultrasound on symptomatic carotid stenoses, 

and these have subsequently been proven by histology to represent high-risk 

lesions from plaque rupture to ulcers [51]. 

1.5 Ultrasonography 

1.5.1 Physics of Ultrasound Imaging 

Ultrasound waves are an acoustic type of waves generated with an ultrasound 

probe at frequencies between 20 KHz and 50 MHz [52]. They are produced 

when a probe (often also referred to as a transducer) makes contact with a 

material and vibrates to produce minute push-pull actions in rapid succession. 

The push-pull actions are what cause mechanical vibration and which in turn 

generate the waves. Waves, which oscillate at a frequency of below 20 KHz, are 

referred to as audible acoustic waves, whereas waves oscillating at frequency 

above 20 KHz are termed ultrasonic, because they are too high pitched to be 

heard by the human ear [52; 53]. 
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Very commonly, the acoustic waves that we are familiar with are produced by 

a vibrating source in air, such as by vocal cords, machinery or loudspeaker. In 

ultrasonic transducers used in medical ultrasound, the vibrations are caused 

by one or several piezoelectric crystals mounted next to each other in the 

probe, and made to vibrate by the application of an electric voltage signal [52]. 

Similarly, when ultrasonic waves, which are reflected from material, are 

incident on the same piezoelectric crystals, they cause them to vibrate and to 

generate electrical voltages, which are proportional to the magnitude of 

vibration. Most ultrasound machines are not made to generate continuous 

waves, but rather they operate in short bursts to create pulses of three to four 

cycles in duration. The structures which are being examined are then 

visualised by detecting the reflected wave echoes, which occur when the 

transmitted waves are reflected or scattered by changes in tissue structure 

[52]. 

The vibrating action of the ultrasound transducers against the face of tissue 

causes regions of compression and rarefaction, which in turn result in regions 

of increased and decreased tissue density. This is shown in Figures 1.10a and 

1.10b. These regions of compression and rarefaction may be represented as 

ultrasound waves, having the typical characteristics of wavelength and 

amplitude [52; 53]. The wavefront will be planar if the ultrasound waves are 

generated by a transducer having a flat face. Conversely, if the transducer has 

a convex face, then the wavefronts generated will also be convex. These might 

be used, for instance, to focus on a particular region at a particular distance 

from the transducer [52]. 
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The frequency of the ultrasound wave refers to the number of oscillations per 

second that a particular point in the medium is made to oscillate at rapidly, 

back and forth. Additionally, the ultrasound wave traverses the medium at a 

 

Figure 1.10: The waveform description of ultrasound pressure fluctuations: 

a) showing compressions and rarefactions; b) showing pulsed waves. Images 

reproduced with permission from [52]. 
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certain speed, which in most human soft tissue is close to around 1540 m/s 

[52; 53]. This enables ultrasound pulses to be transmitted and the echoed 

reflections collected at very high speed. This, in turn, allows us to generate a 

vast number of images per second. An important formula to consider which 

Table 1.3: Speed of ultrasound in di↵erent tissues. [53] 
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⇥ 

relates the speed of sound, frequency of sound wave and wavelength is: 

 c = f (1.1) 

whereby c represents the speed of sound, f represents the frequency of the 

wave and represents the wavelength. The rigidity and density of soft tissue has 

a bearing on the speed of the wave travelling through it. The less rigid a 

material is, the lower the speed of the wave travelling through it, as can be seen 

from Table 1.3. One observes, however, that the speed of ultrasound in human 

soft tissue may be averaged to around 1540 m/s [52; 53]. This value is 

important to diagnostic ultrasound, as in conjunction with equation 1.1, is used 

to determine the depth of tissue reflecting the wave, as shall be seen later. 

Type of Material Speed of

 ultrasound 

(m/s) 

Acoustic 

Impedance (g/cm2) 

Water 1480 1.48 ⇥ 105 

Blood 1570 1.61 ⇥ 105 

Bone 3500 7.80 ⇥ 105 

Fat 1450 1.38 ⇥ 105 

Liver 1550 1.65 ⇥ 105 

Muscle 1580 1.70 ⇥ 105 

Polythene 2000 1.84 ⇥ 105 

Air 330 0.0004 ⇥ 105 

Soft tissue (average) 1540 1.63 105 
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Ultrasound transducers are one of the central pieces of hardware behind clinical 

ultrasound imaging. Their performance is critical to the generation of 

 

Figure 1.11: Di↵erent types of transducers and the ultrasound beam they 

produce. Images reproduced with permission from [54]. 

a quality image. An ultrasound transducer receives an electrical signal from the 

processor of the machine and converts the latter into an ultrasound pulse, 

which travels along the medium as a wave [54]. The main component of a 

transducer is a very thin layer of piezoelectric material, to which metal 

electrodes are connected on either side. 

To form 2D ultrasound images, an array of PZT crystals are present along the 

length of the transducer and a beam is produced by each crystal, moving in 

sequence along the length of the transducer face. Array transducers come in 

various shapes, producing di↵erent imaging formats for di↵erent applications 

[54]. Figure 1.11 depicts some of the most common types of array transducers, 

which are used for transcutaneous imaging. 
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1.5.2 Principles of Image Formation 

The previous section describes how a typical 2D image is created from an array 

of piezoelectric crystals, each individually producing single but adjacent 

ultrasound beams in sequence. Assuming a very simple image forming process, 

 

Figure 1.12: [A] The transmitted pulse travels into the tissue and is reflected 

at various interfaces. [B] The time it takes for echoes to arrive is proportional 

to depth of the interface. Images reproduced with permission from [54]. 

each such beam, or ’line’ within the eventual ultrasound image, is formed by a 

single pulse-echo cycle, as depicted in Figure 1.12. Each crystal in the array 

produces a pulse of a few wave cycles at a particular transmission frequency 

(for example, 5 MHz). The pulse travels into the tissue at the speed of sound, c, 

indicated for that type of tissue, until it eventually reaches an interface 

between two di↵erent tissues having di↵erent acoustic impedances. This 
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interface causes the pulse to be partially reflected and partially transmitted 

onwards. The reflected pulse travels backwards at the same speed of sound, c, 

until it reaches the transducer. The pulse, which is transmitted onwards, 

travels further down the tissue, where it is reflected at various other interfaces. 

Each time it produces echoes, which reach the transducer at di↵erent, delayed 

times. The image processor assumes that the time, t, taken between pulse 

transmission and receipt, is the time taken for a pulse to ’go and return’ 

between a distant interface at depth d. Thus the time is defined as 2d/c. 

Knowledge of time and speed allows the processor to determine the depth of 

the reflecting interface. 

In practice, the number of interfaces in the path of the transmitted pulse are 

many, and these generate a constant series of echoes following transmission. 

Each line of echoes in the beam forms a line in the image, which is called a 

’Brightness-Mode Image’, or ’B-mode’ image. The strength of the echo is 

represented by the brightness of each point along the B-mode line, whereas 

the time delay of the echo is represented by the distance along the line. This 
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Figure 1.13: Sequence of lines which form a Brightness mode image. Images 

reproduced with permission from [54]. 

is shown in Figure 1.13. As the last echo reaches the transducer from the 

maximum depth possible, the next adjacent crystal fires in a similar manner, 

to start producing the next B-mode line. The process is repeated until all 

crystals fire and produce an entire image made of several B-mode lines. After 

the last line is created, the process is repeated from the beginning in order to 

have a series of image frames forming a real-time moving clip. 

A typical ultrasound B-mode image taken from the abdomen may be seen in 

Figure 1.14. At the top of the image, the curved boundary corresponds to the 

surface of the skin, with which the curved transducer makes contact. Moving 
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Figure 1.14: An example of a B-mode image of the abdomen. Images reproduced 

with permission from [54]. 

away from this edge and down the image corresponds to an increased depth 

within the abdomen. Each beam is transmitted in a straight line, but normal to 

the curved surface of the transducer. All the beams are also constrained to lie 

on a same plane, therefore resulting in the image being two-dimensional. The 

image is produced in greyscale. Brighter, whiter patches correspond to strong 

reflections, particularly at interfaces between tissue and gas or tissue and 

bone. Regions which have no change in acoustic properties result in dark 

regions. 
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1.5.3 The Image Processing Chain 

Aside from the transducer, an additional component used in modern 

ultrasound systems to form the B-mode lines described previously is the beam 

former. This is a programmed component which activates groups of 

piezoelectric elements to transmit focussed pulses. The B-mode lines 

produced by the transducer and beam former then need to undergo a series of 

image processing steps prior to the final image being produced. Figure 1.15 

shows a very simplified block diagram of the additional steps in the image 

processing chain. Although not shown, some hardware signal conditioning 

steps take place right after the data is acquired by the transducer elements, in 

preparation for the signals to be digitised. The remaining processing steps, 

including the beamformer are therefore carried out digitally. 

Time Gain Compensation (TGC). When ultrasound waves propagate through 

tissue and are reflected, the echoes reflected from deep tissue are weaker in 

strength than those which are closer to the transducer. This is due to the 

attenuation that takes place while propagating through tissue. However, the 

final B-mode image produced by the ultrasound needs to show similar 

brightness of 
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Figure 1.15: A simplified block diagram showing the components of a B-Mode 

System. Images reproduced with permission from [54]. 

similar types of tissue, irrespective of their depth. Thus, the attenuation due to 

depth is compensated for, by increasing the amplification applied in 

proportion to the delay of signal arrival following transmission. This technique 

is called time gain compensation (TGC). The ultrasound machine will always 

apply a baseline level of TGC, however the user is allowed to manually adjust 

the TGC applied to di↵erent levels of depth using special slide controls. 

Dynamic Range. A variety of di↵erent interfaces within tissue may result in a 

vast range of di↵erent echo strengths, with some being a hundred times 

stronger than others. Moreover, many echoes forming in the image result from 

small scattering structures within the tissue, which generate very weak signals 

in comparison to interface echoes. These can sometimes be weaker by a factor 

of 1 million, but may still contain important diagnostic information. The 

ultrasound machine must be capable of displaying this large variety of echo 

strengths at the same time on the display monitor. However, typical flat 
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Figure 1.16: [A] Signal strength of di↵erent targets. [B] Echo signals before 

compression. [C] Echo signals after compression. Images reproduced with 

permission from [54]. 

screen monitors have a dynamic range which is much lower than that required 

to display all the levels of intensities. Thus, in order to correctly display all 

intensities at the same time, the dynamic range of the received echoes is 

compressed by the system processor, such that weak signals are amplified by 

a large factor, whereas large signals are amplified less. The di↵erent echo 

strengths of signals are normally expressed on a logarithmic scale in dB, given 

the large variety in order of magnitude. Figure 2.12a gives some examples of 

strength of di↵erent targets, while Figure 2.12b and 2.12c show the amplitude 

of signals before and after compression. 

Demodulation. The signal processing steps that have been described so far are 

always applied on the raw Radio-Frequency (RF) signal. The RF signal is that 

which still contains the original ultrasound transmission frequency. Since the 

brightness levels shown in the final image are related to the amplitude of this 

RF signal, the original transmission frequency is not required. Thus, a Hilbert 
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Transform is typically applied on the RF signal to remove the radio-frequency 

component and obtain just the envelope. This step is referred to as 

demodulation. 

Image Memory. After the preceding image processing steps described, the B-

mode image is stored in memory as an array of pixels, with each pixel capable 

of taking on 256 di↵erent grey levels. Additional and successive images are 

stored sequentially in a cine memory, until the available memory is full. At this 

point, new and successive images are stored by overwriting the oldest frame, 

such that the most recent images are always retained. The user may then be 

able to review a number of frames in a cine loop for diagnostic purposes. 

Additional Processing. Many other image processing steps, which are not 

described here, may be applied to the images by the machine or by the user if 

chosen. Manufacturers are constantly developing such post-processing steps 

to enhance the display image further. These may include techniques which 

smoothen the image to reduce noise and speckle, or else accentuate edges and 

boundaries, making them sharper. 

1.5.4 The Doppler E↵ect 

The ultrasound techniques described so far were based on the assumption that 

the reflecting targets during the formation of each image remain stationary. 

However, through the use of the Doppler e↵ect, one may detect the presence, 

direction and velocity, of a moving target such as blood inside vessels [53]. In 

turn, the velocity of blood inside a vessel may be used to infer information 

regarding the presence of stenosis, as described in Section 1.4.2. The Doppler 

e↵ect is a phenomenon which sees a change in the frequency of sound 
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observed, if there is a relative motion between the the source of the sound and 

the receiver [53]. In the stationary situation, a receiver views the same number 

of pressure waves as that emitted by the source. However, if there is a motion 

of the source, this distorts the pattern of observed wavefronts seen by the 

receiver. The observed frequency is influenced by the rate of movement of the 

source or receiver towards each other or away from each other [53]. More 

pressure waves per unit time strike the receiver, if the source / receiver are 

moving towards each other. This causes an elevation in the frequency 

observed. Conversely, the opposite is true if they are moving away from each 

other. The change in frequency between the actual transmitted frequency and 

the received frequency is called the Doppler frequency shift [53]. 

The magnitude of the doppler frequency shift depends on how rapidly the 

source, receiver, or both, are moving. In other words, an increase in the relative 

velocity between the two will cause a greater di↵erence between transmitted 

and received frequency (and hence a greater Doppler frequency shift). The 

Doppler frequency shift is also a↵ected by the speed of sound in the medium 

concerned, and also by the initial transmitted frequency. Thus, the equation to 

calculate the Doppler frequency shift fD is given as follows [53]: 

  (1.2) 

where c is the velocity of sound in tissue, v is the velocity of the interface and f 

is the transmission frequency of the transducer. Equation 1.2 assumes that the 

velocity of the interfaces for biological systems is in fact relatively small in 

comparison to that of speed of sound in tissue (1540 m/s) [53]. Using this 

equation, given that we know the speed of sound in tissue, the probe’s 

transmission frequency, and that the doppler frequency shift can be measured 
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by the machine from the reflected pulse, it is possible to determine the velocity 

v of the moving medium. An increase in the velocity of the interface will 

 

Figure 1.17: Diagram showing the doppler e↵ect with a sound beam which is 

incident to the reflecting moving interface at a doppler angle '. Images 

reproduced with permission from [55]. 

correspond to an increase in the measured doppler frequency shift and vice 

versa [53]. 

Furthermore, equation 1.2 is only valid in circumstances where the direction 

of motion between sound source and the moving reflector is parallel to the 
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propagation of the sound wave [53]. If, as shown in Figure 1.17 the angle of 

incidence of the sound beam is di↵erent from 0 degrees with respect to the 

motion of the reflecting interface, then the equation changes to include the 

cosine of this insonification angle ' (also referred to as the Doppler angle), as 

follows [53]: 

  (1.3) 

1.5.5 Modern Vascular Ultrasound Systems 

Modern ultrasound systems have various imaging techniques available when 

it comes to visualise and diagnose conditions related to the vascular system. In 

2D imaging, the sonographer usually starts by using standard brightness mode 

imaging to investigate the vascular anatomy of the site of interest [56]. As 

explained in section 1.5.2, a brightness mode image is constructed from many 

individual B-mode lines, which encode the strength of reflections from tissue 

interfaces with single amplitude (brightness) [54]. In vascular imaging, 
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Figure 1.18: A typical brightness mode image visualising the carotid ultrasound 

in axial view. 

brightness mode imaging is initially used to locate the the vascular structure 

within the field of view of the ultrasound’s screen, as shown in Figure 1.18, and 

to determine the orientation of imaging (axial vs longitudinal) [56]. In case 

measurements of IMT are being taken, these would also be taken using 

brightness mode imaging. 

Next, the sonographer will typically use Colour Doppler to identify regions of 

high flow. Colour Doppler uses a superimposition of colour maps over the 

brightness mode image, to indicate the direction and velocity of blood flow 

[56]. 
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Figure 1.19: A colour doppler image showing flow in an internal carotid artery. 

Images reproduced with permission from [54]. 

Typically, shades of blue signify movement in one direction, whereas shades of 

red indicate movement in the opposite direction. The brighter the colour in 

each direction, the higher the velocity being registered at that spatial location 

[56; 57]. An example is shown in Figure 1.19. Colour doppler is useful for two 

principal reasons. Firstly, to help in identifying branches of the external carotid 

artery, and secondly, to locate the fastest flowing stream of blood in a vessel. 

In this technique, however, the dependence of the Doppler frequency shift on 

the rate of change of phase angle presents problems with background noise. 

Since the latter noise also has a random phase angle, it is mistakenly mapped 

as a background colour, and therefore appears as a flow with random velocity 

and direction [58]. Additionally, given that the magnitudes of noise and true 

signals are often similar, it is easy to have the true signal masked out by noise 

unless instrument settings are properly selected. Other limitations with the 

technique are its dependency on the angle of insonation and the presence of 

frequency aliasing [58]. 

After identifying locations with the fastest flowing streams of blood in the 

vessel, the sonographer uses a technique called Pulsed-Wave Doppler (or 

Spectral Doppler Imaging) to calculate the velocity of moving reflectors based 

on the reflected Doppler frequency shift [56]. The information is visualised 

using the Doppler spectral waveform underneath the B-mode and colour 

doppler as shown in Figure 1.20. The doppler spectral waveform includes 

information about three variables which are: frequency, magnitude and time 

[53]. The frequency is displayed along the vertical axis, whereas the magnitude 

of di↵erent frequency components is represented by the brightness of the 



Chapter 1 Introduction 

lxii 

points making up the waveform. The x-axis is reserved to show time 

information, in order to show how the velocity changes over time [53]. This 

doppler spectral waveform allows the user to calculate the peak systolic 

velocity (PSV), which then as 

 

Figure 1.20: A doppler spectral waveform shown underneath the color doppler. 

Images reproduced with permission from [56]. 

described in section 1.4.2, is used to determine the ratio of PSVs from di↵erent 

sites to yield information about the amount of stenosis in a vessel. 

Another technique which is sometimes used is called Power Doppler Imaging. 

This was developed in response to the issues encountered with colour doppler, 

whereby intravascular colour signals were generated from the amplitude of 

the echo signals reflected o↵ red blood cells [59]. Like Colour Doppler Imaging, 
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this technique may be used to display vascular blood flow in colour. However, 

rather than displaying the mean Doppler frequency shift, its colour map 

displays the integrated power of the Doppler signal, therefore making it 

independent of velocity and angle of insonification, as well as aliasing-free 

[58], [60]. Furthermore, it was shown to be more sensitive to smaller degrees 

of 

 

Figure 1.21: A three dimensional reconstruction of an artery from manual 

delineation in 2D. Taken from a commercial manufacturer. 

blood flow, and also allowed for better di↵erentiation of atheromatous plaque 

surface morphology. On the downside the technique does not permit the 

determination of velocity per se, nor the direction of the movement of blood 

[59]. 



Chapter 1 Introduction 

lxiv 

1.6 Three Dimensional Measurement of Plaque 

Although Spectral Doppler Imaging and Colour Doppler Imaging are both 

widely used nowadays in the quantification of atherosclerosis and arterial 

stenoses, there are studies which have cast doubt on both their e cacy when 

gauging low to moderate degrees of occlusion, where di↵use disease is 

present, or when the patient su↵ers from cardiac arrhythmias [61; 58; 62]. 

Additionally, both techniques also have an inherent disadvantage, due to them 

being two-dimensional imaging modalities. When only one plane is being 

imaged, there exists the possibility of either mis-grading a stenosis or even 

missing it entirely [58]. This happens because stenoses may be seen well in 

one particular plane, but might not show up at all in another. Additionally, 

plaque is known to progress quicker along the vessel wall in comparison to the 

rate at which it thickens the vessel wall [63]. Thus, although carotid stenosis 

measurement remains the tool of choice to assess patients following stroke or 

TIAs, when it comes to monitoring disease progression and prediction of 

cardiovascular events, it remains a weak indicator [64]. A solution thought to 

possibly resolve such problems lies in three-dimensional imaging. 

1.6.1 Three Dimensional Ultrasound Systems 

Three-dimensional ultrasound has drawn a lot of interest over the past 

decades [65; 66]. Classically, 3D ultrasound systems would reconstruct 3D 

structures by first acquiring a number of 2D images throughout the volume of 

interest. The 2D images are then collated as a set of parallel slices, in shapes 

such as cuboids, wedges or ones. The orientation and position must be 

accurately known to avoid imaging artefacts arising from geometric 

distortions [53]. Mechanical and freehand scanning methods have been 



Chapter 1 Introduction 

lxv 

developed to sample the volume of interest. More recently, the approach has 

been to use a native matrix 2D array probe which can acquire the 3D dataset 

without motion of any part of the transducer [53]. 

Mechanical Scanning Methods 

Mechanical scanning methods use either external mechanical assemblies or 

else moving mechanical assemblies within the probe itself to scan the 

acquisition through a range of motion [53]. In the external assemblies, the 

transducer is mounted on a mechanical assembly that translates the 

transducer linearly 
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Figure 1.22: A) and B) Rotationally swep 3D transducers; C) Linearly 

translated transducers (external assembly); D) Fan-swept 3D transducers. 

Reproduced under open access agreement. 

over the patient’s surface. The 2D images are acquired at defined intervals, but 

most importantly in a parallel fashion. In internally-swept mechanical 

assemblies, the transducer is tilted or rotated about an axis, and the system 

automatically acquires images at constant angular intervals [53]. The resulting 

3D volumes are arranged in a fanlike wedge or cone. Examples of all three 

types of methods are shown in Figure 1.22. 

Freehand Scanning Methods 

Freehand scanning methods have the user manually move the transducer 

across the patient, with some position tracking technology which senses the 

position and orientation of the probe [53]. The most common position tracking 

techniques include: A) Mechanical field sensors, whereby a transmitter nearby 

the transducer generates a varying magnetic field, and a receiver mounted on 

the ultrasound probe, containing a set of orthogonal coils, measures the field 

strength in three directions and allows determination of position and 

angulation. An example is shown in Figure 1.23; B) Inertial Sensors, whereby 

3D accelerometers and 3D gyroscopes measure angular velocity and earth’s 

gravitational force, and through a series of mathematical transforms allow 

position and orientation information to be obtained; C) Image-based 

correlation, whereby successive images are analysed with respect to their 

energy pattern. The shift in relative position of adjacent images is determined 

from the change image characteristics [53]. 
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2D Matrix Array Methods 

The third type of 3D image reconstruction involves using native 

rectangulararray (matrix) type transducers [53]. This acquires the image 

natively in three dimensions, since several rows of piezoelectric transducers 

are able to each acquire a 2D frame, and the ultrasound system then collates 

them into a 3D array of voxels straight away. The ultrasound beam sampling 

direction may still be controlled electronically via the system using the 

appropriate sequence of crystal firing [53]. Parallel processing architectures 

then reduce the sampling and processing time. Matrix probes also o↵er the 

additional advantage of acquiring data in orthogonal planes [53]. These types 

of probes were once 

 

Figure 1.23: An example of a freehand type of position tracking using an 

electromagnetic transmitter and a receiving sensor on the ultrasound probe. 

Reproduced with permission from [67]. 
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prohibitively expensive, but advances in technology has made their price 

accessible to the commercial market, and they are nowadays widely used. An 

example may be seen in Figure 1.24. 

1.6.2 Three Dimensional Carotid Plaque Measurement 

Along with the proposed reconstruction of 3D vascular structures using three 

dimensional ultrasound, novel volumetric indices derived from 3D images 

have also recently been proposed to help with the characterisation of plaque 

burden, as a potential replacement to disease monitoring using carotid 

stenosis. The total plaque volume (TPV) was initially reported by Ainsworth et 

al. in [48] to be e↵ective at measuring the e↵ects of anti-atherosclerotic 

treatments, by gauging the e↵ect on TPV in three dimensions. predictive of 

cardiovas- 

 

Figure 1.24: A) An example of a 2D matrix array probe. B) The spread of the 

ultrasound beam and C) the captured 3D volume. Reproduced under open 

access agreement. 

cular events than total plaque area (TPA) or IMT measurement in patients 

attending vascular prevention clinics. In 2007, the group of Fenster et al. [68] 
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however noted that while TPV provides valuable quantitative information, it 

was di cult to measure and provided no spatial information regarding where 

the wall was undergoing changes. They therefore proposed a new index: 

Vessel Wall Volume, which measures vessel wall thickness and plaque 

together between the Lumen-Intima and Media-Adventitia. The authors 

showed that VWV is easier to interpret and more reproducible during 

measurement. In 2013, the group of Wannarong et al. confirmed the findings 

of Ainsworth et al. but also showed that TPV could be used as a predictor of 

cardiovascular events [45]. 

Volumetric indices like both TPV and VWV require the segmentation / 

delineation of the Media-Adventitia boundary (MAB) and the Lumen-Intima 

boundary (LIB) in the 2D images forming the 3D US volume. These parameters 

have already been used in a number of research studies and are gaining 

traction [69; 70; 71]. However, they have not yet gained widespread clinical 

acceptance due to certain challenges, amongst which are the tediousness and 

inter/intra-observer variability when manually delineating the LIB and MAB 

interfaces [63]. Subsequently therefore, a number of other technical research 

studies sought to address this by proposing automated or semi-automated 

methods of computing these indices. In 2012, Yang et al. [72] investigated the 

use of Active Shape Models to segment both inner and outer walls of the 

common carotid artery. The group of Ukwatta et al. proposed in 2013 [73] to 

use sparse field level sets to segment both the LIB and MAB. Similarly, in 2015, 

Hossain et al. [63] proposed to use a distance regularized level set method with 

various energy terms and a novel stopping criterion to semi-automatically 

segment the LIB and MAB. 
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Following the work by Wannarong et al., many other studies have shown the 

usefulness of measuring carotid plaque burden as a predictor of 

cardiovascular risk [74; 75; 76; 44]. In 2020, Spence [77] states that carotid 

plaque burden is highly correlated with coronary calcium scores, and as 

predictive of risk, while at the same time being less costly and not requiring 

the use of radiation. When used to monitor patients who were high-risk and 

with asymptomatic carotid stenoses, it was associated with more than 80% 

reduction of stroke and myocardial infarction over a period of 2 years [77]. 

1.6.3 Commercial Platforms measuring Plaque Burden 

Most commercial ultrasound platforms include tools for carotid stenosis 

measurement (spectral doppler ultrasound, colour flow imaging) as standard 

functions. Many commercial manufacturers also include the option of 

automated intima-medial thickness measurement. An example is that 

provided by Siemens 
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Figure 1.25: Siemens include under their Arterial Health Package automated 

tools for carotid IMT measurement. Reproduced under open access agreement. 

Healthcare under their Arterial Health Package, as shown in Figure 1.25. 

As of 2020 however, commercial manufacturer Philips Healthcare systems has 

also adopted tools for automated plaque burden measurement, under a 

vascular assessment suite of measurement tools called QLAB. This particular 

tool, called ”Vascular Plaque Quantification, requires the user to first acquire a 

three dimensional volume of carotid using a 3D matrix probe. The user is asked 

to mark two reference frames as beginning and end-frames. While in 2D 

transverse mode, the user then manually delineates the plaque in at least one 
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key frame, and the system automatically propagates the segmentation model 

to subsequent frames, to ultimately generate the estimated overall 

 

Figure 1.26: Philips include a tool specifically for measurement of vascular 

plaque volume under their QLAB software. Reproduced under open access 

agreement. 

plaque volume detected. An example is shown in Figure 1.26. Philips is the only 

manufacturer to include tools for plaque volume measurement at present. This 

however indicates that commercial manufacturers are starting to accept the 

usefulness of plaque burden as a measurement tool. 

1.7 Problem Definition and Analysis 

In the United Kingdom, the use of Spectral Doppler ultrasound and Colour Flow 

imaging remain predominant in diagnosing atherosclerotic lesions following a 

cerebrovascular event like stroke or TIA [25]. Screening of patients for 

subclinical atherosclerosis or asymptomatic carotid stenosis does take place. 

However it is based on a free NHS risk assessment of cohorts who are 
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considered to be at risk, and involves a physical examination, questionnaire 

and blood tests by a health professional [78; 79]. No imaging is involved in this 

screening process. In the United States and in Europe, previous guidelines used 

to include screening of such patients with carotid IMT, but this is no longer the 

case [39; 40; 41]. In the US, the 2019 guidelines from the American College of 

Cardiology and American Heart Association include calcium scoring but not 

carotid plaque imaging as a risk modifier [80; 81]. 

In Europe however, the European guidelines on cardiovascular disease 

prevention [40] list both calcium scoring and carotid plaque assessment using 

ultrasound (though not IMT) as potential risk modifiers. In addition, many 

other studies and clinical groups have published their recommendations to 

include carotid plaque burden as a tool for assessment and screening of 

atherosclerosis [82; 77; 74; 80; 83]. The practice guidelines of the European 

Society for Vascular Surgery [27] indicate that there may be potential benefits 

of selective screening of high-risk patients. Thus, the take-away message 

indicates that it would be beneficial to have a tool which adequately modifies 

risk factors of high-risk patients to better stratify their position, and which can 

be used to assess therapeutic e↵ects on patients undergoing medical therapy 

for atherosclerosis. In both these instances, volumetric metrics such as TPV or 

VWV are gaining momentum [80], and this justified the need for the research 

in this work to study the problem. 

Both three-dimensional reconstruction of wall volumes or plaque volumes 

require the user to manually segment the interface between the lumen and 

adjacent vascular wall structures. This is a time consuming process, and may 

be subject to user variability and interpretation across di↵erent 
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radiographers. A number of studies have sought to develop algorithms to 

segment these interfaces [84; 73; 72; 63], to reduce processing time and to 

reduce inter-user variability. The majority of these are however semi-

automatic in nature, still requiring some degree of user intervention to 

initialise anchor points for the technique to work. Many are also subject to 

strict acquisition protocols on behalf of the end user, assuming that images of 

a minimum level of quality are available. Thus, there appears to be a clear need 

for developing techniques for obtaining highly accurate, fully automatic 

segmentation of vascular wall interfaces, such as the the Media-Adventitia 

(MA) interface and the Lumen-Intima (LI) interface, in a manner which is 

robust to changes in end-user acquisition protocols. This would eliminate user 

intervention during the segmentation process, leaving the role of the user to 

be that of providing human supervision to the algorithm. Automated 

segmentation then provides the basis for additional algorithms to reconstruct 

three dimensional structures or compute indices of plaque burden. 

At the time of research and publication of this work (as opposed to the time of 

writing of this dissertation), the state-of-the-art in terms of research was the 

work carried out by Hossain et al.. In their work, the authors acquired 3D 

volumetric ultrasound datasets from 10 patients, and from these they 

extracted 2D image slices. A distance regularised level set method was used to 

semi-automatically segment the MAB and LIB. In other previous similar works, 

researchers similarly acquired 3D volumes, but then extracted 2D slices [84; 

72; 73; 85] and applied segmentation strategies on these 2D images, before 

reconstructing the segmented result in three dimensions. On the commercial 

front, the Vascular Plaque Quantification software o↵ered by Philips, also 

acquires the data in 3D, but has the user initialise the segmentation model in 
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two dimensions on key 2D frames before extending this through the volume. 

No information is available on the implementation methodology used by 

Philips, which is the only manufacturer to include plaque quantification. 

However it is reasonable to assume that the segmentation algorithm also 

operates natively in 2D on the individual 2D slices making up the volume. On 

the back of this, and given that the hardware available during this project 

included only 2D acquisition probes, a native 2D acquisition strategy was 

chosen in order to develop and refine the segmentation algorithm. Position 

tracking and the subsequent 3D volume reconstruction was tested as a proof 

of concept at later stages of the research. 

Furthermore, at the time of research, the use of artificial intelligence and deep 

networks in the field of image segmentation had garnered much interest, with 

the number of publications related to medical image segmentation rising 

considerably. As at 2017 however, the survey by Litjens et al. [86] cited only 

20 contributions to the field of ultrasound imaging, with only 6 of these being 

related to cardiac / vascular applications. The problem of segmenting both the 

MAB and LIB in a fully automated manner and with good accuracy remained 

unsolved at the time. With deep networks o↵ering improved performance over 

classical methods in many applications, and with their ability to be used in a 

fully automated manner, this drove the decision for this work to study their 

application to segmenting the MAB and LIB in carotid ultrasounds. 

At the time of writing of this dissertation, the author retrospectively notes that, 

following the second publication of this work concerning the use of deep 

neural networks for automated carotid segmentation, a number of additional 

studies by other research groups followed suit in using di↵erent variants of 
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deep neural networks for the problem of carotid artery segmentation [87; 88; 

89]. These studies are described and compared later in the thesis. Additionally, 

the author also notes that as of 2019, commercial manufacturers such as 

General Electric (GE Healthcare) have also adopted the use of deep neural 

networks for segmentation tasks within ultrasound imaging, although these 

are presently intended for generic lesion segmentation. The latter, together 

with the additional research studies mentioned, continue to further justify the 

relevance of the work in this dissertation. 

1.8 Research Objectives 

The overarching aim of this project is to devise a novel, ultrasound 

segmentation technique, which permits accurate and robust delineation of the 

MediaAdventitia interface and Lumen-Intima interface for the eventual 

purpose of computation of vessel wall volume. It is desirable that the proposed 

technique be: highly accurate, and thus obtaining good agreement with 

delineations obtained manually; fully automated, and therefore requiring no 

user intervention during the segmentation process; and robust, thus providing 

a degree of resilience against variability in some basic user settings (such as 

gain). 

In more quantified terms therefore, the general research objectives forming 

part of the projects aims shall be as follows: 

1. Design a novel technique, which presents an amplitude-invariant image 

representation, which still contains anatomical structural information 

that lends itself towards segmentation. 
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2. Design a novel ultrasound segmentation technique, which is able to 

segment vascular interfaces / borders in a fully automated manner 

without user intervention. 

3. Generalise the technique proposed in point number 2 further, such that 

this may be implemented to provide automatic segmentation of both MA 

and LI interfaces. 

4. Validate the proposed technique developed by measuring Vessel Wall 

Volume, and compare its performance against recent studies. 

1.9 Project Contributions 

This project produced the following contributions, which fulfil the research 

objectives set out in section 1.3 above. The contributions are in the form of 

novel developed algorithms or systems: 

1. Radio Frequency derived Phase Congruency Maps of Carotid 

Ultrasound images 

This algorithm proposes a novel, intensity-invariant representation of 

carotid ultrasound data, which may be used for segmentation, through 

the creation of phase congruency maps from raw radio-frequency 

ultrasound data. The novelty of the algorithm stems from being the first 

to obtain phase congruency maps from RF-based carotid ultrasound 

data. Phase congruency maps are arrays of phase information, which are 

invariant to amplitude / gain settings, and which still provide structural 

information about the underlying anatomy. The phase congruency maps 
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are used in conjunction with amplitude information for subsequent 

segmentation. 

2. Carotid Artery Segmentation using Deep Convolutional Networks 

and Phase Congruency Maps 

This algorithm proposes a novel segmentation technique, which 

delineates the outer Media-Adventitia layer of carotid arteries in 

ultrasound images in a fully automated manner, without requiring 

setting of seed points or other forms of user-intervention. The novelty of 

the algorithm stems from being the first to apply deep convolutional 

networks (DCN) to transverse carotid ultrasound images, and also from 

the DCN being applied to a novel fusion of input data, which combines 

amplitude phase congruency information. 

3. Bimodal Automated Carotid Ultrasound Segmentation using 

Geometrically Constrained Convolutional Neural Networks 

This algorithm implements a novel deep convolutional U-NET to 

segment both the outer Media-Adventitia interface and inner Lumen-

Intima interface of carotid arteries in ultrasound images. The main 

novelty of the proposed algorithm is in the modification of the network’s 

objective function, which integrates a-priori knowledge regarding the 

carotid structures in the form of geometric constraints. The network is 

applied to the previously proposed fusion of data, which combines 

amplitude data and phase congruency maps. 
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1.10 Structure of the Dissertation 

The structure of the dissertation generally follows the project methodology in 

terms of the topic of discussion of the various chapters. This first chapter has 

given a detailed introduction to put atherosclerosis in context of the burden it 

causes through cardiovascular disease and cerebrovascular disease. It has 

briefly described clinical pathways for its diagnosis and treatment, as well as 

the shortcomings related to present methods monitoring its progression. It has 

then briefly described the physics of ultrasound imaging and 3D quantification 

of atherosclerotic plaque, and has provided a critique to define the problem 

studied in this work. Consequently, it has laid out the main objectives and 

contributions of this project. 

The second chapter provides a detailed review of the technical literature 

pertaining to the project. It provides a comprehensive review of medical image 

segmentation methods, and a description of deep neural networks. It provides 

some background on deep neural networks and also gives an overview of 

different network architectures used in literature for medical image 

segmentation problems. This is followed by a discussion and justification for 

the proposed methodology. 

The third chapter discusses initially the data acquisition process and the raw 

radio-frequency format of data acquired from the ultrasound machine. It also 

describes the mathematics behind obtaining a typical Brightness mode image 

based on amplitude information. It then proceeds to propose the novel phase-

based and amplitude-invariant representation of the carotid data. Two 

alternatives are introduced: Phase di↵erence matrices and Phase congruency 

maps. The underlying theory is explained and a set of experiments are then 
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described, which compare their performance in producing a segmentation of 

the outer media-adventitia interface. 

The fourth chapter proposes the novel application of DCNs to a fusion of 

amplitude and phase congruency carotid ultrasound data. It then proceeds to 

describe the experiments carried out to identify the ideal DCN structure used 

to segment the MA interface from amplitude and phase information. The 

results obtained from the experiments are then provided and their significance 

is discussed. 

Chapter five describes the proposed novel objective function used within an 

expanded U-NET architecture to segment both the MA and LI interfaces in the 

carotid ultrasound images. It provides the physiological basis behind the 

proposed geometric constraints / penalties applied to the objective function 

used, as well as a mathematical derivation behind the said geometrically 

constrained penalties. A set of experiments are described, which test and 

compare the performance of the proposed modifications versus the original 

unmodified deep networks. The results obtained are presented and their 

significance discussed. 

The sixth chapter provides a proof of concept for a) utilising the developed 

algorithms to segment the MA and LI interfaces in a short segment of carotid 

artery b) reconstructing a three-dimensional model of the said carotid artery 

and c) quantifying the vessel wall volume in this segment. The performance in 

quantifying the vessel wall volume is compared against techniques proposed 

in recent literature. 
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Chapter seven will finally summarise the main results obtained from this 

study. It will highlight the main contributions provided to the body of 

knowledge concerning ultrasound imaging. It will also provide some 

concluding thoughts, describe some limitations present for the project and 

some suggestions for future avenues of research. 

1.11 List of Publications 

1. C. Azzopardi, K. P. Camilleri and Y. A. Hicks, ”Carotid ultrasound 
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ultrasound segmentation using deep Convolutional Neural Networks 

and phase congruency maps,” 2017 IEEE 14th Intern. Symposium on 
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Convolutional Neural Networks,” April 2020, IEEE Journal of Biomedical 
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2 

Technical Literature Review 

 

2.1 Introduction 

This chapter shall provide a brief and broad overview of the leading medical 

imaging segmentation techniques available in literature, followed by a more 

focused review of image segmentation techniques that have been applied to 

the problem of carotid ultrasound imaging. A discussion, which justifies the 

choice of methodologies for the problem of segmenting the MAB and LIB 

interfaces will follow. The basic theory underlying DCNs is then described, 

along with the various general neural network structures used in literature for 

object detection, classification and semantic segmentation problems. The 

chapter concludes with a discussion which justifies the choice of the proposed 

Fully Convolutional Network (FCN) used for semantic segmentation 

application to carotid images. 

2.1.1 General Medical Image Segmentation Methods 

The purpose of medical image segmentation is to extract regions that 

constitute a meaningful part of an object within an image, in order to identify 
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that part or to analyse it further. A universally accepted method of image 

segmentation is not available to date, due to the large variety of data available 

and the individual issues arising with each. Variation in intensity, non-

homogeneity of images, di↵erent spatial characteristics and textures, and lack 

of distinction between grey levels, are only but a few of the many issues that 

need to be addressed by image segmentation techniques. 

Segmentation techniques may be broadly categorised into five groups as 

shown in Figure 2.15. These categories are: 1. Thresholding-based methods; 2. 

Region-based methods; 3. Edge-based methods; 4. Clustering-based methods; 

and 5. Miscellaneous methods based on principles not falling under the other 

categories. The following sections briefly describe the principal methods 

within each category. 

Thresholding-based methods 

Grey level thresholding methods are one of the most widely used and quickest 

segmentation techniques. They are based on the principle that images are 

made up of multiple grey level regions, and that based on a histogram 

examination, the objects within may be classified according to the histogram 

peaks and valleys [93; 94]. The thresholding method globally di↵erentiates the 

image into a foreground area, where pixel intensities equal or exceed a 

threshold value, and a background area, which encompasses pixels with 

intensities below this value. If the choice of threshold value is incorrect, this 

method leads to poor segmentation results. Global thresholding methods do 

not take into ac- 
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Figure 2.1: Di↵erent categories of image segmentation methods. 

count spatial information, and this may also lead to incorrect results. A local 

thresholding technique improves on this by dividing the image into multiple 

sub-regions based on some spatial relationship, and applies thresholding 

within each region [93; 95]. 
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Otsu’s method works similarly to a global thresholding technique, however, it 

determines the optimal thresholding value by considering inter-class and 

intraclass variation within an image [96]. In order to minimise intra-class 

variance or maximise inter-class variance, the image is considered as a 

bimodal source of only 2 classes. Initially, the intra-class variance is obtained 

by calculating the weighted sum of variances of each cluster, followed by 

determination of the mean value of each cluster. Subsequently, the individual 

class variance is calculated. The optimal threshold is the value which 

maximises the inter-class variation [97]. In the Gaussian Mixture Approach, 

the posterior probability and maximum likelihood is calculated for a number 

of components in an image. The mean, covariance and mixing coe cients are 

also computed sequentially, without requiring any initialisation [98]. Then, 

from a single seed mixture component that covers the whole dataset, the data 

is sequentially and incrementally split during expectation maximisation steps. 

The technique shows its e↵ectiveness after several runs [98]. 

Regions-based methods 

Region growing methods seek to extract regions from an image based on a set 

of specific characteristics. Typically, prior information must be provided, in the 

form of a seed pixel selected by the operator [99]. The algorithm then 

iteratively grows the region to encompass pixels around the seed, which share 

a common characteristic, until an edge is detected. Occasionally, region 

growing methods may be sensitive to noise, which ends up with mergers of 

separate regions or holes in regions that should not be there [100]. 

Region splitting and merging techniques operate by splitting an image into 

multiple sub-images or regions, and then merge them back together according 
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to regions with similar characteristics. The approach uses a quad-tree 

generation which produces four branches. The branches of the quad-tree 

represent the sub-images, which are re-merged into regions until no further 

partitioning or splitting is possible [101]. 

Edge-based methods 

Edge-based segmentation techniques function by identifying and locating 

edges and borders, by seeking out sharp discontinuities in the intensity values 

of an image. The edges are detected using masks or filters, which are 

superimposed over the image to detect the discontinuities. The filters used 

may be first order filters, such as the Prewitt operator, the Sobel operator or 

the Canny operator. The Prewitt operator was proposed by Judith Prewitt 

[102], and is a gradient based operator which determines the magnitude and 

one of eight directions of an edge by calculating the gradient of image intensity. 

The Sobel mask uses discrete di↵erentiation to determine vertical and 

horizontal orientations [103]. An example is shown in Figure 2.2. It has good 

noise suppression characteristics, which makes it popular. The Canny operator 

was developed by John Canny, and operates a multi-stage edge detector which 

can be used to detect various edges and orientations [104]. 

The Laplacian of Gaussian operator is a second order operator, proposed by 

Marr and Hildreth in [105]. It is a di↵erential and adaptive operator, based on 

a combination of Laplacian and Gaussian techniques, and used to detect blurry 

edges and sharply focussed fine details. It can thus be adapted according to the 

application area. The Watershed segmentation algorithm, proposed by Beucler 

and Mayor in [106], is used to separate overlapping objects and to address the 

issue of over-segmentation in natural images in image processing. It uses the 
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watershed transform together with homotrophy modification, and is applied 

on grey level images. It benefits from being fast, simple and intuitive. 

 

Figure 2.2: An example of sobel edge detection used to extract edges of cartorid 

artery. 

Clustering-based methods 

Clustering approaches employ a technique, which groups objects (or pixels) 

sharing similar characteristics and properties, to form group classes called 

clusters. For an e↵ective performance, the objects should as much as possible, 

have a great similarity to one type of cluster, but be highly dissimilar to other 

clusters – since the objective of the algorithm is to maximise intra-class 

similarity and to minimise interclass similarity [107]. The clustering 

algorithms are usually unsupervised in nature, and learn through several 

iterations on the training data. The K-means algorithm is one of the simplest 

and most popular types of clustering techniques. It classifies the ’n’ datasets 

into k-clusters iteratively [108]. The mean intensity is obtained for each 
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cluster, and then pixels having the closest value to the mean are classified 

accordingly. 

The Fuzzy C-Means algorithm is a generalised version of the k-means 

algorithm, with the main di↵erence being that the data is classified into 

clusters based on the degree of membership of an object [109]. The algorithm 

is based on Fuzzy Set theory and allows for soft-segmentation. This makes it 

popular in segmentation tasks due to it taking into account the uncertainty and 

vagueness of certain data. The Expectation Maximization (EM) algorithm is 

also an unsupervised method that is based on a Gaussian Mixture Model. The 

technique involves iterating several times to calculate posterior probabilities 

and maximum likelihood values for special parameters [110]. The parameters 

are mean, covariance, and mixing coe cients of the mixture model. The 

Gaussian Mixture Model has a reduced sensitivity over K-means and Fuzzy C-

means algorithms. 

Miscellaneous methods 

Contour-evolution methods seek to initialise a contour and evolve it to some 

desired boundary through an energy minimisation approach. Level set 

methods (LSMs), initially proposed by Osher and Sethian [111], involve the use 

of level sets for numerical analysis of surfaces and shapes, and are particularly 

useful for tracking of evolving contours. Although the original method does not 

involve energy minimization [112], later implementations of the technique 

[113] apply the level set formulation as a contour energy minimisation 

problem, using region-based image features, with or without edge-based 

features to construct the energy. LSMs can be performed on curves and 

surfaces on a fixed Cartesian grid, and do not require us to parametrise the 
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objects being segmented. Somewhat similar to LSM techniques are those based 

on Active Contours (Snakes), which seek to initialise a seed contour and then 

actively deform this contour to the desired border by iteratively reducing a 

defined energy function until convergence is achieved. The energy function 

may also, in this case, be defined on region-based or edge-based features, as 

well as a priori knowledge to constrain the deformation process. 

In image segmentation, probabilistic approaches seek to use probabilistic 

models to assign the most likely label to a pixel in an image, given a particular 

set of features. A popular method is to model label dependencies using a 

Markov Random Field (MRF) and to determine the optimal labelling by 

Bayesian estimation, in particular, maximum a posteriori (MAP) estimation 

[114]. One of the main advantages of MRF models is that prior information can 

be applied and imposed locally through the use of ’clique’ (subset of graph 

vertices) potentials. The algorithm for MAP initially defines a neighbourhood 

of each feature and sets the initial probabilities. The class statistics for each 

label are computed from some available training data. Using Bayes theorem, 

the probability of each class label is computed, given a certain neighbourhood, 

and the process is repeated iteratively using optimisation algorithms, until 

such probabilities are maximised [114]. 

The Graph Cut technique is an e cient manner in which to minimise a larger 

class of energy functions, which correspond to the maximum a posteriori 

solution. The optimal or minimal cut in a graph is the subset of edges, that if 

removed, divide the graph into two regions: foreground and background 

[116]. A schematic diagram is shown in Figure 2.3. The cost of the cut which 

must be minimised, is computed as the sum of weights of the cut edges, and 
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the minimal cut is that with the minimal sum of weights from all possible cuts. 

The scoring inside the graph is applied as follows: pixels inside the object are 

given values depending on how well their intensity values match the object’s 

appearance model, with low values signifying better matches. Similarly, pixels 

in the background are given values depending on how well their intensity 

matches the background’s appearance model [117]. Adjacent pixels on the 

 

Figure 2.3: An example of image segmentation using graph cuts. Reproduced 

with permission from [115]. 

edge of the object are given values according to whether both have similar 

intensities. A low value corresponds to contrasting intensities [117]. 

Atlas-guided approaches operate on the basis that human organs vary 

significantly in shape and size, and that this variability makes it di cult to have 

a technique which can extract a good general representation. To mitigate this, 
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techniques based on atlases have been devised, which create a standard 

’template’ to model the organ in question. An example is shown in Figure 2.4. 

These atlases contain important information, such as local image statistics and 

probability of assigning particular labels to particular spatial locations. The 

new images may then be easily mapped onto the new atlases through 

atlasbased segmentation. Atlas-based approaches are divided in two: 

parametric and non-parametric methods. In the former, the new images are 

combined 

 

Figure 2.4: An example block diagram of a typical atlas guided segmentation 

process. Reproduced with permission from [118]. 

with the trained images to create a single atlas. In the latter, all images are used 

separately for training purposes. 
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Genetic algorithms (GA) apply an optimisation technique based on 

evolutionary biological sciences. The technique employs three steps: mutation, 

crossover and selection. An initial population of solutions is first considered 

and evaluated for fitness of each individual in the population. The best 

individual solutions are combined to produce ’o↵spring’ with better 

characteristics. The mutations resulting from the combination generate a set 

of heuristic solutions from the population. The process is repeated, until the 

most optimal solution is found. Most GAs are based on ant-colony optimisation 

methods or particleswarm optimisation methods. 

Artificial Neural Networks (ANNs) are computational systems that mimic the 

way humans learn. Networks are made up of nodes, and the learning takes 

place by updating the weights on such nodes during an iterative process that 

compares an initially produced network output to a desired target output. 

ANNs find application in a wide variety of areas. Recently Deep structures of 

ANNs have been proposed to solve more complex medical image processing 

tasks, including segmentation, and results obtained have outperformed many 

of the other classical segmentation techniques. A more detailed review of 

ANNs is provided in Chapter 4. 

2.1.2 Ultrasound Segmentation of the Carotid Artery 

With Ultrasound imaging becoming more and more popular, it is natural that 

a body of research has focused also on applying medical imaging segmentation 

techniques to this modality, to segment di↵erent organs. Notable review 

papers which broadly discuss this topic are covered in [119; 120]. This section 

focuses specifically on studies which concern themselves with the 

segmentation of the carotid artery with ultrasound imaging. Previous 
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literature shows certain patterns in the development of carotid segmentation 

techniques, allowing us to categorise them in their nature. The first division is 

that of addressing the segmentation problem on longitudinal or transverse 

sections of the carotid [119]. The majority of studies available address the 

former [84], since this type of segmentation then easily lends itself to 

evaluating the intima-media thickness (IMT) - a widely accepted clinical 

parameter, which is used in gauging degree of stenosis [121]. A comprehensive 

review paper by Molinari et al. [121] addresses some of the major works on 

the subject matter, whilst concurrently grouping them according to their 

similarity. 

Segmentation in Longitudinal Images 

A popular approach on the longitudinal carotid segmentation problem was 

through using edge-tracking or gradient-based techniques, as shown in a 

number of studies [122; 123; 124; 125; 126]. In the longitudinal section, the 

common carotid artery may be considered as a dark region surrounded by two 

bright line patters - the near wall and the far wall of the artery [121]. By 

considering the intensity profile, or the intensity gradient across a section 

cutting across the artery, the adventitial walls may be clearly identified, and 

the IMT estimate may be obtained as the distance between these two points 

[122; 123; 124; 125]. Faita et al. [126] improve on the method proposed by 

Ligouri [124] and Stein [125], by applying a first-order absolute moment edge 

operator on the intensity gradient profile, and by applying a pattern 

recognition approach, in order to mitigate the problem of superimposed noise 

experienced by the previous two techniques. 
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Another widely used segmentation approach is based on Active Contours, or 

Snakes. This entails having a set of vertices connected by line segments [121], 

which dynamically move to settle around the desired contour, under the action 

of defined forces. Molinari et al. [121] note in their review that at least 6 

di↵erent contributions adopted some variation on this approach [127; 128; 

129; 130; 131], with these including the use of multi-resolution analysis, novel 

damping forces or modifications on the external energy, amongst others. 

Snake models, however, have issues that e↵ect their performance. They 

require correct fine tuning of parameters for them to be correctly attracted to 

edges; they depend on the initialisation of the snake model, and they are also 

prone to leaking through edges which are not clearly defined [121]. 

Other segmentation approaches for longitudinal sections include the use of 

Dynamic Programming [132; 133], Nakagami modelling [134], the use of the 

Hough Transform [135], and the use of motion estimation and bayesian 

frameworks [136]. 

Segmentation in Transverse Images 

A number of studies have also addressed the problem of segmenting carotid 

arteries in the transverse section, using either native 2D images or else from 

transverse slices extracted from 3DUS images. In 2009, Seabra et al. [137] 

proposed a semi-automatic technique for plaque segmentation in transverse 

images. In this method, the contour of the plaque was manually initialised in 

the first image, and then a 2D active contour algorithm was allowed to carry 

forward the segmentation in subsequent temporal images. Another study by 

Yang et al. [72] proposed to use active shape models to segment the MA and LI 

interfaces. Ukwatta et al. [84] proposed a novel semi-automated technique 
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based on a level-set method to segment the MA and LI interfaces. The operator 

was asked to provide anchor points as high-level domain knowledge, and this 

together with the incorporation of local and global image statistics with 

boundary separation-based constraints allowed accurate segmentation of the 

MA and LI interfaces. In 2007, Guerrero et al. [138] proposed to use a modified 

star-kalman algorithm to determine and track vessel contours. Other 

segmentation approaches for transverse sections included the use of 

deformable models [139; 140], modified Cohen Snakes [130] and a star 

algorithm improved by Kalman filtering [141]. 

Alternative methods have been proposed to segment the carotid structures or 

plaque morphology natively in three dimensions. Gill et al. [142] proposed a 

semi-automatic method, based on a dynamic balloon model in 2000. The 

model was represented by a triangular mesh, which is initialised within the 

carotid vessel by the user. The balloon is inflated to obtain the approximate LI 

interface, and refined using image edge-based forces. In 2010, Solovey et al. 

[143] also proposed an LI interface segmentation algorithm on native 3D 

images. They proposed a level set-based method, which incorporated a region 

term that minimises the probability distribution overlap and a weak geometric 

prior, which encourages convexity of the boundary in a level set framework. In 

2015, Hossain et al. [63] presented a semiautomatic method for segmenting 

both MA and LI interfaces using a distance regularised level set algorithm, with 

a novel stopping criterion and a modified energy function. 

One notes further that, particularly in the case of transverse segmentation, 

studies have aimed to segment either the LI interface alone [139; 140; 138; 

143; 142; 144], or else both the LI and the MA interfaces [84; 73; 72; 63]. The 
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latter approach has increasingly gained interest due to new volumetric 

parameters, such as vessel wall volume (VWV) and total plaque volume (TPV), 

which have been proposed to characterise plaque burden [145]. Although 

these parameters have been used in a number of research studies, they have 

not yet gained widespread clinical acceptance due to certain challenges, 

amongst which are the tediousness and inter/intra-observer variability when 

manually delineating the LI and MA interfaces [63]. Studies have therefore 

sought to develop automatic or semi-automatic algorithms to segment these 

interfaces 

Deep Networks in Medical Image Segmentation 

Deep networks have recently garnered much interest, as they have driven 

forward the state-of-the-art in computer vision tasks, such as image 

classification, object detection and segmentation[146]. Such advancements 

have also been picked up by the medical imaging research community. The 

survey by Litjens et al. in 2017 [86] provides a comprehensive review of 

studies employing Deep networks for a variety of tasks and application areas 

within medical imaging. In their work, Litjens et al. assessed over 300 

contributions since 2012, with approximately 20 of these being contributions 

within the ultrasound imaging field and in turn, 6 of these being related to 

cardiac / vascular applications. None of these, however, treat the subject of 

carotid segmentation. The study by Menchon-Lara et al. in [147] addresses 

longitudinal carotid ultrasound segmentation using a single layer perceptron 

network preceded by an autoencoder, for the purpose of intima-media 

thickness (IMT) estimation. Tajbakhsh et al. [148] also segment longitudinal 
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carotid ultrasound images using a convolutional neural network (CNN) to 

estimate the IMT. 

In the author’s own previous preliminary work in 2017 [91], the MA interface 

is segmented in transverse and longitudinal carotid images using deep 

convolutional neural networks. The various network configurations are 

evaluated to find the optimal network size and depth, as well as the optimal 

filter dimension. The author further propose a novel fusion of amplitude and 

phase congruency data as an input to the network, as the latter provides an 

intensity-invariant data source to the network. 

In 2019, the studies by Zhou et al. [87; 88] seek to use Deep Learning to 

segment the MA and LI interfaces in transverse carotid ultrasound images. In 

[87], the authors use an unsupervised deep convolutional encoder-decoder 

structure to pre-train the parameters of a U-NET. The U-NET is then used to 

automatically segment the MA interface. In [88], Zhou et al. use a 

semiautomated approach for segmenting the MAB, whereby the user provides 

a set of anchor points to a dynamic CNN which then segments pixels along the 

norm line of the MAB contour. A modified U-NET is then used to automatically 

segment the LI contour. At the time of writing, the same group of Zhou et al. 

have also extended their work with CNNs to three dimensional voxel based 

data, in order to segment the carotid vessel wall volume natively in the 

volumetric space [89]. 

2.1.3 Choice of Segmentation Methodology 

In this work, the choice of methodology was influenced by the prerequisite 

objectives of this project, namely that of having a fully automated 
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segmentation technique, which yields good performance and is insensitive to 

changes in amplitude from the user. The image segmentation techniques that 

have been considered in section 2.4.1, in particular those falling under 

thresholding, region-based, edge-based, or clustering-based methods – have a 

tendency of being susceptible to artefacts and noise, which come about from 

pixel intensity. Ultrasound imaging in particular is highly prone to pixel 

intensity artefacts, causing seemingly high (hyperechoic) or low (hypoechoic) 

pixel intensities due to shadowing, speckle, or indeed material change such as 

tissue calcification. Such artefacts would not form part of the organ of interest 

which requires segmentation, yet may cause these techniques to incorrectly 

delineate objects which are not there, or result in non-closed boundaries. 

Popular contour-evolving methods, such as level-set and Active Contours, or 

graph cuts methods and genetic algorithms, are also heavily dependent on 

region-based or edge-based characteristics and thus susceptible to similar 

problems. They also often require initialisation from the end user to place seed 

points, thus precluding them as a fully automated choice. Additionally, graph 

cuts are only able to find a global optimum for a binary labelling problem with 

two classes, whereas the problem in this work involves labelling three classes. 

Atlas-guided methods o↵er the interesting potential of being merged with 

other methodologies, through the provision of priori knowledge concerning a 

model of the organ anatomy that needs to be segmented. However, if taken in 

isolation, they will most often require an image registration approach, which 

also commonly requires seeding with anchor points. 

Neural networks o↵er the advantage of mimicking the human visual 

perception, which goes beyond simply considering a pixel’s intensity and 
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presence or lack thereof an edge. They also inherently incorporate prior 

knowledge in the form of the training data, which is used to train the network 

model in a supervised manner, to produce a certain output, given a certain 

input. The networks can be trained end-to-end, and once a model is obtained, 

it can be applied in a fully automated manner to new sample data without 

requiring any further user intervention, initialisation or seeding. In the case of 

convolutional neural networks, the model is also spatially invariant. Neural 

networks also easily lend themselves to processing multi-stream data, thus 

permitting di↵erent perspectives and imaging modalities of the same object to 

be considered simultaneously. In this case, this allowed simultaneous 

consideration of both amplitude and phase information obtained from the 

ultrasound data, in order to factor in an amplitude invariant component 

(phase), to create a more robust model. Finally, the e↵ectiveness of neural 

networks has dramatically increased with the availability of improved 

computing power, allowing for more complex and deep networks, which are 

able to better model the data in the problem. The compelling evidence of 

performance of deep neural networks exceeding that of other segmentation 

strategies, is what ultimately guided this work towards choosing the latter for 

this problem. 

2.2 Basic Neural Networks 

Deep network architectures are based on the underlying principles of neural 

networks, and may thus be perceived as the generalised form of a linear or 

logistic regression problem. A detailed description of the theory behind neural 

networks is beyond the scope of this section, for which the reader is advised 

to consult appropriate literature such as LeCun et al. [149; 150; 151], Gu et al. 

[152]. However, the concepts behind such networks may be briefly explained 
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by considering initially a simplistic model of a feedforward perceptron neural 

network as shown in Figure 2.5. In such a network, the activation, a, of each 

neuron is formed through the linear combination of an input vector x and a set 

of learned coe cients, Wh,i and Wh,0. This combination is then followed by the 

application of an element-wise non-linearity (.): Thus: 

 ) (2.1) 

Such a network would also consist of one or more layers, L, of neurons stacked 

on each other, through which a signal is propagated. Thus, a multi-layered 

perceptron (MLP) is a variant of such a network, in which more than one 

feedforward layer is stacked on top of each other, causing the intermediate 

layers to be referred to as hidden layers. In contrast, the input and output 

layers at either end are observable layers. A deep network architecture is one 

which has many such hidden layers. With the feed-forward functions 

established, the network is trained such that it learns to produce the correct 

outputs when presented with a set of inputs. The training process is iterative, 

whereby the network is repeatedly presented with an example set of inputs, 

allowed to produce an output, and then this output is compared against the 

desired 
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Figure 2.5: Simplistic Feedforward Neural Network with one hidden layer. 

output. The di↵erence between the actual output and the desired output is 

used to adjust the weights in the network described previously, such that a 

better output is generated during the next iteration. After several iterations 

the network’s actual output should converge towards the desired output, and 

this should ideally also carry on for new sets of inputs which the network 

would not have been exposed to before. This algorithm, which is used to train 

the network, is called the Backpropagation Algorithm. 

2.3 Di↵erent Network Architectures 

Deep network architectures were traditionally di cult to train e ciently. That 

was until in 2006, when research groups including that of Hinton et al. [153; 

154], [155] showed that excellent pattern recognition performance could be 

obtained, when such deep structures would be greedily trained in an 

unsupervised manner, using a layer-by-layer approach, and then fine-tuned 
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with supervised training. In the following, two popular architectures are 

described which are trained in this manner, along with two additional popular 

alternatives which train the entire network in a direct end-to-end fashion 

using supervised training: 

2.3.1 Auto-Encoders and Stacked Auto-Encoders 

Autoencoders (AEs), [156; 157; 158] are constructed out of relatively simple 

structures, intended to reproduce the input x onto the output layer x’ using 

only one hidden layer h. The weight coe cients producing the hidden layer and 

the output layers respectively are Wx,h, Wh,x0 and biases bx,h, bh,x0. In the scenario 

where the hidden layer had the same size as the input layer, and was 

constructed with no non-linearities, the AE would simply learn the identity 

function. The most important feature of such a network however, is the use of 

a non-linear activation function to compute the latent representation in h, that 

is smaller than x, thus projecting the input data onto a lower dimensional 

subspace. 

 h = (Wx,hx + bx,h) (2.2) 

In the reconstruction process, the matrix Wh,x is often taken as WTx,h. A 

schematic diagram of the AE is shown in Figure 2.6a. An alternative, denoising 

AE, is that proposed by Vincent et al. [159], whereby the model is trained to 

reconstruct the input from a version which is corrupted by noise. Stacked 

autoencoders (SAEs) on the other hand are deep AEs, which are formed by 

stacking several auto-encoder layers on top of each other [86]. The individual 

layers are typically trained individually (greedily), after which the network is 

then fine-tuned to the problem at hand by training it in a supervised manner. 
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This entails providing it an input and a correspondingly labelled output to 

which the network must conform. 
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Figure 2.6: Various forms of deep architectures. a) Autoencoders; b) Restricted 

Boltzmann machines c) Recurrent networks; d) Convolutional Neural 

Networks. Reproduced under open-acess agreement from [86] 

2.3.2 Restricted Boltzmann Machines & Deep Belief 

Networks 

Restricted Boltzmann Machines (RBMs), proposed by Hinton in 2010 [160], 

[161], are a variant of Markov Random Fields (MRF), made up of a visible input 

layer x and a corresponding hidden layer h that contains the latent feature 

representation of x. In the RBM, given an input vector x, one may obtain the 

latent feature representation h, but also vice versa, since the connections 

between x and h are bidirectional. Therefore, the RBM is considered a 

generative model, since one may sample from it and generate additional data 

points coming from the distribution on which the same RBM is trained. RBMs 

are represented schematically in Figure 2.6b. In the case of Deep Belief 

Networks (DBNs), these are in practical terms, SAEs with the AE layers 

replaced by RBMs. Similarly to SAEs, the training of the individual layers is 

again done in an unsupervised manner. The final fine-tuning is then carried 

out by appending a linear classification layer to the final layer of the DBN and 

carrying out the required optimisation in a supervised manner. 

2.3.3 Convolutional Neural Networks 

Convolutional Neural Networks are built on the backbone of the powerful 

convolution operation, through a biologically inspired architecture similar to 

the visual cortex. In the visual cortex, we know that individual cells are 

sensitive to only a small sub-region from the entire visual field, referred to as 
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the receptive field [162]. These sub-regions are then tiled together to cover the 

entire visual field of interest, and the cells therefore act as local filters being 

applied over the input space. Convolutional Neural Networks (CNNs) similarly 

exploit such local spatial correlation, where it exists, by applying a local 

connectivity structure between neurons of adjacent layers. This gives rise to 

weight sharing that can be applied in a manner resulting in the convolution 

operation, and which concurrently reduces the parameters that need to be 

learned. It also renders the network invariant to translations in the input. 

At each layer, the input is convolved with a set of filter kernels W = W1,W2,.. 

..,WK, and also added to a set of biases B = b1,b2,...,bK, thus generating different 

feature maps XK. The said features maps are then processed with an element-

wise non-linear transform (.), and this is repeated for every convolutional 

layer l: 

 X ) (2.3) 

The convolutional layers in CNNs are alternated with pooling layers which 

aggregate, using max or mean functions, the pixel values of a local 

neighbourhood of specified dimension. At the end of the network, a fully 

connected layer (without sharing) is usually added as a final classification 

layer. Unlike DBNs and SAEs, CNNs are trained in an end-to-end fashion in a 

completely supervised environment, as opposed to being trained layer-by-

layer in an unsupervised manner. A simple schematic of a CNN is shown in 

Figure 2.6d. 
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2.3.4 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs), similarly to CNNs, exploit structure in the 

data - but this time using structure of a sequential nature. Instead of learning 

the probability of an output Y given an input vector X, the network learns to 

predict the output based on a sequence of input vectors x1,x2,....,xT . The RNN 

therefore maintains a hidden, or latent state h, at a particular time t, that is a 

non-linear mapping derived from the combination of its input xt and the 

previous state ht 1: 

 ht = (Wxt + Rht 1 + b) (2.4) 

where coe cient matrices W and R are shared over time. If the problem being 

considered is one of classification, a fully connected layer is added towards the 

end, followed by a softmax function to map the sequence to a posterior over 

the classes. RNNs are considered deep structures, particularly in time, since 

the gradients need to be backpropagated from the output, back through 

previous time instants as well. They are therefore prone to su↵ering from the 

problems of fading or exploding gradients during the learning process. This 

problem is addressed with the use of special memory cells called Long Short 

Term Memory (LSTM) cells, which act as a di↵erentiable version of a computer 

memory chip [163]. Recurrent networks are shown schematically in Figure 

2.6c. 
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2.4 Types of Deep CNN Architectures 

With convolutional neural networks being by far the most ubiquitous, 

particularly in the medical imaging sector, this section focuses on describing 

di↵erent types of CNN architectures available and used in literature. 

2.4.1 Classification Architectures 

When it comes to classification, a popular benchmark dataset is that of the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which serves as 

a commonly available dataset against which researchers may test the mettle of 

their developed CNNs. Several (now famous) CNN classification architectures 

have been implemented and tested against this dataset, as shown in Figure 2.7 

 

Figure 2.7: A chart showing performance of NNs on ImageNet dataset. 

Reproduced with permission from [164]. 
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[164]. One of the more famous ones is that developed by Krizhevsky et al. in 

2012 [165], who introduced the AlexNet and broke the previous records held 

till then. It is until today one of the best known CNN classification architectures 

which comprises feature maps of 96, 256, 384, 384, 256 kernels with pooling 

at the 1st, 2nd, and 5th layers. 

More recently, deeper models with additionally complex structures seem to be 

more in preference - as they have shown to be able to represent classes in a 

better manner, while concurrently requiring a smaller memory footprint [166; 

167]. The first of such networks, was the VGG-19, a 19-layer network 

developed by Simonyan and Zisserman in 2014 [168], which used fixed 3x3 

sized kernels. In the same year, Szegedy et al., [169] introduced a 22-layer 

network coined GoogLeNet, which made use of what authors termed ’inception 

blocks’. The latter may be thought of as a network-inside-a-network, where the 

input is branched onto multiple additional CNNs, which are then concatenated 

at the end of the block [170]. The Residual Network (ResNet) architecture 

proposed by He et al. in 2015, [171] won the ImageNet challenge in that same 

year, and many variations on this architecture were winners in subsequent 

years. A ResNet block is defined as: 

 y = x + F(x,WR) (2.5) 

From equation 2.5, one notes that the network need only learn the residual 

F(x,WR). In this manner, the network is preconditioned to learn simple 

representations in each layer which are close to the identity function. As of 

2020, the present winner of the ImageNet challenge is the ViT-H/14 Network 

proposed by Dosovitskiy et al. [172], which makes use of Transformer 



Chapter 2 Literature Review 

88 

Encoders with global self-attention, pre-trained on large datasets and then 

fine-tuned on the task at hand. 

2.4.2 Multi-stream Architectures 

The classic CNN architecture can inherently easily accommodate multiple 

sources of information in the form of separate input channels, presented at the 

input layer [86]. Fusion of di↵erent streams of data may however, in principle, 

happen at any point in the pipeline. The recent review paper by Zhou et al. 

[173] covers three principal broad categories of fusion strategies which are 

described as follows: 

Input-level Fusion 

In networks which employ input-level fusion, multiple channels of data, or 

alternatively multiple sources/modalities of data, are fused as a multi-channel 

 

Figure 2.8: A typical input-level type fusion network. Reproduced under 

openaccess agreement from [173]. 

data matrix to the network. The network learns a fused feature representation 

prior to carrying out the task of detection, classification or segmentation. 

Indeed, many studies in the medical imaging field employ varying types of 

input-level fusion strategies [174; 175; 176; 177; 178; 179; 180; 181; 182]. A 

conceptual example is shown in Figure 2.8, where two modalities such as CT 
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and MRI are considered. At the input level, images from the two modalities are 

fused into one data matrix and fed into the CNN, which then takes rich feature 

information from both and exploits them at all layers in the network. This type 

of fusion at the input level is typically used for the following applications: 

multi-task applications; multi-view applications; multi-scale segmentations; 

and finally, Generative Adversarial Network (GAN) applications. 

Layer-level Fusion 

When fusing information at the layer level, a single-channel or multi-channel 

dataset is fed into separate, individual networks, which learn individual 

feature representations. These features being learned at di↵erent layers of the 

network, are then fused across the networks by concatenating a feature map 

at a particular layer, into the input of a corresponding layer on the other 

network. This concept is best explained through the diagram shown in Figure 

2.9. The combined training outputs are then finally fed into the decision layer 

at the 

 

Figure 2.9: A typical layer-level type fusion network. Reproduced under 

openaccess agreement from [173]. 
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Figure 2.10: A typical decision-level type fusion network. Reproduced under 

open-access agreement from [173]. 

output side to obtain the final result. This type of layer-level fusion strategy 

e↵ectively integrates information across networks and the connections among 

various layers allows the capturing of complex relationships between input 

sources. Some studies which employ this layer-level fusion strategy include: 

[183; 184; 185; 186]. 

Decision-level Fusion 

Lastly, in a decision-level fusion strategy, similarly to the layer-level fusion, 

separate individual networks are fed a single or multichannel data matrix as 

input. The individual networks train solely on this datasource to fully exploit 

the unique information available within that particular datasource. The 

outputs of the individual networks are then fused to get the final result. 

Different fusion techniques have been used in literature, but the most common 

approaches are those based on averaging of the confidence levels of the 

individual networks, or alternatively, taking a majority vote from the 

individual networks to determine the final result of a node [187; 188; 186; 

189]. The diagram in Figure 2.10 shows this type of decision-level fusion. This 

type of fusion strategy is ideal for processing multiple modalities of inputs such 

as MRI, CT, Ultrasound etc, whereby the images have completely di↵erent 
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acquisition techniques and therefore quite di↵erent statistical properties. 

From a memory-usage perspective, decision-level fusion methods typically 

require more memory since more layers and parameters are needed to learn 

the models, given that the fusion is only happening at the end. 

2.4.3 Segmentation Architectures 

Image segmentation is a very commonly required task in medical applications. 

CNNs in their standard format are designed for classification problems, 

whereby an input is classified into one category or another. However, they are 

easily extended, such that they may categorise individual pixels in an image, 

thus producing a segmentation mask. Having said that, segmentation is a 

fundamentally di↵erent task to classification or object detection, in that the 

segmentation algorithm need not necessarily know or understand what the 

visual objects inside the image are. It would however be ideal, for the 

segmentation algorithm to do both, and thus segment known and unknown 

objects. There are many applications where such segmentation could 

complement classification or object detection, allowing the problem to be 

approached at the semantic level. For instance, in a problem of content-based 

image retrieval, a user might need to query a database to find ’all motorcycles 

available in the images in the database’. Thus, given a new image, an ideal 

algorithm would label which pixels belong together semantically, rather than 

merely on a level of line intensities and contours. It is at present unclear as to 

how the human brain perceives images and finds the correct segmentations 

[190]. 

Traditional image segmentation algorithms have employed clustering 

methods, along with complimentary information related to edges and lines. 
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Well-known and successful methods have employed Markov models [191], 

hierarchical contour detection approaches [192] as well as region-growing 

strategies [193]. The recent advances in neural networks have however 

obtained better results, and are now considered to be the state-of-the-art, 

achieving the best benchmark performances on international datasets. These 

segmentation strategies may be largely grouped under the following 

categories, which are described as follows. 

A detailed review is available in [190]. 

Region-based Semantic Segmentation 

Techniques which are region-based typically follow a pipeline which applies 

segmentation after recognition. Initially therefore, free-form regions are first 

extracted and described from an image. This is then followed by region-based 

classification whereby the region-based predictions are transformed to pixel 

predictions, by assigning a pixel label to the highest scoring region that it finds 

itself within. An important study dedicated to region-based segmentation is 

that on Regions with CNN features (RCNN) by Girshick et al. [194]. This 

method uses selective search to first extract a large quantity of proposed 

objects. For each of these it computes features, and then classifies the regions 

using class-specific linear Support Vector Machines (SVMs). A technique called 

Second-order pooling is used to label the pixels [195]. RCNN can also be built 

upon other CNNs like AlexNet, GoogLeNet and ResNet [190]. 

RCNN also su↵ers from some disadvantages, which have spurred some 

additional research. Firstly is the problem that the features extracted are not 

designed for a segmentation task. To address this, Hariharan et al. [196] 

proposed an additional network which was specifically fine-tuned to segment 
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the relevant region foreground, since they argued that the RCNN was actually 

fine-tuned to only classify bounding boxes. Secondly, RCNN uses the 

activations from the final fully connected layer, which although containing 

more semantically meaningful information, lack the spatial information 

available in the intermediate layers. In [197], Hariharan et al. proposed to 

address this issue by adding Hyper-columns as pixel-descriptors, which 

include all the CNN activations in the network for a particular pixel. This is 

intuitively similar to appending both coarse and fine-layer information to 

allow for higher accuracy and spatial precision. Thirdly, RCNNs take time to 

generate segment-based proposals, and this greatly a↵ects performance. This 

is in contrast to more e cient alternatives of RCNN like [198; 199]. 

FCN-based Semantic Segmentation 

Fully Convolutional Networks (FCNs) are essentially an extension to the 

classical CNN structure, which allow for the network to be trained end-to-end 

and to learn a mapping from pixels directly to pixels, without extracting any 

proposals related to regions [200; 201; 202]. In Figure 2.11, one observes a 

typical network structure for a regular CNN. One notices that on the output 

side is a fully connected MLP layer. This layer is the one which condenses the 

learned features of the CNN into a single classification output. For this reason 

also, there is a restriction on CNNs to accept and provide labels for inputs of a 

specific size only. In contrast, FCNs are constructed solely out 
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Figure 2.11: A full convolutional neural network constructed from convolution 

blocks, max pooling blocks and fully connected layers at the output. [203] 

of convolutional layers and pooling layers, omitting the full-connected layer 

which is typically present at the output side of CNNs. They are thus termed 

fully convolutional networks for this reason. This gives them also the facility to 

make predictions on arbitrarily sized inputs, with the consequence however 

that the output size is no longer fixed, but also depends on the initial size of the 

input, given that it scales downwards and subsequently upwards from the 

input’s initial dimension. 

FCNs normally implement a per-pixel softmax function layer at the end of the 

output. This function has the e↵ect of making the value of the largest response 

for a pixel to be close to 1, while making all other output values at the same 

output nodes close to 0. The output of FCNs produce a pixel-dense output, 

capable of creating a segmentation mask. For this reason, they are commonly 

used for local segmentation tasks as opposed to global tasks like classification. 

They are also end-to-end trainable. An important issue that is encountered by 

FCNs is that, due to their contracting nature, which comes about by several 

layers of convolution and pooling, the output resolution at each layer 

decreases successively. This means that the output must necessarily have a 

low resolution, with quite fuzzy object boundaries. In order to address this 
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issue, Eigen et al. [201] proposed a multi-scale convolution network which 

implements multiple sub-networks having di↵erent resolution outputs, in 

order to iteratively refine the prediction. Another approach, proposed by Long 

et al. [200] was to apply a ’shift and stitch mechanism’ along with 

deconvolution layers to produce an output of nearly the same resolution as the 

input. In 2015, the group of Wang et al. [204], proposed to append to the 

contracting encoding network, a similar but flipped expanding decoder 

section, comprised of deconvolution and up-sampling layers. A diagram 

showing this structure is shown in Figure 2.12. At around the same time, the 

group by Ronneberger et al. [205] also proposed a very similar structure which 

they called ’U-NET’, having a contracting encoding path followed by an 

expanding decoder part, but with the addition of skip connections across 

encoder-decoder layers. The idea behind this was to transfer and concatenate 

spatial features from the high resolution maps to the expanding side. The U-

NET would go on to become a popular implementation variant in FCN based 

studies, with several other studies proposing adaptations to it and extending 

it into 3D space [206; 207; 208]. 

Weakly Supervised Semantic Segmentation 

Most of the works in semantic segmentation require a large number of training 

images with corresponding manually labelled image segmentation masks. 

Unfortunately, the manual annotation of such masks needs to be done by 

clinical experts often with limited time. This makes the process time-

consuming, expensive and frustrating. Thus, a third type of semantic 

segmentation exists, which focuses on segmentation by making use of just 
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annotated bounding boxes or just image-level labels. This is referred to as 

weakly supervised semantic segmentation, due to the weakly labelled data. 

120! 

Figure 2.12: A graphical representation of the encoder-decoder structure of 

the Deep Neural Network. 

The group of Dai et al. [209] proposed to train the network with bounding box 

annotations, and then improved iteratively the estimated masks for 

segmentation. Similarly, Papandreou et al. [210] trained semantic 

segmentation models with weakly annotated data, which included image-level 

or bounding box annotation. However, they proposed to use an Expectation-

Maximisation (EM) method for training. They found that using image-level 

annotation alone yielded insu cient performance, whereas using bounding box 

annotation yielded performance which was competitive with pixel-level 

annotation. Ultimately, it proved beneficial to combine them together. The 

group of Khoreva et al. [211] treated the weak supervision problem as a 

denoising of input label noise, and proposed a recursive training model to 

reduce said noise. 
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The alternative to box annotations, that of using image-level annotations as a 

weak supervision, was explored by other research groups. The group of 

Pinheiro et al. [212] approached the segmentation problem within a 

multipleinstance learning framework. Similarly, Pathak et al. [213], cast each 

input image as a bag of pixel-level examples, and proposed a pixel-level loss to 

adapting to a multiple-instance learning framework. The same group later 

proposed a self-training framework [214], whereby a constrained CNN with a 

novel loss function was used to enforce consistency between the per-image 

annotation and the predicted segmentation mask. A general issue with the use 

of imagelevel annotations is that the object-localization is ignored. Several 

studies [215; 216; 217; 218] have sought to address this problem by exploiting 

the notion of objectness by incorporating it in the loss function or by pre-

training a network as an additional external objectness module. An additional 

alternative proposed [216; 219] to improve performance is to use additional 

weakly supervised images such as web images, to train the CNNs. 

2.4.4 Choice of Network Architecture 

The choice of network architecture used for the problem of delineating the 

Media-Adventitia interface and Lumen-Intima interface in carotid ultrasound 

images is a decision which is influenced by the nature of the problem itself, but 

also by what is practically acceptable in-terms of commercially available 

ultrasound platforms. The delineation of these two vascular wall contours 

leads to clinical decisions concerning the patient’s health, and thus 

segmentation accuracy is key. This therefore precludes methodologies built on 

regionbased semantic segmentation, which as described earlier tend to yield 

fuzzy segmentation masks with poor spatial precision. Indeed, such 



Chapter 2 Literature Review 

98 

methodologies find larger application in general multimedia applications, 

rather than in the medical sector for the task of object detection within an 

image database. In addition, commercial ultrasound platforms have, for a very 

long time, had a ready accessible ’windowing function’, whereby the 

sonographer uses a trackball to select a region of interest prior to the 

ultrasound software applying further algorithms for processing. This manual 

selection of a square window around the region of interest is therefore 

ingrained in sonographers’ use of these commercial machines, and it is an 

action performed quickly within seconds. The quick availability of a region of 

interest around the object (in this case the artery), therefore precludes the 

necessity of algorithms whose strength lies in object detection as opposed to 

pixel-by-pixel classification accuracy with high spatial precision. 

Network architectures intended for weakly supervised supervision are 

obviously attractive, particularly from a training perspective. However, the 

ultimate goal of having two segmentation masks (one for the MAB and one for 

the LIB) makes it more di cult to simply apply a boxed window around two 

contours within each other. Additionally, clinicians’ time is limited, and having 

access to laboriously, individually-labelled segmentation masks for each 

training image is often problematic. Still however, such techniques have 

yielded inferior performance to pixel-by-pixel labelled segmentation 

strategies, and thus where possible, if the additional investment of obtaining 

accurately labelled segmentation masks from experts is possible, as was in this 

case, then the tendency to lean towards pixel-by-pixel segmentation strategies 

will prevail. The author does acknowledge however, that further research into 

weakly supervised network architectures is always warranted, since it would 
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ultimately open the door to much larger datasets and therefore improved 

generalisability. 

The obvious choice for this segmentation problem therefore becomes that of 

Fully Convolutional Networks. FCNs have been shown to be trainable in an 

end-to-end fashion, and yield a fully automated segmentation, with very good 

spatial accuracy, given a good training process. In order to have a good spatial 

resolution at the output segmentation mask, the obvious choice would be to 

use U-NET structures and their variants. Initially, at the time of research on 

this topic and eventual publication (as opposed to the time of writing of 

dissertation), the concept of U-NETs with skip layers was still in its infancy, 

and easily available development toolboxes implementing such U-NETs were 

not available to the author. Conversely however, what was available at the time 

was the ConvNet toolbox, which allowed the construction of U-NET-like 

structures comprising of encoder structures, followed by an appended 

decoder structure, but without the skip connections. In Chapter 4, the author 

therefore initially explores the use of such FCNs for the problem of delineating 

the MAB, being the first – to the author’s knowledge – to apply such FCNs on 

carotid ultrasound data. A thorough evaluation on the final performance of the 

e↵ect of di↵erent network structural parameters, such as number of layers, 

depth of layers and filter size is carried out. In Chapter 5, a U-NET is 

subsequently used, along with a proposed modification to the cost function to 

improve performance. 

Furthermore, a multi-stream architecture is adopted, by proposing the novel 

fusion of amplitude and phase congruency information which will be 

described in Chapter 3. The multi-stream architecture chosen is an input-level 
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fusion strategy, as this allows rich feature information from both channels to 

be exploited at all layers of the network while concurrently learning the 

intrinsic image features. At the time of research and publication on this 

particular topic, input-level fusion strategies were the available and popular 

approaches. The advent of layer-level fusion strategies and decision-layer 

fusion strategies started making their appearances from 2017 onwards 

according to the review by Zhou et al. [173]. At the time of publication, the 

input-level fusion strategy chosen yielded a good performance for the author’s 

application, yet the potentially beneficial implications of layer-level or 

decision-level fusion strategies, to the latter’s ability to learn more complex 

and complimentary information during the training process is acknowledged. 

Thus, evaluation of such alternative fusion strategies could form part of the 

scope of further work in this regard. 

2.5 Conclusion 

This chapter has provided an overview of the applicable, as well as emerging 

trends in ultrasound image processing techniques proposed in literature for 

obtaining novel indices, which measure plaque burden. Based on this, it has 

provided the justification for the choice of methodology in approaching the 

problem of quantifying the vessel wall volume from ultrasound images of the 

carotid. It has also provided an overview of deep neural network architectures 

used in medical imaging, and discussed justification for the proposed choice of 

network architecture used in this work. In the next chapter, the image 

acquisition protocol is firstly described, and then a novel, amplitude-invariant 

image representation based on phase information is described next. 
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3 

Segmentation with RF data and 

Phase Information 

 

3.1 Introduction 

Similarly to other clinical applications, carotid ultrasound images are 

influenced by the presence of speckle noise and by an overall image quality 

that is dependant on machine settings [121]. As highlighted by Meiburger et 

al. in their recent review in 2018 [220], the segmentation of the carotid artery 

in ultrasound presents added complications of having high variability in vessel 

morphology, particularly when pathology is present, as well as the possible 

presence of backscattering in the lumen. 

In Chapter 2 the popular techniques that have been applied to segment the 

carotid walls were described. The majority of segmentation methods are based 

on B-mode images and gray-scale data [221; 222], with the latter being 

constructed from the envelope of echo data. With the increasing availability of 

access to radio-frequency (RF) data from ultrasound machines however, a 
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marked interest in processing such RF data directly is noted [220]. What 

makes RF data attractive is the fact that it potentially contains more 

information than the processed envelope-based B-mode images. Recent 

studies have therefore opted to process this information natively. Boukerroui 

et al. propose one such algorithm, which uses 3D adaptive clustering on multi-

parametric information, amongst which are some acoustic features derived 

from the RF data [221]. Dydenko et al. propose to extract envelope power, 

spectral based autoregressive parameters and velocity-based parameters 

from RF data. Boundary detection is then computed using a discontinuity 

adaptive smoothing filter [223]. Nillesen et al. propose an iterative, coarse-to-

fine approach for calculation of maximum correlation coe cients (MCC) from 

RF data [224]. All these techniques obtain reasonable segmentation 

performance with RF-based features alone. However, improved performance, 

exceeding that even of envelope-based methods, is obtained when RF-based 

features are used in conjunction with other features [221; 224]. 

Phase information within ultrasound data has also been suggested as an 

alternative to extract information [119]. It is argued that it provides a better 

basis for segmentation, because phase should theoretically be invariant to 

intensity and magnitude [119]. Mulet-Prada et al. [225] and Belaid et al. [226] 

propose two such methodologies, using a local phase-based approach to 

extracting features from 2D images. Within the RF domain however, little 

analysis of such phase properties has been carried out, primarily because of 

the random nature that the RF phase signal exhibits [227]. Despotovic et al. 

however show, albeit perhaps only qualitatively, that although phase 

information in RF signals is mostly randomly distributed, there exists 

correlation between neighbouring phase samples [227]. In their study, an 
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entropy filter is applied to a phase di↵erence matrix, obtained from a 

premature baby’s ultrasound scan. The authors analyse the entropy image and 

suggest that correlation exists between low entropy values and the presence 

of tissue structures. 

3.1.1 Aims 

The aim of this chapter is to propose an amplitude invariant data 

representation of carotid images, such that this may be used together with an 

image segmentation technique to delineate the MAB in a robust manner. Thus, 

a novel phase-based representation, computed directly on RF signals is 

proposed and tested. Firstly, a quantitative analysis is carried out on the 

performance achieved when computing an intra-frame phase di↵erence 

matrix from within the in-phase and quadrature demodulated RF signal lines. 

Subsequently, a Gabor Filter Bank is used to extract textural responses. In 

order to assess the quality of the data representation and compare against 

similar literature, a segmentation through k-means clustering and Active 

Contours is carried out. 

This is then compared with the second alternative: the novel application of 

phase congruency maps directly on RF signals. This method is influenced by 

the work developed by Kovesi et al. in [228], whereby the phase congruency 

maps proposed by the latter are extracted from RF data directly as opposed to 

from envelope data. This allows one to exploit the shape of the frequency 

spectrum of RF data and results in a better signal-to-noise ratio. Similarly to 

the first approach, a segmentation through k-means clustering and Active 

Contours is carried out. A quantitative analysis of performance obtained is 

presented and the segmented data from both methods is compared to data 
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which is manually delineated by an expert, and also against a third technique 

proposed in literature. 

Novelty Statement: At the time of publication (2015), the novelty of this 

chapter’s work was the creation of an amplitude invariant, RF-phase-based 

representation of carotid ultrasound images. 

3.2 Methodology 

3.2.1 Acquisition Hardware 

The data acquisition platform used for this work was a Sonix RP 

Diagnostic Ultrasound system, 

manufactured by Ultrasonix systems (later 

falling under BK Medical, Peabody, USA), 

shown in Figure 3.1 The system comprises 

a full scale diagnostic/clinical ultrasound 

system, which however comes packaged 

with an ultrasound research interface 

(URI) allowing researchers to acquire and 

store low level raw data in a variety of 

formats. The URI additionally allows the 

use of operational modes not clas- 

sically available on a purely clinical 

Figure 3.1: The Ultrasonix Sonix RP 

system, as well as the retrieval and 

System used in the studies [17]. 

modification of low level parameters 

used to generate ultrasound images. 
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The hardware specifications of the system include 128 element transducers, 

256 transmit channels and 32 receive channels, a 40MHz transmit and receive 

sampling clock, and a 10-bit analog to digital conversion. The system’s URI 

includes a software development kit (SDK) available for MATLAB (Mathworks, 

USA), which allows for real-time acquisition of data in either raw RF formats 

or post-processed images. 

The SDK also includes a set of MATLAB functions for implementing the image 

processing pipeline, required to convert raw RF images to traditional B-Mode 

images. These will be described in a later section. The ultrasound images were 

acquired in a two-dimensional (2D) format by using a 14 MHz L14-5 

 

Figure 3.2: [Top] An example of a healthy carotid artery and [Bottom] an 

example of an artery with an accumulation of atherosclerotic plaque. 
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Linear Probe. The ultrasound scanner settings were set as follows: Frequency: 

6.6MHz, Depth: 3.0cm, Sector width: 100%, Gain: 51%, Dynamic Range: 92dB, 

Persist Setting: 0, Map Setting: 9, Chroma Setting: 0; Power Setting: 0; and were 

kept constant across all subject acquisitions. Data was acquired and stored 

concurrently in both raw RF data formats and B-mode images. 

3.2.2 Data acquisition protocols 

A total of 50 transverse, two dimensional ultrasound images were obtained 

from each of 18 subjects, having carotid arteries which display varying degrees 

of stenosis. An example of stenosis caused by plaque is shown in Figure 3.2. In 

the case of the first five subjects, a total of 50 longitudinal, two dimensional 

ultrasound images were also acquired. Subjects had ages spanning between 25 

to 80 years. Subjects provided signed consent to participate in the study, which 

was in turn approved by the University of Malta Research Ethics Committee. 

Table 3.1 shows the list of subjects with respective ages and degree of stenosis 

 

Figure 3.3: A single transverse B-mode image taken from each subject. 
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Figure 3.4: An example showing longitudinal ultrasound acquisition of the 

carotid artery while patient lies in supine position. Image reproduced under 

public domain license from [229]. 

found. Figure 3.3 shows an image taken from each subject. Subjects were asked 

to lie supine on a couch, and the probe was placed against the neck as shown 

in Figure 3.4, while an image sequence was acquired for transverse carotid 

sections. The probe was kept in the same spatial location, while the image 

sequence was acquired at a rate of 24 Hz, thus acquiring a clip of frames over 

a span of time. 

All the acquired transverse and longitudinal ultrasound images were manually 

and independently traced with the assistance of two radiographers. The RF 

images that were acquired using the Ultrasonix machine were saved to an 

external USB disk and transferred to a processing notebook (Apple Macbook 

Pro, running Intel Core i7 processor and NVIDIA GeForce GT650M GPU). Using 
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the Ultrasonix SDK available for MATLAB, a Hilbert transform was Table 3.1: 

Subject ages and the degree of stenosis for each patient. 

% Subject Number Age Stenosis 

Subject 1 30 < 30% 

Subject 2 29 < 30% 

Subject 3 31 < 30% 

Subject 4 28 < 30% 

Subject 5 50 < 30% 

Subject 6 70 < 39% 

Subject 7 71 < 30% 

Subject 8 65 47% 

Subject 9 69 59% 

Subject 10 68 < 30% 

Subject 11 72 < 30% 

Subject 12 62 39% 

Subject 13 61 48% 

Subject 14 73 36% 

Subject 15 77 46% 

Subject 16 78 63% 

Subject 17 80 59% 

Subject 18 79 39% 
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used to demodulate the amplitude information from the RF sinusoids. This 

amplitude information was then used to compute the B-mode images and 

phase congruency maps. For the creation of B-mode images, the amplitude 

data was passed through a logarithmic function to adjust for dynamic range, 

and then decimated by a factor of four. The resulting B-mode image was scan 

converted to obtain correct image geometry. A median speckle reduction filter 

was then implemented as per methodology described in [230], and applied 

over all the B-mode images to reduce the e↵ect of speckle noise. 

In order to trace the MAB and LIB and label the regions in the images, a script 

was prepared which uses the MATLAB function impoly to allow a user to 

manually delineate the border of the MAB and LIB by placing 100 points on the 

contour. The script was presented to two radiographers to delineate the 

contours on the images presented to them.The contours returned by the 

impoly function were used to create an image mask, with ’0’s outside the 

contour and ’1’s inside the contour. The process was repeated for both MAB 

and LIB, and another script used to then relabel the three zones as ’0’ (outside 

MAB), ’1’s (inside MAB but outside LIB) and ’2’s (inside LIB). An example of 

the delineating process and the labelled result is shown in Figure 3.5. 
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Figure 3.5: [LEFT] An example of a B-mode image with delineation of MAB 

interface. [RIGHT] An example of a labelled image showing three di↵erent 

regions: Background (Black), Vessel wall between MAB and LIB (Grey), and 

Lumen (White). 

For the first 5 subjects, the radiographers labelled all the images. For the 

remaining subjects, the radiographers labelled key images at specific intervals, 

whereas the author labelled the remaining images under their supervision. 

Both radiographers and author manually traced the image sets twice, with a 

period of 2 weeks in between sessions, and an average trace was used as 

ground truth. For all the subjects, both the MAB and LIB of the carotid artery 

were delineated in the transverse section. Additionally, for the first 5 subjects, 

the radiographers traced the MAB in the longitudinal sections as well. The 

latter dataset was used in a subset of experiments, which will be described in 

the next chapter. 

3.2.3 Segmentation with Phase Di↵erence Matrices 

In the work by Despotovic et al. in [227], the authors show that there exists a 

correlation between neighbouring phase-signal samples taken from RF data, 

that can be used for tissue characterisation when examining pre-term brain 

tissue. In this work these concepts are examined when applied to vascular 

tissue of the carotid artery. The data acquisition took place as described in 

section 3.2.1 and 3.2.2, and the SONIX RP platform produced an RF data matrix 

having dimensions of 1568 x 256, that is 256 individual RF lines (referred to 

as A-lines), each with 1568 samples. An example of a single A-line may be seen 

in Figure 3.6, part A. In relation to the B-mode image shown in part B, this RF 

line is taken from the middle, that is, it is the 127th RF line demarcated with 
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the dotted yellow line. The three large peaks correspond to three large 

reflections, which take place at the interfaces of the arterial walls, denoted by 

i1, i2 and i3. Figure 3.6 part C shows the complete RF image. 

Demodulation and Image Construction 

Part of the process of converting RF-data to B-mode images involves amplitude 

demodulation. Two very popular methods of doing this are through either a 

Hilbert Transform or through Inphase-Quadrature (IQ) Demodulation. The 

latter is a good approach to reduce the amount of data in the RF signal without 

losing important information, since it applies complex base-band modulation 

with bandwidth reduction. It also allows for a better Signal-to-Noise (SNR) 

ratio, since IQ demodulation keeps the sampling rate high and that, in turn, 

suppresses the quantisation noise during analog-to-digital conversion. The 

process of IQ-demodulation consists of 4 steps, which are schematically shown 

in Figure 3.7. 
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Figure 3.6: [A] A single RF signal line sampled from the ultrasound transducer 

[B] A typical B-mode image; [C] A corresponding unprocessed RF data image 

which has not undergone signal processing (shown in landscape). 

 

Figure 3.7: IQ demodulation process, showing downmixing, low pass filtering, 

decimation and envelope detection. 

1. Down-mixing 

2. Low pass filtering of both signals 

3. Decimation 

4. Envelope Detection 

The IQ demodulation process produces the envelope of the RF signal, which is 

typically considered to contain most information, and is represented by the 

following equation: 

 Envelope = qIf(n)2 + Qf(n)2 (3.1) 
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where If(n) and Qf(n) are the low pass filtered and decimated outputs of the in-

phase and quadrature signals given by: 

 I(n) = xRF (n) · cos(2⇡fdnT) (3.2) 

 Q(n) = xRF (n) · sin(2⇡fdnT) (3.3) 

In this work, the process of IQ demodulation was carried out in MATLAB by 

adapting code which was already available as part of a di↵erent function 

forming part of the ’SONIX DATA TOOLS’ Ultrasonix Software Development 

Kit. The RF data was imported as a data matrix as described in Section 3.3.1. 

The complex sinusoidal signal was implemented in two parts by means of 

preinitialised, windowed sine and cosine table, for computing the in-phase and 

quadrature signals respectively. The window chosen was a hamming window 

with a length of 20 samples and an overlap of 5 samples. Each A-line from the 

RF matrix was processed separately, and multiplied in windowed segments 

with the corresponding windows of sine and cosine tables. 

The windowing technique is used in ultrasound IQ demodulation to cater for 

spectral leakage arising from discontinuities in the signal, and also to permit 

compensation as required for attenuation of the signal in relation to imaging 

depth. The latter is in fact required in dynamic IQ demodulation, whereby the 

demodulation frequency fd is equated to the mean central frequency which 

varies along signal depth (or in other words further down along the length of 

the A-line) [231]. In this case, however, a simple case is assumed and fd is taken 

to be constant at 6.6 MHz. 

After down-mixing, a low pass filter was implemented in MATLAB, having a 

cut-o↵ frequency fcut of 5 MHz and applied to both in-phase and quadrature 

components. The remaining processes of decimation and envelope detection 
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were not implemented at this stage, choosing instead to retain the signal in the 

in-phase and quadrature representation for subsequent computation of the 

phase signal, which is described in the next section. 

Phase Di⇡erence Matrix Computation 

In the work by Despotovic et al. [227], the authors examine the distribution of 

phase di↵erence by working out the entropy from local neighborhoods. This 

information is obtained once the amplitude and phase information have been 

determined from the preceding IQ demodulation. Despotovic et al. observe 

that the phase information taken purely in isolation appears as a randomly and 

uniformly distributed variable, which makes it di cult to analyse. To this end, 

they compute phase di↵erence information in both axial and lateral 

dimensions as per equation 3.4 below, as they observe these to be locally 

correlated. 

 (3.4) In this equation, c1 

= A1ej('1) and c2 = A2ej('2) are representing two di↵erent samples from the same 

A-line (taken axially) or from two di↵erent A-lines (taken laterally), and where 

A1,A2 are the amplitudes, '1,'2 are the phases, and  is the complex conjugate of 

c2. 

An alternative method of obtaining the phase di↵erence values is as follows. If 

we consider that the in-phase and quadrature components are shifted 90° 

apart, then a graph may be plotted showing the same in-phase and quadrature 

components as shown in Figure 3.8. From this graph, it should be readily 

apparent that the calculation of the phase may be obtained through simple 

trigonometric relationships of the filtered in-phase component If(n) and the 

filtered quadrature components Qf(n) in four di↵erent quadrants. The phase 
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may be calculated as per equation 3.5 below, where (n) represents the phase 

and may take on values of between ⇡ and ⇡. 

if If(n) > 0 if If(n) < 

0,Qf(n) 0 

 if If(n) < 0,Qf(n) < 0 

(3.5) 

if Qf(n) > 0,If(n) = 0 if

 Qf(n) < 0,If(n) = 0 

>>:undefined if If(n) = 0,Qf(n) = 0 
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Figure 3.8: Graph showing a plot of in-phase and quadrature components 

which are shifted 90° apart. 

 

Figure 3.9: A] Original RF image; [B] In-phase component image; [C] Phase 

Image; [D] Phase Di↵erence Image. 

The computation of phase di↵erence, (n), may then be calculated for adjacent 

samples in a single scan line, or from neighbouring samples across di↵erent 

scan lines, by simply subtracting the value of one sample from the other one as 

described in equation 3.6: 

 (n) = (n + 1) (n) (3.6) 

The phase di↵erence signals calculated are then combined together in 

columnwise or row-wise fashion to form a phase di↵erence image matrix. The 

computation of Phase Di↵erence Matrix (PDM) was implemented in MATLAB 

using a simple custom-built function which implements the calculation shown 

in equation 3.5 on the filtered in-phase and quadrature matrices to create a 

phase matrix. The phase matrix was scanned through using a nested loop to 

compute axial and lateral phase di↵erence matrices. Figure 3.9 shows four 

di↵erent images, starting with the original RF image in part A; followed by the 
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phase signal image in part B. Also shown is a representation of the in-phase 

component image in part C for reference purposes. In part D, one observes the 

axial PDM. The PDM calculated in the lateral direction showed less structure 

than that calculated axially. The axial PDM in part D on the other hand clearly 

shows structural correlation with the original RF image, whereby the central 

circular artery, shown in darker contrast, is present. For this purpose, the 

author opted to proceed with the subsequent stages of segmentation using 

Gabor Texture filters and K-Means clustering, by using the axial PDM as basis. 

Texture Feature Extraction with Gabor Filters 

Extracting texture features is based on the use of Gabor Filters, and the 

underlying model of texture perception in the human visual system, described 

by Malik and Perona in their work [232] and adapted by Jain et al. in [233]. In 

[232], the authors described the model as consisting of three stages: 

1. Convolving an image with a bank of even-symmetric linear filters. This is 

then followed by half-wave rectification to provide a set of responses. 

2. Inhibition among the neural response profiles, which are localised in 

space, such that these result in suppression of weak responses in favour 

of strong ones at the same or nearby locations. 

3. Detection of texture-boundary, by using wide odd-symmetric 

mechanisms. 

The first stage is implemented by using a bank of two-dimensional Gabor 

filters. The Gabor function is constructed in two dimensions by having a 

sinusoidal plane wave, having some frequency and some orientation, and 
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modulating this with a two-dimensional Gaussian function. This may be 

represented in the spatial domain by using the following equation: 

 ) (3.7) 

where x0 = xcos(✓) + ysin(✓) y0 = ycos(✓) + 

xsin(✓) 

(x, y) represent the spatial coordinates in 2D space, ✓ refers to the orientation 

of the normal to the parallel lines of a Gabor function, expressed in degrees, 

refers to the wavelength of the cosine factor, refers to the phase o↵set 

expressed in degrees, refers to the spatial aspect ratio, and finally, refers to the 

standard deviation of the Gaussian, and determines the linear size of the 

receptive field. 

The spatial frequency of the cosine factor is expressed as f = 1/ , and this will 

be assigned a range of values as will be seen later. The ratio s/ determines the 

spatial frequency bandwidth, and therefore the number of parallel excitatory 

and inhibitory zones which may be observed. The ratio is expressed as: 

  (3.8) 

The second stage of feature extraction, based on the adaptation by Jain et al. 

uses a non-linear sigmoidal function to saturate the output of the filters. The 

function is expressed as follows: 

  (3.9) 

This saturates the sinusoidal modulations in the filtered images to square 

modulations, and the results may therefore be interpreted by a blob detector. 

Additionally a Gaussian smoothing function is applied to compute the average 
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absolute deviation (AAD) for each filtered image. This is given by the following 

function: 

 ) (3.10) 

The algorithms for texture feature extraction with Gabor filters were 

implemented by modifying standard functions available within the MATLAB 

CVPR toolbox, developed by Seo et al. [234]. For the choice of filter orientations 

used with the Gabor function, di↵erent orientations were used, separated by 

equal spacing each time. Thus, for instance, taking a total of six orientations as 

an example, the values of ✓ were set as follows: 

✓ : 0°,30°;60°;90°;120°;150° 

Furthermore, the spatial frequency f = 1/ was set to the following values as 

recommended in [235]: 

 0.25 2i 0.5/Nc  f  0.25 + 2i 0.5/Nc (3.11) 

where i = 1,2,...,log2(Nc/ split), Nc is the width of the images in columns (in this 

case, 256), and split is a constant, set manually to determine how many 

frequencies (or wavelengths) to consider. This would yield a bank of filters of 

size FN (no. of orientations x no. of frequencies). During the experiments, the 

number of filters in the bank were altered by changing the number of 

orientations and spatial frequencies, to observe their e↵ect on performance. 

The phase o↵set was set to 0, while the spatial aspect ratio of the Gaussian 

function was set to 1. The ratio / , which determines the spatial frequency as 

defined in equation 3.9, was set with a half-response spatial frequency 

bandwidth b in octaves set to 1. Lastly, the constant ⇡, of the non-linear 
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sigmoidal function was set to 0.25, whereas of the Gaussian smoothing 

function, defined in 3.8 and 3.11, was set to = 3 s, with s being the scale 

parameter given earlier in 3.9. 

Texture Boundary Detection using K-Means Clustering 

The final stage of the algorithm is to group the pixels into a number of clusters 

representing di↵erent regions. A standard naive k-means was used to group 

the pixels into two main clusters: tissue and non-tissue. 

The standard algorithm was first proposed in 1957 by Stuart Lloyd of Bells 

Labs, and is implemented as a three step process. Given a dataset of 

observations, i = 1,2,3...n, having coordinates xi,yi, the algorithm initially 

assigns K random centroids, which may or may not be taken from the already 

existing observations. Once the centroids are set (say, C1 and C2 for a scenario 

with two clusters and K = 2), all the observations are assigned to one of the 

clusters based on the distance between them and the di↵erent cluster 

centroids. An observation is assigned to the cluster with whom it has the 

smallest distance. The distance for a particular observation i to centroids C1 

and C2 is calculated based on a Euclidean metric which is defined as follows: 

 di,C1 = p(xi C1x)2 + (yi C1y)2 

(3.12) 

 di,C2 = p(xi C2x)2 + (yi C2y)2 

Following the initial round of clustering, a new updated centroid is computed 

for each particular cluster, by taking the mean of all x coordinates and y 

coordinates of observations in that cluster: 
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C  

(3.13) 

C  

With a new cluster centroid available, the algorithm repeats the process of 

calculating the distance between each observation and the new cluster 

centroids, and eventually updating again the centroids of the new clusters. 

When the cluster centroids remain unchanged following two successive 

iterations, the algorithm stops and the clusters are considered as final. 

The algorithm for K-means clustering was implemented by adapting the 

standard K-means algorithm available within the MATLAB CVPR toolbox 

developed by Seo et al. [234]. In this case, the algorithm was required to find 

two main clusters: tissue and non-tissue, and therefore the number of clusters 

K was set to 2. This strategy was taken on the basis that the lumen inside the 

carotid artery filled with blood would contain di↵erent phase content to the 

adjacent tissue, and therefore it would be represented as having a di↵erent 

texture by the texture extraction algorithm. 

The responses of the PDMs convolved with each of the filter banks were 

reshaped into one-dimensional vectors. The one dimensional vectors were 

then arranged into a matrix, such that each observation was described by FN 

values in a hyper-dimensional space. Two observations were chosen at 

random as initial centroids in the said hyper-dimensional space, and a 

Euclidian distance metric was implemented to measure the distance of all 

other observations to these initial centroids. After clustering, the process was 

repeated as described in the preceding section, until no further updates to the 

centroids was achieved. 

Figure 3.10 [Left], shows an example output. 
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Contour Extraction with Active Contours 

After obtaining a clustered output from the K-Means algorithm, the result is in 

a binary format, allowing for the extraction the contour of interest. MATLAB 

includes built-in functions such as bwboundaries which allows for easy 

extraction of the contour along the edge of the closed space, in the middle of 

the clustered result. However, since the clustering result is not perfect, this 

method would produce a contour exhibiting localised concavities which does 

not correctly reflect the vascular structure. The author therefore opted instead 

to use an Active Contour algorithm, proposed initially by Williams and 

 

Figure 3.10: Left] Result from K-Means Clustering process; [Right] Contour 

Extraction with Active Contours. 

Shah [236], to obtain a contour from the clustered result, since this includes a 

membrane term in its energy functions, allowing one to limit the contour from 



Chapter 3 RF and Phase based Segmentation 

123 

evolving into such localised concavities. Additionally, this approach also allows 

one to employ a like-with-like performance comparison with other 

segmentation techniques in literature, such as that by Stoitsis et al. in [237]. 

An active contour is a type of deformable model which starts with a parametric 

contour represented by the equation v(s) = [x(s),y(s)], where x,y represent the 

spatial coordinates of an image. The active contour (or snake) deforms and 

adapts itself by a dynamic process that minimises a global energy function, 

Esnake(v), which is defined as follows [121]: 

 Esnake(v) = Eint(v) + Eext(v) (3.14) 

where Eint(v) represents an internal energy term and Eext(v) represents an 

external driving energy. The internal energy is normally formulated as a 

function of some physical constraints [121] related to elasticity and rigidity of 

the snake: 

  (3.15) 

where ⇡(s) represents snake elasticity, which causes it to behave like a 

membrane, and (s) represents snake rigidity, which makes the snake behave 

like a thin plate. This combined internal energy limits the snake from bending 

and twisting excessively, such that it does not deform into localised 

concavities. The external energy Eext(v) drives the evolution of the contour on 

the basis of relevant image features such as edges, lines, terminations and 

corners [121]. The total external energy is therefore expressed as a weighted 

combination of three image functions as follows: 

 Eext(v) = wlineEline + wedgeEedge + wtermEterm (3.16) 
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where Eline is the image intensity, and therefore the sign of wline makes the snake 

attracted to either dark lines or bright lines. The second term Eedge is defined 

as follows: 

 Eedge = |rI(x,y)|2 (3.17) 

and makes the snake attracted to large image gradients. The third image 

function Eterm represents the curvature of the level lines and thus makes the 

snake attracted to terminations and corners. The snake reaches equilibrium 

and stops evolving when the forces in equation 3.16 become balanced[121]. 

 

Figure 3.11: A block diagram showing the pipeline of segmentation using 

Phase Di↵erence Matrices. 

In this work, the snakes algorithm was implemented using the MATLAB 

function developed by Kroon et al. in [238]. The terms ⇡(s) and (s) were set, 

after empirical trials, to 0.5 and 50 respectively. The coe cients Wline,Wedge, and 

Wterm were set to 0.01, 3 and 1 respectively. This allowed the snake to deform 

optimally towards the edges of the artery, clustered by the K-means algorithm, 
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without deforming into the local concavities. After the clustered image was 

obtained with K-means, the snakes algorithm required a seed point to initialise 

the starting node. This was manually initialised by providing the x and y 

coordinates of the centroid inside the artery. 

An overall representation of the pipeline for the segmentation using Phase 

Di↵erence matrices is given below in Figure 3.11. In the next section, the 

pipeline for segmenting using Phase Congruency Maps is described, and later, 

both methods and their performances are compared. 

3.2.4 Segmentation with Phase Congruency Maps 

Another phase-based methodology of extracting features related to edges and 

lines is that based on Phase Congruency. In 1987, Morrone et al. [239] 

proposed a model of feature perception called the local energy model. The said 

model postulates that features may be perceived within an image, at the points 

where the Fourier components are maximally in phase. Many types of features 

result in points having high phase congruency, including lines, step edges and 

roof edges. It is shown therefore, that this model accurately explains the 

processes behind feature perception in the human eye. 

As an example, a square wave and its corresponding Fourier series is 

considered, a diagram of which is shown in Figure 3.12. At the point of an edge 

transition or ’step’, all the Fourier components of the constituent sine waves 

are exactly in phase at angles of 0° and 180°. Hence at these points, the phase 

congruency is said to reach a maximum value. More specifically, one notes that 

the phase is 0° at positive edges, and 180° at negative edges. At all other points 

in the square wave, the phase congruency will be low [228]. 
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Edge Detection using Phase Congruency 

In their work, Morrone et al. define phase congruency in terms of the Fourier 

series expansion of a signal for a location x: 

  (3.18) 

where An is the amplitude of the nth Fourier component of a one-dimensional 

signal I(x) = Pn Ancos( n(x)), and n(x) is the local phase of the nth Fourier 

component at position x. The value of ¯(x), over which the equation is 

maximised, is the amplitude-weighted mean local phase angle of all Fourier 

com- 

 

Figure 3.12: Construction of a square wave from its Fourier Series components. 

Reproduced with permission from [240]. 
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ponents at the point being considered. Kovesi et al. [228] proposed a more 

convenient method of computing phase congruency via the local energy model, 

by convolving the signal with a filter bank of quadrature logarithmic Gabor 

filters. These allow for an arbitrarily large bandwidth filter to be constructed, 

while still maintaining a zero DC component in the even-symmetric filter. The 

log Gabor function has the following transfer function on the linear frequency 

scale [228]: 

  (3.19) 

where !0 is the filter’s centre frequency, and the term /!0 ensures a constant 

shape-bandwidth ratio by keeping it constant over varying !0. The reader is 

referred to [228] for a more detailed treatise on the subject. Now for the 

analysis of two dimensional data, one must apply the one dimensional analysis 

over a number of separate orientations, and then combine the result to obtain 

a single measure of edge significance [225]. Kovesi et al. [228] suggested to 

construct a series of orientable 2D filters by spreading a Log-Gabor function 

into 2D. Thus, considering the one dimensional Log-Gabor filters defined 

earlier with geometrically increasing centre frequencies and bandwidths, one 

now masks these with an angular Gaussian tuned to a particular orientation 0 

as follows [225]: 

! 

(3.20) 

where defines the standard deviation of the Gaussian spreading function in the 

angular direction. From these filters, Kovesi et al. [241] proposed to use the 

maximum moments of phase congruency as an indication of feature 
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significance. The maximum moment of phase congruency is obtained by 

computing the Phase Congruency Covariance Matrix for each point in the 

image as follows: 

  (3.21) 

where PCx and PCy are the x and y components of the Phase Congruency PC(x), 

for each orientation. The maximum moment may be obtained by taking the 

maximum singular value of the covariance matrix G. This provides a Phase 

Congruency Map, an example of which may be noted in Figure 3.13b. 

In this work, the phase congruency algorithm was implemented in MATLAB by 

adapting the two-dimensional algorithm developed by Kovesi and made 

available on his online repository at [242]. The algorithm convolves the input 

image with a set of orientable Log-Gabor filters with di↵erent wavelet scales, 

which are themselves masked with an angular Gaussian spreading function. In 

the example shown in Figure 3.13b, the Phase Congruency Maps (PCMs) are 

 

Figure 3.13: (a) A transverse B-Mode image of a carotid artery, (b) 

Corresponding Phase Congruency Map computed on envelope data, showing 
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vertical artifacts, (c) Phase Congruency Map computed on RF data, which is 

artifact free and amplitude invariant 

computed from the 2D envelope signal, obtained using a Hilbert Transform on 

the RF data. Indeed, with the exception of the additional decimation and scan-

conversion steps, this would be the equivalent of computing the Phase 

Congruency Maps on the B-mode images. The application of the Hilbert 

Transform in MATLAB however only provides a numerical approximation to 

the true Hilbert Transform, and as such elevates the local energy E(x) of the 

signal as described by Boche et al. in [243]. This may be observed in Figure 

3.14, where the root mean square (RMS) value of the RF line is 4284, whereas 

the RMS value of the corresponding envelope is 6058 (both shown in red 

lines). 

This elevation in signal energy was seen to be reflected in the signal energy of 

the Gabor filter responses, once these were convolved with the signal, and also 

with the noise content of the signal. Now, the noise threshold proposed by 

Kovesi does take into account the energy of the signal. However, some leakage 

still occurs, resulting in the artefacts seen in Figure 3.13b. A possible solution 

to overcome such artefacts, would be to scale the noise threshold upward by a 
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Figure 3.14: A sample RF line with RMSV: 4284 (top) and its corresponding 

Hilbert Transform with RMSV: 6058 (bottom) with elevated energy. 

noise coe cient k. However, this would also have the undesired side e↵ect of 

omitting important edge feature information. Another solution is to increase 

the size of the wavelength of the smallest wavelet. If we assume that the noise 

spectrum is flat, then the Gabor filters will gather energy from the noise as a 
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function of their bandwidth, which in turn is proportional to the centre 

frequency. This means that the smallest wavelet has the largest bandwidth and 

accrues the most energy from noise. Conversely, increasing the size of the 

smallest wavelet also decreases the amount of noise that it gathers. The 

downside to this is that having the smallest wavelet with a large wavelength 

would mean that it interrogates less fine spatial detail. 

A third possibility which allowed for keeping the wavelength small, but to also 

avoid increasing the noise threshold, was to apply the PCM directly on the raw 

RF data without extraction of the envelope, since it was empirically observed 

that this yielded lower local energy values and an improved signal-to-noise 

ratio. If we consider the frequency spectrum of a single 1D envelope signal, 

shown in Figure 3.15a, one observes, that the amplitude demodulating process 

shifts the frequency spectrum of the RF signal (Figure 3.15b) downwards to 

the left. The log Gabor filter applied subsequently, has a band pass filtering 

characteristic (shown overlapped in red), which does not a↵ect the content of 

the unshifted spectrum of the RF signal. Therefore, the principally desirable 

frequency content is allowed through. Conversely, when the envelope signal 

data is used, the subsequent log Gabor filter heavily attenuates the shifted 

principal low frequency content of this signal as shown in Figure 3.15a (with 

the filter shown overlapping in red). This allows only the noisier high 

frequency content to go through unattenuated, and this may present as 

potential artefacts seen in Figure 3.13b. This is confirmed by taking the inverse 

Fourier Transform on the filtered signal, after the frequency spectra of both 

envelope signal and RF signal were multiplied with the log Gabor filter in the 

frequency domain. In the time domain, the filtered RF signal had spurious 

peaks of much lower amplitude than the envelope signal. Additionally, the 
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resulting PCMs were void of artefacts as shown in Figure 3.13c, and these were 

thus the ones chosen for further processing. 

The Log-Gabor filters were set to have a total of 2 di↵erent wavelet scales, with 

the smaller one having a wavelength of 2 and the larger one having a 

wavelength of 4.2. A total of 12 di↵erent filter orientations were used, such 

that the filters interrogated edges in various orientations with a fine degree of 
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Figure 3.15: [A] Top Graph: Frequency spectrum of envelope signal. [B] Bottom 

Graph: Frequency spectrum of RF line. Gabor filter characteristic 

superimposed in red in both. Amplitude of filter modified for visual purposes. 

 

Figure 3.16: A block diagram showing the pipeline of segmentation using 

Phase Congruency Maps. 

intervals. The experiments section shall describe how the number of wavelet 

scales and orientations are altered to determine change in performance in 

each case. The following additional parameters were set: /f, which refers to 

ratio of the standard deviation of the Gaussian, describing the log Gabor filter’s 

transfer function in the frequency domain, to the filter centre frequency; ✓/ , 

which refers to ratio of angular interval between filter orientations and the 

standard deviation of the angular Gaussian function; and k, the previously 

described coe cient which refers to the number of standard deviations of the 

noise energy, beyond the mean at which the noise threshold point is set. These 

were respectively set to 0.55, 1.2 and 2.0 following empirical trials. 
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The algorithm returned a matrix array M which contained the PCM, that is, the 

maximum moment of phase congruency covariance which is an indicator of 

edge strength. The output was then decimated by a factor of 4, to bring the 

dimensions of the PCM in line with those of the B-mode images having 

undergone decimation. After obtaining a PCM as shown in Figure 3.13, this was 

passed through a K-means algorithm to obtain a binary, clustered image, and 

the contour extraction was implemented using the active contour algorithm, 

in an identical manner to that described for the PDMs in section 3.2.3. A block 

diagram showing the PCM segmentation pipeline is shown in Figure 3.16. 

3.2.5 Experiment Construction 

In this section, a series of experiments are described to compare performance 

of the same segmentation technique when using Phase Di↵erence Matrices 

(PDMs) or when using Phase Congruency Maps (PCMs). The experiments 

explore the e↵ects, or lack thereof, of varying key hyper-parameters when 

producing either PDMs or PCMs. The performance metrics used for 

comparison are also described. The results and their implications are then 

discussed. The experiments carried out were designed to compare the 

segmentation performance of the PDM and PCM based segmentation 

techniques between themselves and between a third reference technique 

reported in literature. Additionally, key hyper-parameters which control how 

the PDM and PCM based techniques behave, were altered, and the manner in 

which their segmentation performance changed was reported. 

The overall pipeline of the PDM and PCM based segmentation techniques are 

similar. Phase Di↵erence Matrices or Phase Congruency Maps, were extracted 

from the input data, to generate an alternative ”representation” of the image. 
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The PDMs or PCMs were then fed into a k-means clustering algorithm, to 

cluster pixels into 2 relevant categories: tissue and non-tissue. The contour of 

interest from the binary image was then extracted using the Active Contour 

algorithm described previously. The third technique chosen for comparison 

was also based on the use of Active Contours, initialised however using a 

Hough 

 

Figure 3.17: Top row; left to right: 1) Filtered B-mode image, 2) Morpholigical 

closing, 3) Image thresholding and 4) Hough Transform application. Bottom 

row, left to right: 1) Image gradients, 2) Image thresholding, 3) Morpholigical 

closing and 4) Sobel Edge detection. 

Transform on the B-mode image, as proposed by Stoitsis et al. in [237]. 

In order to be able to compare performances across all techniques on the 

available dataset, the author replicated the algorithm of Stoitsis et al. as 

follows. Firstly, some image pre-processing was applied to the images, before 

using the Hough Transform to identify a number of candidate circles which 
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best fit the vessel spaces within the image. Thus, the ultrasound images were 

first normalised such that the average gray-scale median value of pixels in 

blood ranged between 0 and 5, whereas those of pixels in the adventitia ranged 

between 180 and 190. The images then had their area automatically reduced 

to a rectangular region of interest, in order to minimise the possibility of 

detecting unwanted structures. Details of this process are available in [237]. 

The regions of interest were then low pass filtered with a symmetric Gaussian 

lowpass filter to remove high-frequency noise. Morphological closing was then 

applied to close small ’channels’ and ’openings’ in the image. Edge detection 

was then carried out by applying a global thresholding procedure based on the 

histogram width of the image. The threshold was set at the 15% mark in the 

histogram. Edge points were then detected using a Sobel gradient operator 

[237]. The output of the Sobel detector produced binary images having 1s at 

the edges and 0s elsewhere. The Hough Transform was then applied on the 

binary images produced from the Sobel Detector, producing the said number 

of candidate circles. The centroid of largest / most dominant candidate was 

then used as a seed for an Active Contour algorithm, which deformed the the 

initial circular contour into the vessel’s boundary, based on a gradient vector 

flow field. An example of the di↵erent pipeline processes is shown in Figure 

3.17. 

In the work by Stoitsis et al., the authors use the Active Contours as a strategy 

to extract the contour of the carotid artery from the image, which would have 

ultimately been binarised thanks to the preceding pre-processing steps, 

involving the filtering, morphological closing and edge detection. When 

comparing this against the pipelines using PDM and PCM based segmentation, 

the final contour extraction step in this work was also carried out using an 
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Active Contours algorithm, in order to keep this element of contour extraction 

fixed across all techniques being compared. The seed point for the Active 

Contour was however manually initialised by choosing the necessary x,y 

coordinates. Therefore, the extraction of PDM and PCM data was intended as 

an alternative feature representation of the ultrasound images, a process 

which is analogous to the image pre-processing steps involving Gaussian 

Filtering, Morphological closing and edge detection used by Stoitsis et al.. The 

scope of the experiments is to compare the performance of this alternative 

representation / feature extraction process which is being compared. 

In addition to the above, during the experiments key hyper-parameters which 

control how the PDM and PCM feature extraction behave were altered, and the 

change in segmentation performance in each case was recorded. In the case of 

Phase Di↵erence Matrices, after computing the phase di↵erence values in the 

axial direction from phase matrices, a bank of Gabor filters having set 

orientations and frequency scales were constructed and applied to the data for 

texture feature extraction. The number of filters in the bank were altered by 

first changing the number of filter orientations used, while keeping the choice 

of scale fixed at the default value. The filter orientations were equally spaced, 

and thus the spacing changed according to the number of orientations tested 

each time. Additionally, the performance changes when altering the number of 

frequency scales used was also tested, while keeping the choice of orientations 

fixed at the default value. The rationale behind testing these alterations was to 

determine the number of orientations and scales su cient to interrogate 

structural edges in the data at various angles and density. Too few would 

presumably miss out on important structural edge information, but having too 

many may not necessarily yield consistently increasing gains. Similarly, since 



Chapter 3 RF and Phase based Segmentation 

138 

in the case of Phase Congruency Maps a bank of orientable Gabor Filters with 

di↵erent wavelet scales was also constructed, a similar principle during 

experiment construction was applied, and the performances obtained when 

varying the number of wavelet scales and number of orientations was tested, 

each time keeping the other variable fixed at the default value. 

In a third set of experiments, the segmentation performance when using PCMs 

with di↵erent gain settings on the source RF data was tested. This was 

compared to a segmentation technique which used K-means clustering and 

Active contours directly on brightness-mode (envelope) data as opposed to 

PCMs. The scope of this set of experiments was to determine whether the 

objective of obtaining an amplitude-invariant image representation was 

achieved. 

3.2.6 Performance Metrics 

A number of evaluation metrics were used in order to quantify the 

performance of PDM and PCM based techniques in comparison to that using 

the Hough Transform initialised Active Contours. Each metric functions on the 

basis of comparison of pixel regions between the segmented images and a 

ground truth established manually by an expert. Thus, all the acquired 

transverse ultrasound images were manually traced with the assistance of two 

radiographers as described in section 3.2.2. The radiographers traced the MAB 

contours in the images, and this contour therefore established the 

demarcation point between the two important regions in the image (’tissue’ 

and ’non-tissue’ at this stage). The following metrics were then used for 

comparison. 
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DICE Similarity. The similarity between the segmented result and the ground 

truth is computed using the Dice Index which is calculated as follows: 

  (3.22) 

where CM refers to the manually produced contour and CA refers to the contour 

produced by the algorithm. The Dice Coe cient of Similarity is used to gauge 

the degree of overlap between the areas subtended by the two boundaries CM 

and CA. 

Sensitivity. The Sensitivity term, taken within the context of a clinical scenario, 

is defined as the ability of a method or test to correctly classify a sample as 

being diseased [244], or in other words, the probability of a test being positive 

when the disease is indeed present. It is defined mathematically as: 

  (3.23) 

whereby TP refers to the number of True Positives or the number of pixels 

correctly identified as positive and FN refers to the number of False Negatives, 

or the number of pixels incorrectly identified as negative. A method which 

displays high sensitivity is considered reliable when it produces a negative 

result, since it rarely misdiagnoses instances where the disease is present. 

Specificity. The Specificity term, is defined as the ability of a method or test to 

correctly classify a sample as being free from disease [244], or in other words, 

the probability of a test being negative when the disease is indeed absent. It is 

defined mathematically as: 

  (3.24) 
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whereby TN refers to the number of True Negatives or the number of pixels 

correctly identified as negative and FP refers to the number of False Positives, 

or the number of pixels which are incorrectly identified as positive. A method 

which displays high specificity may be considered to reliably exclude the 

presence of disease when this is in fact absent. 

Accuracy. The Accuracy term is an overall measure of the correct predictions 

made by a method, be it both positive or negative predictions, expressed as a 

ratio of the total number of predictions made. It is mathematically defined as: 

  (3.25) 

Accuracy is an intuitive and simple to report performance metric, but should 

be taken into consideration together with sensitivity and specificity, 

particularly if the number of false positives and false negatives is not 

symmetric in the dataset. 

3.3 Results and Discussions 

The first set of results are presented in the set of four graphs in Figure 3.18. 

These graphs show how, when using PDM features, the four performance 

metrics being measured vary with a di↵erent number of Gabor filter 

orientations ✓. The number of scales was kept constant at the default value of 

12 in each case. The results show that an increase in the number of Gabor filter 

orientations does not yield an improved performance, since the best results 

for DICE coe cient, sensitivity and accuracy are obtained with 4 filter 

orientations. In the case of specificity, the variation in the number of filter 

orientations remains relatively constant at 0.998±0.001. In order to 

understand why this is so, the responses from convolving the PDMs with Gabor 

filters of various orientations 
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 Figure 3.18: PDM results for varying number of orientations ✓. = 12 

were plotted. An example is shown in Figure 3.19, which shows the responses 

to six di↵erent orientations, including amongst them the horizontal (0°) and 

vertical (90°) angles. From these, one notes that the vertical and horizontal 

responses are the ones which contain the sharpest structural features, 

whereas the diagonal responses include blurred and less distinguishable 

features. This leads to the understanding that the diagonal responses, at least 

at several different wavelength scales, may actually provide confounding 

influence to the k-means algorithm, causing it to mis-cluster pixels, and 

therefore in turn leading to a degraded performance. 

In Figure 3.20, one observes a similar set of graphs this time showing the per- 



Chapter 3 RF and Phase based Segmentation 

142 

 

Figure 3.19: PDMs convolved with six di↵erent Gabor Filters having angles as 

follows: 1st column: 0°; 90°; 2nd column: 60°; 150°; 3rd column: 30°; 120° 

formance variation for di↵erent number of scales n, while keeping ✓ constant 

at the default value of 8 orientations. Each label on the horizontal axis indicates 

the number of wavelengths considered in each case. Here a general trend of 

performance improvement corresponding to a greater number of filter scales 

used may be observed. These results may imply that a greater number of filter 

scales impart more useful information to the k-means algorithm when it comes 

to clustering pixels into tissue or non-tissue, than does the number of filter 

orientations used. The range of values of chosen is determined by equation 

3.11, and also entails a wider range of wavelengths considered. 
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The addition of di↵erent wavelengths, particularly the smaller ones, allow the 

filters to pick up finer structural detail. This is shown in Figure 3.21. In this 

figure, the four responses to the left pertain to a wavelength of 5.27, whereas 

 

 Figure 3.20: PDM results for varying number of scales n. ✓ = 8 
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Figure 3.21: Filter responses with di↵erent scales. [Left Bank] Filter responses 

with scale of 5.27. [Right Bank] Filter responses with scale of 2.68. 

the four responses on the right pertain the a wavelength of 2.68. The responses 

from the smaller wavelength show greater structural detail, at the cost of being 

noisier. The responses from the larger wavelengths lack the same detail, but 

their blurry nature gives broader context, to prevent the clustering algorithm 

from mis-clustering noisy pixels. It is also true however that increasing the 

number of wavelengths indefinitely, ultimately does not keep yielding 

improvements, with the performance levelling out in the end. 

In Figure 3.22 and 3.23, graphs showing results obtained for PCM features are 

presented. As before, Figure 3.22 shows the performance on di↵erent metrics 

when the Gabor filter orientations used to compute the Phase Congruency 
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Maps are altered between 4 and 16 orientations. Here one observes a general 

trend of improvement in the DICE coe cient, specificity and accuracy as 

 

 Figure 3.22: PCM results for varying number of orientations ✓. = 8 

the number of filter orientations increase - but concurrently a trend of 

performance decrease in sensitivity. An analysis of the numerical data 

revealed a progressively smaller number of true positive and false positive 

pixels and an increasing number of false negatives, which indicates that the 

automatically delineated contour was decreasing in size while at the same time 

aligning itself better with the manual contour. This appears to indicate that 

with just 4 orientations, the boundary information provided to the k-means 

algorithm and thus to the Active Contour, were ’looser’, and the automatic 

contour obtained was larger than the manual contour, having a large degree of 

overlap but also a large number of false positives. 



Chapter 3 RF and Phase based Segmentation 

146 

In Figure 3.23, while keeping the number of orientations at their default value 

of 12 and varying the number of filter scales, one observe that the specificity 

and accuracy retain mostly similar values, and that the DICE coe cient and 

sensitivity register a downward trend in performance as the scale increases. 

An analysis of the pixel areas revealed a trend of decreasing area under the 

automatically delineated contour, and similarly a decreasing area of overlap. If 

one look at PCM images such as 3.13c, it may be observed that these are less 

noisy than their PDM counterparts, and are in fact fairly similar to B-mode 

images. With a larger number of filter scales, and thus the inclusion of finer 

wavelengths, the results appear to indicate that the Gabor filters picked up and 

accentuated non-relevant artefacts in the lumen, and thus caused the k-means 

algorithm to produce a more restrictive boundary to the Active Contours. For 

the results shown in Figures 3.20, 3.21, 3.22 and 3.23, a Holm-Bonferroni 

corrected paired T-test for DICE between scenarios with di↵erent number of 

orientations/scales showed that the di↵erence between results was not 

statistically significant (p > 0.05). While this may possibly be due to the lack of 

samples, it also indicates that the change in number of scales or orientation 

might have little overall e↵ect on the segmentation performance of the 

techniques. 

In Figure 3.24, a comparison across techniques is presented by choosing the 

best performing combinations of hyperparameters for the PDM and PCM 

techniques, and pitting these against the technique proposed by Stoitsis et al.. 

From the results shown in this figure, it may be firstly noted that the 

performance obtained using the HT initialised Active Contours method is in 

agreement with that stated in the literature by Stoitsis et al. in [237], whereby 

the authors achieve a sensitivity of 0.850±0.040, a specificity of 0.990±0.003 
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and an accuracy of 0.980 ± 0.020. This therefore provides a good algorithmic 

baseline for comparison. Then, despite the poorer DICE coe cient and 

sensitivity of the PDM method, a DICE coe cient of 0.759 ± 0.055 quantitatively 

 

 Figure 3.23: PCM results for varying number of scales . ✓ = 12 
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Figure 3.24: Comparison results across PDM, PCM and HT-AC techniques 

 

Figure 3.25: Qualitative comparison of segmentation results across PDM (top 

row), PCM (middle row) and HT-AC (bottom row) techniques, respectively for 

all 5 subjects 

demonstrates that this method does extract an anatomically relevant result, 

and that phase information contains important structural information within 

the image. This successfully corroborates the claim made by Despotovic et al. 

in [227], in stating that phase di↵erence information extracted from RF data 

does indeed correlate to the presence or lack of tissue, and thus elicits 

structure which is contained within the image. The comparison of 

performance between the proposed PDM method and the Hough Transform-

initialised Active Contour of Stoitsis et al. is published in the author’s work in 

[90]. 
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In the second proposed method based on PCM features, the performance is 

very much improved, with an average DICE coe cient reaching 0.922±0.022, a 

specificity and accuracy which are very similar to that of Stoitsis et al. 

 

Figure 3.26: Comparison of segmentation results for Envelope and Phase data 

when progressively amplifying the source RF signals. 

at 0989 ± 0.004 and 0.988 ± 0.004 respectively, and with a sensitivity 

performance which exceeds that of the other techniques at 0.977 ± 0.010. A 

Holm-Bonferroni corrected paired sample t-Test shows that there is a 

statistical di↵erence (p < 0.01) between the DICE values of PCM and PDM. 

However, the same corrected paired sample t-Test failed to show a statistically 

significant di↵erence (p > 0.05) between the DICE values of the PCM and HT-

AC techniques. From a qualitative perspective, in Figure 3.25 one observes that 

although the PDM based technique obtains a DICE coe cient of 0.75, the 
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delineated result does not make anatomical sense. The PCM based technique 

however, with a DICE coe cient of 0.922 achieves significantly close results to 

those of the Hough-transform initialised Active Contours. 

The benefits of Phase Congruency Maps are that, since they are based on phase 

information, this makes them invariant to changes in signal magnitude. Thus, 

unlike techniques based on intensity / envelope information, a segmentation 

technique based on phase information should theoretically be less a↵ected by 

an incorrect gain setting used by the clinician. The next set of experiments 

examines this hypothesis by varying the gain through a range of values, 

causing a progressively worse clipping of the RF signal, while concurrently 

plotting the DICE coe cient in each case to evaluate segmentation performance. 

The experiment was performed using PCM features, but also by using k-means 

on B-mode images derived from the amplified RF data. This was done to 

compare the e↵ect of gain across envelope and phase data. In Figure 3.26, the 

averaged experimental results from across 5 patients are plotted. The RF data 

was amplified by factors ranging from unity gain to x50. The performance 

obtained from envelope based segmentation was initially observed to be 

stable, while the RF data was still not experiencing clipping, with DICE coe 

cients of approximately 0.91 ± 0.01. Beyond a gain factor of x10, considerable 

clipping in the RF data started taking place, and the k-means algorithm 

followed by Active Contours produced progressively worse results, with the 

DICE coe cient decreasing down to 0.59 ± 0.14. As shown in Figure 3.28 [Top 

row], the clipping of the RF data caused heavy artefacts in the clustering of the 

k-means algorithm. In turn, the Active Contours produced smaller contours. 

The situation is not reflected in the results for PCM features. While the initial 

performance was marginally worse than that of the envelope data (average 
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DICE of 0.89 as opposed to 0.91, gain factors of x10 and beyond decreased the 

performance to 0.82 ± 0.05. Holm-Bonferroni corrected paired statistical t-

Tests showed statistically significant di↵erences between B-Mode and PCM 

techniques (p < 0.05) for gain values 30 and greater, but were not statistically 

di↵erent (p > 0.05) for gain values of 20 and below. In Figure 3.27 [Bottom 

 

Figure 3.27: [Top row] K-means followed by Active Contours on envelope data; 

[Bottom row] K-means followed by Active Contours on PCM data; Gain settings 

of 5, 20 and 30 respectively in both cases . 

row], one observes that while clipping still introduced artefacts in the PCM 

feature map, the e↵ect was much reduced, and the lumen of the artery was 

better preserved. The k-means and Active Contour algorithms extracted 

contours with better DICE coe cients than their envelope counterparts. This 

shows that when phase features are used in isolation, it is possible to achieve 
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delineations which correlate with the tissue structures in the image, and 

obtain segmentation performance which closely follows that of envelope-

based methods. The phase information on its own generally produces poorer 

results than envelope data under normal circumstances, but has a greater 

resilience to amplitude variation. 

3.4 Conclusion 

In this Chapter, a novel application of Phase Di↵erence Matrices and Phase 

Congruency Maps to RF-based ultrasound images of the carotid has been 

proposed. It was shown that phase information contains important structural 

information regarding the carotid wall tissue. Initially, with PDMs, it was 

shown, at least qualitatively, that a general distinction between tissue and non-

tissue exists in the phase information. With Phase Congruency Maps, it was 

proven that this phase information in isolation is enough to segment the 

Media-Adventitia interface of the carotid artery, with a DICE performance that 

is su ciently acceptable and close to that of amplitude based methods. In the 

next chapter, a novel fusion of both amplitude and phase information is 

proposed, using them together with deep convolutional networks to delineate 

the same Media-Adventitia interface in the carotid artery. 



Chapter 4 DCNs for Automated Segmentation 

153 

4 

Deep Convolutional Networks for 

Automated Segmentation 

 

4.1 Introduction 

Deep Neural Networks have recently been employed with good success on 

various image segmentation tasks, object detection and image classification. In 

Chapter 2 one notes how they have also been picked up by the medical imaging 

research community for application to various clinical problems. In this 

chapter, the author proposes a novel segmentation technique which delineates 

the MAB in a fully automated manner, by being the first to apply a Deep 

Convolutional Network (DCN) to transverse Carotid Ultrasound data, and by it 

being applied on a novel fusion of amplitude and phase information at input 

level. 

4.1.1 Aims 

The aim of this chapter is to describe a set of experiments to examine the 

performance of the proposed network and fusion strategy, by comparing 
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against each other: a) the use of phase information alone as a datasource, b) 

the use of amplitude information alone as a datasource, and c) the proposed 

novel fusion of both amplitude and phase information. Furthermore - given 

that the deep FCN structure used is based on the encoder-decoder model, the 

structure of the network, including number of layers and the size of filters 

used, naturally has a bearing on the segmentation performance of the network. 

Thus, a set of experiments are further described to test, evaluate and report 

the performance of various network configurations, depths and filter sizes, in 

order to identify the best performing one. Finally, experiments are described 

to evaluate training time, as well as the e↵ect of input-level gain/amplification 

on the performance of the network. A discussion of results follows each 

experimental section described. 

Novelty Statement: At the time of publication (2017), the novelty of this 

chapter’s work was that it was the first Deep network based segmentation of 

transverse carotid ultrasound images, which included fusion of amplitude and 

phase information. 

4.2 Methodology 

4.2.1 Preparation of Data 

The input data was acquired as described in section 3.2.2. Two separate 

datasets were acquired for these experiments, one with images of the carotid 

taken in transverse section and the other one with images taken in the 

longitudinal section. The images were manually cropped to a region of interest 

having size of 120 x 120 pixels centred on the carotid artery. The cropping was 

applied manually, since as described previously, most ultrasound platform 
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GUIs allow for a very simple windowing function, which would similarly allow 

the user to crop to a region of interest. Additionally, since for training deep 

FCNs, a large number of images is desired, an artificial augmentation of each 

dataset was implemented. Initially, the number of original images available 

included 50 2D slices taken from each of 5 patients, for a total of 250 images. 

Copies of the original images and associated output labels were created and 

rotated by 90, 180, and 270 degrees respectively. These were then appended 

to the original input and output datasets, creating a total of 1,000 input 

samples. 

Apart from the input made up of B-mode images, a second dataset based on 

PCMs was created using the technique described in section 3.3.2. The PCMs 

were appended to the B-mode images - thus implementing an input-level 

fusion strategy by creating a two-channel dataset matrix of size: 120 x 120 x 2 

x 1000 sample images, containing both amplitude and phase information. The 

output matrix of labels was similarly of size 120 x 120, and labelled such that 

pixels falling within lumen of the carotid were labelled as ’1’s and the rest as 

’0’s. From all the images available, a random selection of 70% were kept as 

training data, 20% as validation data, and 10% as testing data. 

4.2.2 Deep FCN Construction 

The FCNs were constructed on MATLAB, using a deep network toolbox called 

MatConvNet [245], which contained pre-built functions to allow creation of 

deep convolutional networks of various layers and sizes. A number of 

networks were constructed with various configurations of depth, layers and 

filter dimensions, in order to search for a structure which yielded best results. 

This is described in a later section on experiment setup. All the networks were 
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however constructed as described in section 4.4.3, whereby the first half of the 

network was set up as an encoder with progressively decreasing size, and the 

second half of the network was set up as a decoder with progressively 

increasing size, until the output reached the same dimensions of the input. 

The convolutional layers were set up with filter kernels having di↵erent square 

dimensions, but also with varying depths. Convolutional layers were followed 

by a RELU activation function. No padding was applied and the stride values 

during convolution were set to 1. The pooling layers were set up with a 2 x 2 

averaging function in each case. The stride value during pooling was set to 2, 

such that with the averaging window of 2 x 2, the output of the pooling function 

was half the size of the input. At the middle intersection of the network, where 

the encoder and decoder meet, no pooling function was applied, and instead 

the convolutional layer fed directly into a convolutional transpose layer. In the 

decoder section of the networks, convolutional transpose layers were also 

constructed with filter kernels of varying dimensions and depth. No cropping 

was applied to the convolutional transpose layers, and each such layer was 

followed with an up-sampling function using a nearest neighbour method. 

The up-sampling functions scaled the output dimensions by a factor of 2. 
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Figure 4.1: A block diagram showing the pipeline of training using Deep Neural 

Networks. 

Output classification 

At the output end of the decoder network, the number of output maps were 

reduced to two, and fed into a softmax classifier providing logistic regression 

for a two class problem. The softmax classifier maximises the the maximum 

value of outputs in one of the output maps, such that node pixels falling within 

the lumen region are close to ’1’, while node pixels outside the lumen are close 

to ’0’. The e↵ect is inverted in the second output map, whereby the node pixels 

outside the lumen are close to ’1’ and the node pixels inside the lumen are 

made close to ’0’. 
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Training environment 

The FCN was built and trained on an Intel Core i7 machine, running 

additionally with a Geforce GT 650M GPU. The latter allowed for a CUDA 

enabled 

 

Figure 4.2: A block diagram showing the pipeline of testing using Deep Neural 

Networks. 

parallel processing environment which improves training time. Training was 

allowed to run until convergence was achieved (typically at > 20 epochs), but 

where practicable in terms of training time, and for an equitably comparable 

environment, it was allowed to run for the same number of epochs each time 

a variable was altered. The optimisation algorithm used was Batched 

Stochastic Gradient Descent which trained on batches of 5 ultrasound images 

at a time. Figure 4.1 show a block diagram of the process, whereby the data 

acquired was used to create both B-mode data and PCM data, and the fusion of 

the latter was used as input training data to the network. Figure 4.2 shows the 

process of segmentation on new data once the network was trained. 

The following additional hyper-parameters were set as follows: 1) the learning 

rate, ⇡, which is a coe cient multiplied by the gradient, was set to 1e-2. This 
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determines how aggressively the weights are updated between each iteration. 

Thus, a very low learning rate will not miss local minima, but might make 

training slow. A large learning rate may speed up training but could miss local 

minima and cause the network not to converge to the optimal value. The 

learning rate was also made smaller by a factor of 10 every 5 epochs. 2) The 

value of weight decay was set to 1e-4. This is a small coe cient which performs 

weight regularisation in order to avoid overfitting. It is multiplied by the sum 

of weights squared, and is intended to prevent the loss function from becoming 

too huge, while at the same time penalising the same loss function with the 

sum of weights for it not to become too complex. Lastly, 3) the value of 

momentum was set to 0.90. This hyper-parameter adds to each iteration’s 

gradient calculation (and direction), a weighted average of past gradients from 

previous iterations. This obtains more stable directions of descent, particularly 

in ill-conditioned problems. From an experimental point of view, a detailed 

grid search to find the best performing combination of hyper-parameters was 

not considered feasible. Thus the values of these hyper-parameters were set 

after empirical trials, by altering them carefully one at a time and observing 

their e↵ect on training. Initially the values were set to small conservative 

values, which favoured stable performance over speed. These were then 

increased slowly up to the point where the network was converging faster, yet 

still stable. Finally, values were chosen, which in combination with the others, 

yielded the best results. 

4.2.3 Experiment Construction 

In this section, a series of experiments are described to compare the 

performance of di↵erent structures and configurations of deep convolutional 
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neural networks, each set to carry out semantic segmentation on a pixel-by-

pixel basis. The purpose is to determine, from the wide search space of 

di↵erent network structures available, which would perform optimally for the 

task of segmenting the MAB boundary in transverse and longitudinal 

ultrasound images. The performance of the network is also compared to 

scenarios when it uses amplitude information alone, phase information alone, 

and when the input is a fusion of amplitude and phase information provided 

in the form of a 2 channel input matrix. Finally, the e↵ect of changes in gain in 

the source data are examined with respect to the performance of the network 

when using fused input data. The performance metrics used for comparison in 

all cases are described, and the results and their implications are later 

discussed. 

Finding the optimal structure and configuration of the FCN for this 

segmentation task requires a quasi-grid-search approach to testing the 

available parameter space, coupled with some heuristics to aid the process. 

This was required given that the parameter search space is vast and di cult to 

test exhaustively in a practical manner. The choice of network used to 

commence experiments was the shallowest possible for an encoder-decoder 

type structure. Therefore for the choice of number of layer ’stacks’, a minimum 

of 2 layers was used, whereby this signifies at least one convolution and 

pooling layer on the encoder side, and one up-sampling and convolutional 

transpose layer on the decoder side. The square sizes of filter kernels were also 

kept small, starting with kernels of size 3 x 3 pixels on the encoder side and 4 

x 4 pixels on the decoder side. The number of output maps produced by the 

kernels (which shall be referred to as ’layer depth’ within a stack) was kept at 

8 initially. This provided what was considered to be a minimally shallow 
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network which was stable and converged. Structures smaller or simpler than 

what is described proved non-functional as they did not converge to a 

meaningful result. In some instances, the smallest combinations available for 

more than one parameter also did not yield stable results, and hence one of the 

parameters would have to be increased. With this particular shallow structure, 

the initial choice of hyper-parameters such as learning rate, weight decay and 

momentum, were set to their default values recommended with the 

MatConvNet toolbox. The values were then varied slowly one by one, 

observing the e↵ect (or lack-thereof) on the convergence, speed and 

performance. This process was repeated again later when the optimal network 

structure and depth was determined. 

Several experiments were subsequently carried out to test the e↵ect of the 

di↵erent structural FCN parameters on the overall segmentation performance. 

These were: a) the number of layer ’stacks’, that is: the number of [convolution 

+ subsampling] or [transpose-convolution + upsampling] stacks used between 

the input and final segmentation mask; b) the number of input / output maps 

utilised within each layer stack; and c) the filter dimensions used within 

convolutional / convolutional transpose layers. Given that a full grid-search of 

parameter combinations yields a large and expensive parameter space to test, 

a heuristic approach was used whereby a single parameter was varied, while 

keeping the others constant. Once the best performing value for a particular 

parameter was identified, it was fixed, and the next parameter varied. The 

parameters were varied in the same sequence as described. 

After identifying a network structure and configuration which yielded the 

optimal performance, this structure was retained and used for additional 
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experiments that compared the network performance when using di↵erent 

types of input data. Further experiments were thus carried out whereby the 

network was trained and tested solely on amplitude (B-mode) data first. The 

network was then trained and tested solely on phase information by using 

phase-congruency maps described earlier in Section 3.3.2. Finally the network 

was trained and tested on a dataset which fused both amplitude and phase 

information. A 2-channel input matrix was constructed using 120 x 120 B-

mode images as the amplitude channel and the 120 x 120 phase congruency 

maps as the phase channel. The phase channel initially had values ranging 

from -1 to 1, since this was the range of outputs yielded from the phase 

congruency extraction algorithm. In order to bring the magnitude of values on 

par with that of the amplitude data, and thus avoid a ’magnitude imbalance’, 

this was normalised to a range of between 0 and 255. 

As described in Section 3.2.2, for these experiments, a subset of the full dataset 

had been collected up to this point, with the same data acquisition protocol 

described previously. Experiments described in later chapters included a 

much larger dataset, and therefore resulted in di↵erent performances. 

Therefore, at this point, a total of 250 transverse and 250 longitudinal images 

were obtained from 5 subjects (50 images each) with normal (non-stenotic) 

carotids and with ages spanning 25 - 40 years. Images were manually and 

independently traced by two radiographers. Each radiographer traced the 

image sets twice, with a period of 2 weeks in between sessions. The MAB was 

traced in both transverse and longitudinal sections. During each experiment, a 

hold-out test set that the training process never touches was retained for 

testing. All experiments described were repeated and reported separately for 

both transverse carotid images and longitudinal carotid images. 
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4.2.4 Performance Metrics 

Two main performance metrics were used in order to quantify the 

performance of the network while varying structural parameters and while 

testing di↵erent inputs and fused inputs. The first metric was the DICE coe 

cient of similarity described previously, which is used to gauge the degree of 

overlap between the areas subtended by the two boundaries CM and CA, where 

CM refers to the manually produced contour and CA refers to the contour 

produced by the network. The second performance metric used was the 

Modified Hausdor↵ Distance, which is described as follows: 

 

Figure 4.3: A graphical representation of the Hausdor↵ Distance between two 

point sets X and Y. 

Modified Hausdor⇡ Distance. The Hausdor↵ Distance (HD) is a measure of 

distance between two point sets as shown in Figure 4.3. It measures the largest 

distance present between a point in one set of points (say, a contour) to the 
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closest available point in another set. The Modified Hausdor↵ distance (MHD) 

[246] on the other hand finds the mean distance between two boundaries and 

is computed as follows: 

where 

MHD = max(d(A,B),d(B,A)), (4.1) 

 ) (4.2) 

Since the HD is a measure of the largest mismatch between two boundaries, a 

single point can cause a high HD value. The MHD mitigates this e↵ect. 

4.3 Results and Discussion 

For the first set of experiments which examine structure and configuration of 

the network, both DICE coe cient of similarity and the Modified Hausdor↵ 

Distance were used as metrics of performance. The first experiment carried 

out was that of varying the number of stacked layers in the encoder and 

decoder structure. Figure 4.4 shows two graphs, whereby the DICE value is 

shown on the top graph and the MHD is shown on the bottom graph, in both 

cases on the y-axis. The number of stacked layers on the x-axis in both cases 

represents the total number of stacked pairs of layers, i.e. the number of 

(convolution + pooling) layers and the number of (up-sampling and 

convolutional transpose) layers. The number of stacks on the encoder side is 

always equal to the number of stacks on the decoder side. This means for 

instance, that a total number of 4 layers would mean 2 pairs on the encoder 

side and 2 pairs on the decoder side. The graphs also show superimposed 

results for both transverse carotid images and longitudinal carotid images. In 

these experiments, the filter sizes had to be set to a minimum of 5 x 5 on the 

encoder side and 6 x 6 on the decoder side to produce meaningful results. 
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From the results, one may observe that, given that the other parameters such 

as output map depths and filter sizes had not been optimised yet, the 

performance on both DICE coe cients and MHD peaks at a total number of 4 

layers in the network. For the DICE coe cient, the performance peaks at 

0.758±0.041 for the transverse images and at 0.921±0.024 for the longitudinal 

images. A, Holm-Bonferroni corrected paired T-test for DICE between di↵erent 

number of layers showed that the di↵erence between results was statistically 

significant (p < 0.05). Conversely, with the MHD showing best performance 

when the numbers are small, one similarly notes that with 4 layer stacks the 

performance with transverse images is that of 1.262 ± 0.293 mm and that of 

longitudinal images is 0.272 ± 0.071 mm. These first set of results must be 

treated with caution, since the other parameters of the network such as output 

map depth and filter size were still restricted. Thus, while the results provide 

an indication of the level of depth in terms of layer stacks the network requires 

to start producing meaningful results, they are not to be considered definitive 

for the task at hand. 

In Figure 4.5, one observes the results from a second set of experiments carried 

out, this time for the instances when the number of output maps at each of the 

layer stacks were progressively varied. Again the vertical axes in these graphs 

show the DICE (top) and MHD (bottom) performance respectively. Since the 

number of output maps at each layer were di↵erent, and since it is di cult to 

visualise all the combinations of output maps being used on the x-axis, a 

’summarised’ representation is shown, whereby the graph only shows the 

number of output maps present at the ’middle set’ of layers in the network. 

Thus, on the x-axis, a value of ’8/4’ signifies that on the middle set of layers of 

a 4 layer network, the number of output maps being produced by the 
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(convolution + pooling) layer pair is 8, and that these are fed into the next (up-

sampling and convolutional transpose) layer pair. 

Additionally, on the basis of the previous results concerning the best 

performing number of layer stacks, the experiments are started o↵ with a 

network having a minimum of 4 total layer stacks (2 on the encoder and 2 on 

the decoder), and worked upwards to explore also whether the performance 

changes when the output maps or number of stacks are increased. As evident 

from Figure 4.5, with a minimum of 4 stacks, increasing the number of output 

maps at each stack to a maximum of 64 at the centre stack, improves the 

perfor- 
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Figure 4.4: Results showing performance of networks of various stacked 

layers. mance consistently before trailing o↵ when increasing to 128 output 

maps. A further performance improvement was observed when the number of 

stacks are increased to 6 in total with maximum of 128 output maps at the 

central stack. With this configuration, DICE coe cients for transverse and 

longitudinal images are 0.968±0.006 and 0.987±0.007 respectively, while 

MHD performances are 0.104±0.037 mm and 0.056±0.044 mm respectively. 

Increasing the size of layer stacks to 8 with a maximum of 64 or 128 maps was 

found to to take too long to converge for a similar performance. A similar 

outcome was observed for increasing the maximum number of output maps to 

256 at the central stack. Corrected paired T-tests failed to show statistically 

signifiant di↵erence in performance (p > 0.05) for the longitudinal images. 

However, a statistically significant di↵erence (p < 0.05) was present for 

transverse images, between using 128 output maps with 6 layers and the 

previous scenarios. 

In Figure 4.6, one notes the performance results obtained when varying the 

size of the filter kernels on both encoder and decoder segments. For brevity, 

the graph shows on the x-axis the square filter size at each layer stack using a 

single digit. Hence for instance, the label ’3, 2, 2, 2, 3, 4’ shows 6 single digits, 

one for each layer of the network, whereby the first layer had filter dimensions 

of 3x3, the second layer had filter dimensions of 2x2, the third also had filter 

dimensions of 2x2, etc. Again, on the basis of the best performances obtained 

from the previous experiments, the number of network stacks was fixed to 6, 

and the number of output maps to 128, while varying only the filter 

dimensions as shown on the x-axis. 
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As observed in Figure 4.6, one notices a consistent increase in performance 

with increase in filter size, with gains levelling out at filter dimensions of 9, 9, 

7, 7, 10, 10. With these filter dimensions, the network obtained DICE co- 
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Figure 4.5: Results showing performance with various output map depths. 
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Figure 4.6: Results showing performance with various filter kernel sizes. e 

cients of 0.983 ± 0.005 and 0.988 ± 0.005 for transverse and longitudinal 

images respectively. It also obtained MHD values of 0.051 ± 0.018 mm and 

0.056±0.044 mm respectively. With the next set of filter dimensions of 11, 

10, 9, 9, 11, 12, very minor improvements of just 0.001 were observed in 

the DICE coe cient of longitudinal images, and a decrease in performance of 

0.006 mm in the MHD of transverse images. Thus considering the increase 

in computational time incurred, the previous filter dimensions were 

retained for the next set of experiments. For longitudinal images, corrected 

paired T-tests failed to show statistically significant di↵erence (p < 0.05). 

However for transverse images, using the larger two sets of filter 

dimensions showed statistically significant di↵erences (p < 0.05) in 

comparison to the smallest two sets of filter dimensions. 

The study by Srivastava et al. in [247] explores the question of whether very 

deep or very complex network configurations would benefit a particular 

application beyond a certain level of complexity. Indeed they acknowledge that 

deep networks can better represent certain function classes more e ciently 

than shallow ones, but that at the same time, training becomes more di cult as 

depth and complexity increases. Additionally, they show with the MNIST 

dataset example that the early layers are important for learning and reducing 

error, but that additional layers beyond a certain threshold seem to have close 

to no e↵ect on the final performance. 

The observations one derives from these experiments are in keeping with the 

observations of Srivastava et al., whereby it is shown that typically, the initial 

increments in network layer stacks, output maps or filter dimensions result in 
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significant gains in performance. However, these performance gains start to 

level out beyond certain network complexities, and indeed in some cases also 

start to degrade. Increasing the depth and complexity of deep networks is 

thought to allow the network to better learn non-linearities in the data and to 

better model the functions being learned. In the case of encoder-decoder 

structures which must ultimately produce a labelled output of equal 

dimensions to the input, one must however also consider the detrimental 

e↵ect of too many sub-sampling layers at the encoder side. Each subsequent 

pooling layer reduces and compromises the resolution in the matrices at the 

inner layers. Thus, it is also quite possible that if the central stacks reach very 

small dimensions (say 4x4 for instance), this would be too small for the 

decoder to recover meaningful structure during the decoding step. 

The charts in Figure 4.7 display the DICE coe cients obtained with the optimal 

network structure derived from the previous experiments, while on this 

occasion testing it on di↵erent sources of input data. Results are shown for 

using amplitude data, phase congruency maps, and finally a fusion of 

amplitudephase congruency data as a two channel input. One may note that 

while amplitude data on its own provides better results than phase 

information, the latter yields reasonable DICE coe cients which are in excess of 

0.95. Phase information has the advantage of being amplitude invariant, and 

thus theoretically provides consistent results regardless of user selected 

amplitude settings. The fusion of amplitude and phase information in turn 

yields the best results across both transverse and longitudinal images, with 

DICE coe cients reaching 0.981±0.006 and 0.989±0.005 respectively. A Holm-

Bonferroni corrected paired T-test showed statistically significant di↵erences 

(p < 0.05) between using fused inputs and either envelope or phase alone for 
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transverse images. The same was not the case for longitudinal images. A 

comparison was also made against the performance of other techniques from 

recent literature, described in [84; 72] and [73]. In these studies, only the 

performance on transverse im- 

 

Figure 4.7: Performance of envelope, phase congruency, and fused data on dice 

coe cients. 

ages was reported for the MAB segmentation, and therefore only this metric is 

included in the graph. One notes that deep FCNs applied to amplitude 

information alone yields comparable performance to that obtained by Ukwatta 

et al. in [84], but that its combination with phase information yields superior 

results. Figure 4.8 shows examples of the FCN generated contours (green) in 
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comparison to the average manually segmented contours from the expert 

(red). 

In the final set of experiments, the performance of the FCN network is 

compared with the three di↵erent input types, amplitude, phase, and fused 

input, while varying the level of gain being applied on the original RF dataset, 

prior to computing the envelope and PCM data. This means that the RF data 

was 

 

Figure 4.8: Examples of segmented Transverse images. Manual annotation is 

in red, while DCN segmentation is in green. 

subject to clipping at the ceiling and floor level values of 65,535 in a similar 

fashion to that in section 3.4.3. The gain was also similarly varied from a value 
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of 1 (unity gain) to a value of 50. The results are displayed in Figure 4.9. 

Initially, one may observe that with gain values of 1 across all three instances, 

the performance of the FCN network is similar to that reported earlier in 

Figure 4.7. As the gain is increased progressively, the performance of the 

envelope-based FCN starts to drop, until it levels out for DICE values in the 

region of 0.86 ± 0.006. The reason why the performance levels out is thought 

to be due to the fact that the data is completely saturated at this point, as shown 

in Figure 4.10. The network has no useful input data to process, other than a 

fully saturated matrix with values of 255. The network thus produces a 

response which is the result of convolving its various filters with a uniformly 

equal input matrix. This is in keeping with the fact that the last three gain levels 

produce nearly identical segmentation performances. The final performance 

of the FCN network on envelope data might lead one to also think that 

networks are inherently more resilient to changes in gain, in comparison to the 

k-means and Active Contours methods reported in Chapter 3. The latter 

su↵ered a DICE degradation of over 20% at a gain of 20, whereas the FCN 

dropped down by only 10%. However, it is also true that the network’s output 

at gain levels of 20 and upwards start becoming nonsensical, since it is the 

network’s ’blind’ response to a uniform input. The relatively high DICE 

performance of 88% at that point is merely a coincidental byproduct of the 

network’s response having some degree of overlap with the ground truth. The 

performances at these gain levels must be treated with caution. 

The result for the envelope + PCM fused input data also decreased with 

increased gain. A possible reason for this is that the saturated envelope data 

would still have some detrimental e↵ect on the network’s ability to correctly 

interpret the input information, as the latter is trained to consider both data 
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sources and not to ignore the envelope in favour of the phase data. It is 

however noted that this network displays an improved performance of 

approximately 2% in DICE over the envelope-only FCN – an improvement 

which is attributed to the presence of phase information. Lastly, the 

performance of the PCM-only FCN retained an approximately level 

performance throughout. Its initial performance was inferior to both that of 

the envelope and fused data, in keeping with previous results. However, 

changes in gain did not significantly degrade the PCM image, such that the FCN 

was able to retain a significantly improved performance over the other input 

types towards the end. Additionally, Holm-Bonferroni corrected T-tests 

showed statistically significant di↵erences between corresponding 

performances across the three methods (p < 0.05), 
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Figure 4.9: Performance of envelope, phase congruency, and fused data when 

gain of input data is varied from 1 to 50. 

 

Figure 4.10: [Left] B-mode image with gain of 5; [Middle] Gain of 20; [Right] 

Gain of 50. 

except for individual envelope only and phase only inputs at a gain of 1. 

4.4 Conclusion 

This Chapter has proposed the novel use of a Deep FCN, configured in an 

encoder-decoder structure, as a tool for semantic segmentation of the 

MediaAdventitia Boundary in transverse and longitudinal carotid images. It 

has explored the e↵ects of variation of parameters governing the size and 

structure of the network on segmentation performance. It has also 

demonstrated that the FCN achieves performance which meets the (then) 

state-of-the-art in MAB delineation when using amplitude data, and also that 

it exceeds the state-of-the-art when a novel input-level fusion of amplitude and 

phase information is used. Finally, it has demonstrated that phase information 

provides an amplitude invariant source of data which allows the FCN to behave 

consistently, regardless of variations in user gain settings. A recognised 

limitation of the study was the size of the dataset available to train the 
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network. The next chapter will study the e↵ects of using an improved network 

architecture based on U-NETS, together with the proposed use of a novel, 

modified objective cost function which applies geometric constraints to the 

problem. Additionally the semantic segmentation is carried out using 

amplitude and phase information to segment directly both the Media-

Adventitia boundary and the Lumen-Intima boundary at one go, thus achieving 

a direct, fully automated segmentation method for the vessel wall. 
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5 

Geometrically Constrained Deep 

Convolutional Networks 

 

5.1 Introduction 

In Chapter 4, we have proposed the novel application of a Deep FCN with an 

encoder-decoder (U-shape) structure to carotid ultrasound images, and 

explored the various sizes and configurations which yield the best 

performance when segmenting the Media-Adventitia Boundary. We have also 

proposed a novel, input-level fusion strategy of a combination of amplitude 

and phase information, and showed that this yields improved performance 

over that of using amplitude or phase alone. 

Now, in order for complete measurement of vessel geometry to take place be 

it for later three dimensional reconstruction of the artery or for further 

assessment of plaque burden using metrics such as Total Plaque Volume (TPV) 

or Vessel Wall Volume (VWV) – both wall interfaces need to be identified: the 

Media-Adventitia boundary and the Lumen-Intima boundary [84]. Both these 
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interfaces need to be delineated in a robust and reproducible manner, and 

manual methods have been shown to be tedious, labour intensive [84], and 

prone to variability [139]. 

5.1.1 Aims 

The aims of this chapter are to propose a novel, deep convolutional U-NET, 

including skip connections, as a fully automated segmentation tool, this time 

applying it to segment both the Media-Adventitia boundary and the 

LumenIntima boundary. The novelty lies in the use of a newly proposed, 

geometrically constrained objective function, which integrates a priori 

information as part of the network’s Stochastic Gradient Descent optimisation. 

This allows the optimisation to be tuned on the basis of the anatomical 

structure of the carotid.The segmentation performance of the new network on 

transverse sections of the carotid is examined, but tests are now carried out on 

a larger base dataset, augmented to 97,200 images. The results are compared 

to other studies by reporting the DICE coe cient of similarity, modified 

Hausdor↵ Distance, sensitivity and specificity. 

Novelty Statement: At the time of publication (2019), the novelty of this 

chapter’s work was the creation of a geometrically constrained objective 

function for a deep U-Net used to segment carotid arteries. 

5.2 Methodology 

5.2.1 U-NET Networks 

U-NETs have been proposed by Ronneberger et al. in [205]. They derive their 

name from the ‘U-shaped’ structure that they implement, which is very similar 
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to that of encoder-decoder based, deep FCNs used by Wang et al. in [204] at 

around the same period. In similar fashion, the main idea behind U-NETs is to 

implement a contracting network, which captures the semantic or contextual 

information from the image, followed by a symmetric expanding network to 

recover spatial information and increase the resolution of the output back to 

full scale. 

However, in order to improve the localisation performance during 

classification, high resolution features from the contracting path are combined 

with the upsampling path during expansion. These are referred to as ‘skip 

connections’, and their role ensures that features that are learnt during the 

downsampling process are also reused during the upsampling process, thus 

combining precise localisation information with contextual information from 

the contracting path. A successive convolution layer is applied right after the 

concatenation from the skip connection, in order to assemble a combined 

output from both inputs. This structure is illustrated in Figure 5.1, whereby 

Ronneberger et al. [205] proposed a 4-stack contracting path followed by a 4-

stack expanding path, with a further 2 layers of convolutions or upwards 

convolutions at each stack. On the contracting side, the convolutions used 3x3 

filter kernels with RELU activation, followed by 2x2 max pooling layers. On the 

expanding side, the upwards convolutions used 2x2 filter kernels, whereas the 

convolutions used for concatenating the skip connections also used 3x3 filter 

kernels. 
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Figure 5.1: A U-NET architecture example, where blue boxes represent 

multichannel feature maps and white boxes represent copied feature maps. 

Reproduced from with permission from [205]. 

Dropout layers 

Feedforward neural networks adapt the weights on the incoming connections 

of non-linear hidden units, between their inputs and outputs. By adapting 

these weights, the network is able to learn feature detectors that allow it to 

predict the correct output when a certain input vector is provided [248]. Now, 

if the relationship between input and output is complex, yet the network has 

enough hidden units to model this complexity correctly, it is likely that there 

would exist a di↵erent set of weights for the hidden units that the network can 

learn, which would produce exactly the same answer. This happens 

particularly if there is only a limited training datase t[248]. It is also certain 
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that each of these di↵erent possible weight vectors will produce completely 

di↵erent predictions on a hold-out test dataset, and will produce a worse 

performance on the test dataset when compared to the training dataset. 

Hinton et al. proposed in their work in [248], that in order to reduce such 

overfitting, a ‘dropout’ scheme could be introduced in order to prevent 

complex co-adaptations of the hidden nodes on the training data. This is 

implemented in a manner whereby, during each training iteration, hidden 

units are randomly omitted from the network with a probability of 0.5, such 

that any particular hidden unit is forced not to rely on others being present. 

This process may be seen as an e cient version of ’averaging’ neural network 

models, since the error on the test set may also be reduced by averaging the 

predictions produced by a large number of di↵erent networks which have 

been trained separately. The latter process is of course impractical however, 

and computationally expensive during both training and testing. Thus, random 

dropout would make it possible to train a large number of di↵erent networks 

in a reasonable amount of time. Hinton et al. show in their work that dropout 

achieves improved error rates on a number of benchmark test sets [248]. 

Application of U-NETs 

The U-NET network was constructed using an in-built function available to 

MATLAB, which is called createUnet, allowing the user to define a deep 

network with U-NET Architecture. The U-NET structure constructed was 

smaller than that defined by Ronneberger et al. in [205]. It was kept largely 

similar in terms of structure to the network which was finally retained in 

Chapter 4 – since it was shown here that these structural parameters proved 



Chapter 5 Geometrically Constrained DCNs 

185 

optimal for the type of segmentation being carried out. Thus, as shown in 

Figure 5.2 and 

5.3, a total of 6 stacks were used, with 3 on the encoder side and 3 on the 

 

Figure 5.2: A graphical representation of the U-NET architecutre. The colour of 

the boxes represents the layer type. The number of channels at each layer is 

given below each box. Reproduced with permission from [92]. Copyright 2020, 

IEEE. 

decoder side. The decoder was built using stacks of convolutional transpose 

layers with a stride of 2, and convolutional layers for concatenation. 

The segmentation task attempted this time was a pixel-by-pixel classification 

problem to categorise each pixel into one of three classes, which are namely, 

1) background pixels falling outside the MA contour; 2) pixels falling in 

between the MA and LI contours, and therefore falling within the vessel walls 

which may potentially harbour collection of plaque; and 3) pixels falling within 

the LI contour, and which therefore constitute pixels representing the lumen 
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of the artery and the blood flowing through. This is in contrast to the 

segmentation task described in Chapter 4, where the network was designed to 

segment pixels only in two classes: those outside the MA contour and those 

within the MA contour. Thus, at the end of this network, the number of output 

maps were reduced to three and not two, and fed into a softmax classifier, 

which provided logistic regression for a three-class problem. Additionally, two 

skip connections were included, joining the final convolutional blocks of the 

encoder’s first and second layer, to concatenation layers at the respective end 

in the decoder, in order to leverage both high- and low-level features. Drop out 

layers were included after the second convolutional block of each encoder 

layer. 

5.2.2 Geometrically Constrained Cost Functions 

Theory 

This section focuses on the objective cost functions being used on the output 

side of the U-NET, in order to calculate the loss for stochastic gradient descent. 

All previous experiments carried out in Chapter 4 used the standard, built-in, 

multi-class logistic regression function to calculate the loss on each iteration. 

In this section, a novel modification is proposed, which includes a priori 

information on the carotid anatomy, in the form of geometric constraints, in 

order to tune the cost function to the type of data that is being segmented. 

If we assume that we have a training set of m training examples, defined as 

{(x(1),y(1)),...,(x(m),y(m))}, then in a simplistic network carrying out a linear 

regression, the objective function would be the sum of di↵erences between the 
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predicted output h✓,b(xk) and the ground truth labels yk, over all di↵erent 

training examples k = 1,2,3...m. This would be expressed as: 

  (5.1) 

where the output h(x) is the result of a feedforward operation carried out 
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Figure 5.3: A MATLAB reproduction of the U-NET structure using the 

’analyzenetwork’ function. 
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through the network with training parameters ✓ and b. In a pixel-wise 

classification problem on the other hand, we perform a multi-class logistic 

regression to classify each pixel to a category. Thus, at the output of the 

decoder, the final convolution layer is connected to a softmax layer, which 

classifies each pixel into one of three categories: the background pixels outside 

the MAB, pixels between the MAB and LIB and pixels within the LIB. If we 

assume that zi,jc is an output neuron’s activity computed for channel c at 

position (i,j), then the output of the softmax layer is given by: 

  (5.2) 

where N is the number of classes. To compute the loss, we considered and 

compared two basic loss functions: the class-weighted cross entropy loss (CE) 

and the class-weighted generalised DICE loss (GDL). Another recent loss 

function applied to medical imaging is that of using Boundary loss [249]. 

However, this is intended for problems with highly unbalanced classes, where 

the foreground class is of several orders of magnitude smaller than the 

background classes. In this case, the classes were not unbalanced to this extent, 

and therefore the author opted to test with the standard loss functions 

described. The prediction scores P and training targets T are organised as 3D 

matrices, with the first 2 dimensions x and y representing spatial location in 

the image, and the third dimension n representing the class. The weighted 

cross entropy function for a multi-class problem is then defined as: 

 ) (5.3) 
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where m is the number of training examples, N is the number of classes and w 

is a vector of weights for each class. The weighted generalised DICE loss 

function for a multi-class problem is defined as: 

  (5.4) 

where F is the number of pixel elements along the first two dimensions (x and 

y) in the matrices P and T, N is the number of classes along the third dimension, 

and wn is the class specific weighting factor that controls the contribution that 

each class will make to the loss. Specifically, it is typically the inverse area of 

the expected region, defined as: 

  (5.5) 

In order to tune these objective functions and make them more sensitive to the 

anatomy of the structures that are being segmented, a modification is 

proposed to the objective functions being tested, by adding three additional 

cost terms, which are defined as follows: 

Curvature. 

The radius of curvature at any point on a curve is equal to the radius of the 

circular arc which best approximates the curve at the said point, as shown in 

Figure 5.4. It is also defined as the inverse of curvature, and is expressed 

mathematically as follows: 

  (5.6) 
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where  is the curvature at a point. If we let the contour of the artery, from 

which these penalty terms are going to be derived, be expressed in the form of 

a curve in two dimensions as u = f(v), then the curvature term  itself may also 

be expressed as [250]: 

  (5.7) 

The penalty term proposed from the above measure of curvature  is defined 

as follows: 

 
 C(u) = max⇣| | ✏,0⌘ (5.8) 

The absolute value of  is used because one may ignore the sign of the value, 

which is indicative of the direction of curvature, and which is not important for 

computation of the penalty term. The mean is taken across all the values of  

worked out on the whole contour. If the contour is largely smooth and without 

notches, this would generally yield similarly small values of  all throughout 

the curve. Taking the examples shown in Figure 5.4 for instance, in the left 

panel, is a perfect circle of radius 50 pixels. The osculating circle, which would 

best approximates the curve at any point in this case, is the same circle of 

radius 50 pixels. Thus the curvature  at all points is 0.02. In the middle panel 

of Figure 5.4 is a more realistic example of how an artery would be manually 

delineated by the expert, and where the contour is largely circular and smooth, 

but has small ‘imperfections’ resulting from the imperfectly traced contour. 

The mean value of | | over all points in this case is larger than in the first case, 

but would still be below a certain threshold. 
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A threshold value ✏ is therefore subtracted, because one may ignore 

curvature values below this value as simple ‘noise’ created by the imperfect 

manual delineation process. The right panel of Figure 5.4, shows pronounced 

notches 

 

Figure 5.4: [Left] A graphical representation of Curvature CA in a perfect circle 

where  is equal to the inverse of the radius of circle CA. [Middle] The penalty 

at CB > CA because the radius of the osculating circle CB at various points on the 

imperfect contour is smaller than that of CA. [Right] Curvature CC is of opposite 

sign to that of CD due to opposite direction of deformation. 

marked by CC and CD. These would give significantly larger values of  of 

opposing polarity, which would be picked up and penalised by equation 5.8. A 

zoomed in and more realistic example is shown in Figure 5.5. The left panel 

shows a section of contour produced by the network, whereby jagged edges 

may be observed within the blue circle which however follow a regular path. 

These 

 

produce low values of curvature | |. Following subtraction by ✏, which yields 

a negative value, the max function of equation 5.8 outputs a 0 value to ensure 
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no penalty in this case. The right panel in Figure 5.5 shows an irregular notch 

demarcated by the green circle, which would be anatomically inconsistent 

with the structure of the Media-Adventitia contour. Such an irregular notch 

would 

 

elevate the value of | | which exceed ✏ and thus count towards the penalty. 

Solidity 

If we consider the example shown in the left panel of Figure 5.6, one may 

observe an instance where, although the contour presents an irregularity 

which 

 

Figure 5.5: [Left] A section of contour produced by the DNN on the MAB outer 

border, showing jagged edges (blue circle). [Right] A section of contour 

produced by the DNN with an incorrect, irregular notch (green circle). 

would anatomically not be possible, the curvature penalty alone would not 

impart any significant e↵ect on the overall cost function. This is due to the fact 

that the irregularity fits osculating circles with a fairly large radius, and which 
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either fall below the threshold, ✏, or else would still not result in a large 

penalty. Thus a second penalty is proposed, which measures the Solidity of a 

contour. Solidity is a measure of morphological roughness and is sensitive to 

concavities in a shape or structure. It compares the pixel area of the object (CA 

in Figure 5.6, right side) to the area of a bounding reference shape (CB in Figure 

5.6, right side), which in this case would be the convex hull. Mathematically 

therefore, it may be expressed as: 

  (5.9) 

where A(u) is the area of the object and Ac(u) is the convex area of the shape in 

question. A solidity of 1 would indicate a perfectly solid shape with an area 

which is equal to its convex area. An irregular shape with concavities 

 

Figure 5.6: [Left] A graphical representation of a contour irregularity with an 

example osculating circle. [Right] A graphical representation of the Convex 

hull CB, shown in red, around the irregular contour CA. The di↵erence in area 



Chapter 5 Geometrically Constrained DCNs 

195 

shown by the shaded section, between CB and CA is used to calculate the 

measure of Solidity. 

would present with a solidity which is < 1 due to the area being smaller than 

the convex area. With regards to defining a penalty term, the MediaAdventitia 

boundary of the carotid is expected to be smoothly circular, without any 

irregular concavities within the perimeter. Thus one would seek to penalise 

the objective function in instances where the solidity of the segmented mask 

would again deviate significantly from 1, as would be the case in Figure 5.6. 

The cost term proposed is therefore: 

 1 (5.10) 

where the inverse of SLD is used to have an increasing term in proportion to 

increased concavities in the shape. 

 

Figure 5.7: A graphical representation of incorrect intersection between the 

MA outer boundary and LI inner boundary. 
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Intersection 

The third penalty term introduced to the objective cost function is a term 

which penalises the instances whereby the Lumen-Intima boundary would not 

be contained within the Media-Adventitia boundary, as is shown in Figure 5.7. 

This is again a circumstance which may not anatomically occur, and therefore 

its occurrence is penalised heavily to reduce the possibility of the neural 

network from converging to such a result. Referring to Figure 5.7, if we 

consider the MAB to be defined as contour C1, the LIB to be defined as contour 

C2, and their joint intersection as contour C1 \ C2, it easily follows that any 

occurrence whereby AreaC2 
=6 AreaC1\C2 should be penalised. The proposed 

penalty term is therefore defined as: 

  (5.11) 

where the denominator is used to normalise summation of pixels outside C1. 

The overall new modified objective cost function, EM, may therefore now be 

represented in the following manner: 

 EM = L(xk) + ⇡C(v) + S(v) + I(v) (5.12) 

where the coe cients ⇡, and are scaling coe cients multiplied by the penalty 

terms C(v), S(v) and I(v) respectively, in order to scale them to a suitable 

magnitude. 

Application of Geometric Penalty Terms to Objective Function 

The geometric penalty terms were implemented in MATLAB using functions 

which were incorporated into the final layer of the U-NET. The block diagram 
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shown in Figure 5.8 shows the change in training from the traditional 

networks shown in Chapter 4. The curvature penalty term was computed 

using the MATLAB function LineCurvature2D, written by Kroon et. al [238], 

which returns the curvature value  at all points on a contour defined by a 2D 

vector of points. The value of ✏ was set by first computing the average 

curvature  across all points of the manually traced MA contours, and 

subsequently an average was obtained over all such manually traced contours 

available in the labelled dataset. This yielded an average  = 0.34, and thus ✏ 

was set to 0.5. 

For the Solidity penalty term, this was obtained using the built in MATLAB 

function called regionprops, and computed by taking the inverse and 

subtracting 1. For the Intersection penalty term, the area of the intersection 

AreaC1\C2 was found by first obtaining the contour of said intersection using the 

built-in MATLAB function polybool, and then calculating the area within using 

the built-in function polyarea. The same function was also used to calculate the 

area of the LI contour. With these areas available, the intersection penalty was 

calculated as per equation 5.11 
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Figure 5.8: A block diagram showing the pipeline of training using Deep Neural 

Networks and Geometric Constraints. 

The final intent of a modified objective cost function as described in equation 

5.12, is to firstly require the network to train further if the cost function results 

in greater, penalised values. Additionally, it must also feed back through the 

backpropagation algorithm, a set node errors observed at the output, such that 

the network may direct correction e↵orts towards the right filter map nodes 

further in. An approach to feeding back the node errors at the output was 

implemented, whereby the penalty coe cients may be applied locally, and thus 

spatially, to nodes corresponding to irregular pixel positions. 

The U-NET trains on data in sub-batches of frames, given that optimisation is 

based on batched stochastic gradient descent. The local application of penalty 

coe cients is however applied separately on a frame by frame basis. For a 

particular frame therefore, the penalties based on Curvature, Solidity and 
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Intersection were first computed as described previously. After this, the 2D 

vector of points representing the convex hull in place around the segmented 

 

Figure 5.9: [Left] A graphical representation of an irregular contour on the MA 

boundary, and of the convex hull around this contour shown in red. [RIGHT] 

The subtraction of the irregular contour from the convex hull leaves the area 

shaded in black stripes, which is used to locally apply the penalties around 

these regions. 

contour was taken. During training, the network produces at each iteration its 

best attempt at segmenting the MA and LI contours, and the convex hulls 

around these contours were obtained using the regionprops MATLAB function 

described earlier. An example with both positive (outward) and negative 

(inward) contour irregularities is shown in the left panel of Figure 5.9. The 

convex hull is the bounding contour shown in red, which contains the object 

contour, inclusive of any irregularities that may be present. 
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The area within the convex hull was then filled with ’1’s using the MATLAB 

function imfill, and from this the original object contour was subtracted, which 

was also filled with ’1’s within the contour. What was left was thus a mask of 

the di↵erence between these two subtractions, as shown in right panel of 

Figure 

5.9 through the shaded section. This process was repeated for both the MA 

contour and the LI contour, resulting in a 120 x 120 penalty matrix, containing 

’1’s at the shaded region and ’0’s elsewhere. Then the three penalties, each 

multiplied by their own coe cient described in equation 5.12, were summed 

together, and the resulting value was multiplied against the penalty matrix. In 

case of the LI contour, the penalty based on solidity was relaxed, since the LI 

contour should be allowed to have concavities in it, as these may signify the 

presence of plaque which should not be corrected. The sharp protrusions best 

picked up by the curvature penalty, or intersection with the MA contour, are 

however not anatomically possible even in the LI contour, and thus these were 

included for penalisation at the same coe cient values. 

The penalty matrix was then applied to the network as follows. During the 

feedforward step, the network computes the final Loss value based on the 

standard objective cost functions used. When testing the standard, unmodified 

loss functions, both Weighted Cross Entropy Loss and Generalised Dice Loss 

functions were used and tested as cost functions. Their performance was 

evaluated in the results and discussion. However for the inclusion of the 

geometric constraints, all the non-zero pixel values in the penalty matrix were 

summed, and added to the loss value produced by the standard loss function. 

Conversely, during the backpropagation step, the penalty matrix was added, 

on a pixel-by-pixel basis, to the matrix of delta node errors produced by the 
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network. The matrix of delta node errors, is a 120 x 120 matrix holding an 

error value, , for each node, which represents how mistaken each node was in 

producing the correct result. The addition of the penalty matrix thus 

‘amplified’ the error deltas for nodes which were spatially located around or 

inside the irregularities of the contour. This in turn steepens the gradient at 

which the coe cients of these nodes are updated into more suitable values. 

 

Figure 5.10: [Left] A perfectly circular contour (red), with a smaller degree of 

overlap with ground truth contour (black). [Right] An contour with an 

anatomically impossible notch (red) with a higher degree of overlap with 

ground truth 

(black) will ultimately score better using DICE coe cients 

The choice of coe cient values, ⇡, and multiplied agains the penalty terms in 

equation 5.12 is discussed in this section rather than through a detailed 

experimental analysis in the results and discussion. The values for these 

coefficients were chosen heuristically, since such hyperparameters are very di 

cult to tune to perfectly optimal values, and also have e↵ects which may be di 



Chapter 5 Geometrically Constrained DCNs 

202 

cult to qualitatively, or indeed quantitatively, observe. There could be 

instances where a contour, which visually appears notch-free and reasonably 

smooth, would have an inferior DICE coe cient to a contour which may be 

slightly larger, has a notch defect, but ultimately overlaps on more pixels than 

the previous contour would. An example is shown in Figure 5.10. Such 

situations stem from the limitations of performance metrics like DICE coe 

cient, which although give a good indication of performance, are not perfect. 

From an experimental point of view, a detailed grid search with the full dataset 

to determine the optimal scaling coe cients was not considered feasible, since 

even testing just 4 di↵erent values for each coe cient would necessitate 4 x 4 x 

4 x 18 cross fold iterations, resulting in 1,152 training runs. With 

approximately 97,000 images, and each epoch taking just under 7 hours each, 

a single training run of around 20 epochs would require an average of 6 days 

to finally arrive at a result. Thus, a heuristic approach was deemed as a 

necessary compromise in this case, and the authors acknowledge that the 

absolutely optimal values may yet lie undiscovered. By using MATLAB’s 

debugging function, the author manually observed what typical loss values and 

corresponding penalties are produced by the network through the initial and 

later stages of training. The values ⇡, and were kept equal, and set such that 

the amount of penalty added during an iteration would approximate 30% of 

the full loss value when the network is still considerably o↵ from producing a 

realistic contour. The compromise is to set the penalties at values not too high 

that they cause the network not to converge at all, but not too low that they 

leave no e↵ect on the result. After testing a set of coe cient values across 

smaller sample datasets, randomly chosen from the available full datasets, we 
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chose a value of 5e 7 as a coe cient value which produced a large number of 

positively improved results. 

5.2.3 Experiment Construction 

Given the size of the dataset available, the data was first augmented using the 

following strategy. The transverse image sets, as well as the corresponding 

labelled datasets, were first scaled twice by a factor of 1.2 and 1.5. The scaled 

images were then cropped back to their original dimension. Each image, 

having dimensions of 256 x 256 pixels was then patch-wise sampled 9 times 

along an equally spread 3x3 grid centred about the middle, using a 120 x 120 

pixel window with a constant overlap between each region. Finally, the images 

were rotated through 90, 180 and 270 degrees. All the additionally generated 

image sets and corresponding labels were concatenated into separate 

augmented dataset-pairs. From a dataset of 18 di↵erent patients, originally 

having a total of 50 images each, the dataset was augmented to a total of 97,200 

images 

A number of schemes were then employed in order to prevent over-fitting and 

in order to ensure validity of the results. Firstly, during the training of the 

neural network, a basic early-stopping technique described by Prechelt in 

[251] was implemented in order to account for over-fitting. In accordance with 

the technique described by Prechelt, the dataset was split into two sub-

datasets: a training dataset and a validation dataset. This split was 

implemented in a ratio of 66% training data and 33% validation data. Training 

took place only on the training set, and the error was evaluated on the 

validation set after each epoch. Once the training is stopped, the weights that 

the network had in the previous training run are used. In these experiments, 
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training was carried out using stochastic gradient descent, with batches of 8 

ultrasound images, a learning rate ⇡ of 1⇥10 2 which decreased by a factor of 

10 every 5 epochs, a momentum of 0.90 and a weight decay of 1⇥10 4. The 

weights and bias terms were randomly initialised. The early stopping was 

applied after 20 epochs. 

An 18-fold leave-one-out cross validation scheme was also utilised to have 

some assurances on the validity of the results. The data available from the 

acquisitions was split at patient-scan level during each iteration into two 

categories: training + validation datasets (described earlier for the early 

stopping technique) and testing datasets. The training + validation datasets 

were created by concatenating the various ultrasound images obtained from 

di↵erent patient scans, and then randomising their sequence. The testing 

dataset in each iteration was then always made up of a hold-out set of 

ultrasound images from a particular patient scan, which were not present in 

the training set. 

Two experiments were carried out to assess the performance of the network. 

Firstly, an ablation study was run across the di↵erent sources of input 

available, namely: amplitude data, phase congruency maps, and a fusion at 

input-level of both. This serves to evaluate the di↵erence in performance when 

using the fused amplitude and phase data while the network is segmenting 

both the MAB and LIB contours. The previous work in Chapter 4 carried out a 

similar ablation study, but on MAB contours only, with a much smaller dataset, 

and with a regular end-to-end CNN network. A second ablation study was 

carried out to test the performance with and without the additional geometric 

constraints applied to both the basic Cross Entropy and Generalised Dice Loss 
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objective functions. 18-Cross fold validation exercises on a hold out test set 

were run in both experiments. Furthermore, a third experiment was carried 

out to compare performance across the techniques developed in Chapters 3, 4 

and this chapter. Since the PCM based segmentation with active contours 

developed in Chapter 3 was developed to segment only the MAB, the 

comparison was limited to testing this contour. Thus, the latter technique was 

compared against the traditional CNN (without geometric constraints) of 

Chapter 4, and with the U-NET with constraints proposed in this chapter. 

The U-NET was built using the MATLAB Deep Learning toolbox and trained on 

an Intel Core i7 with a Radeon Pro 560 GPU. At the time of writing of this 

dissertation, a previously available computer, with an NVIDIA CUDA enabled 

Geforce GPU was no longer available. Thus, training was carried out using 

multi-core CPU parallel processing, but without harnessing the facilities of the 

GPU. The segmentation results obtained from the U-NET were compared 

against a manually labelled ground truth dataset, which was manually and 

independently traced under the supervision of 2 radiographers, and used as 

labelled training data. Each radiographer manually traced samples from the 

dataset and supervised the manual delineation of the rest. The process was 

repeated twice, with a period of 2 weeks in between sessions and an average 

across both labelling sessions was retained as the final ground truth. 

5.2.4 Performance Metrics 

A number of evaluation metrics were used in order to quantify the 

performance of the U-NET, and in order to allow comparison against other 

methods in the literature. The performance metrics used are the same as the 
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ones used in Chapters 3 and 4, but for convenience’s sake only, these are listed 

down again here with a simple definition of each. 

DICE Similarity. The similarity between the segmented result and the ground 

truth is computed using the Dice Coe cient of Similarity. This gauges the degree 

of overlap between two boundaries. 

Modified Hausdor⇡ Distance. The Hausdor↵ Distance is a measure of distance 

between two point sets. It provides the largest mismatched points between 

two boundaries. The Modified Hausdor↵ distance (MHD) [246] on the other 

hand finds the mean distance between two boundaries. 

Sensitivity. The Sensitivity term is defined as the ability of a method or test to 

correctly classify a sample as being diseased [244], or in other words, the 

probability of a test being positive when the disease is indeed present. 

Specificity. The Specificity term, is defined as the ability of a method or test to 

correctly classify a sample as being free from disease [244], or in other words, 

the probability of a test being negative when the disease is indeed absent. 

5.3 Results and Discussion 

As a novel application over the previous work in Chapter 4, the network was 

trained to identify the contours of both the Media-Adventitia boundary as well 

as the Lumen-Intima boundary contemporarily. Thus, the segmentation 

performance was quantified individually for these two boundaries and 

reported in the results. The rationale behind this is because the problem of 

segmenting these two boundaries poses di↵erent levels of challenge for the 

network. The Media-Adventitia boundary normally presents itself as an 
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approximately circular structure with well-defined contours as evidenced by 

two examples shown in Figure 5.7 [LEFT]. The Lumen-Intima boundary on the 

other hand is prone to having an irregular shape, partly because of the plaque 

which may be sited between the walls of the Intima, and partly because the 

walls of the Intima might not have clearly defined contours and poor contrast. 

Table 5.1: Averaged results with standard deviation for testing DICE coe cient, MHD, 

Sensitivity (Sens) and Specificity (Spec) on di↵erent inputs, using weighted cross entropy loss, 

on [18]-fold Leave-one-out cross validation on the hold-out test datasets 

 ± ± ± ± ± ± ± ± 

U-NET is used with the following: (A): Amplitude; (P): Phase Congruency; (A/P): Amplitude 

and Phase Congruency; (CE): Weighted cross entropy loss. 

Table 5.1 presents the averaged performance metrics for the unmodified (no 

geometric constraints) network when trained with amplitude data alone, 

phase congruency maps alone, and lastly, with the fusion of amplitude and 

phase congruency maps supplied as a 2-channel input. The basis loss function 

used 

Table 5.2: Averaged results with standard deviation for testing DICE coe cient, MHD, 

Sensitivity (Sens) and Specificity (Spec) with di↵erent loss functions, across [18]-fold 

Leaveone-out cross validation on the hold-out test datasets 

Metric MAB DICE MAB MHD LIB DICE LIB MHD MAB Sens MAB Spec LIB Sens LIB Spec 

  in mm  in mm     

Method    

UNET+A+CE .880 ± .031 5.020 ± .263 .869 ± .085 5.778 ± .245 .863 ± .051 .894 ± .016 .889 ± .079 .907 ± .044 

UNET+P+CE .832 ± .069 6.038 ± .821 .794 ± .083 7.120 ± .150 .855 ± .066 .859 ± .073 .866 ± .035 .876 ± .084 
UNET+A/P+CE .936 .033 .215 .090 .901 .045 .349 .157 .939 .037 .953 .036 .936 .046 .960 .047 
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 ± ± ± ± ± ± ± ± 

U-NET is used with the following: (CE): Weighted Cross Entropy Loss; (GDL): Weighted 

Generalised Dice Loss; (GC): Geometric Constraints 

in this experiment is the weighted cross-entropy loss function. The results 

obtained show that the inclusion of both amplitude and phase information 

improve the DICE performance by approximately 4% and 10% over amplitude 

alone and phase alone respectively for the MAB, and 3% and 10% respectively 

for the LIB. A Holm-Bonferroni corrected paired sample T-test showed that for 

both MAB and LIB DICE, the di↵erences between averages were statistically 

significant for all three methods (p < 0.05). Improvements are also noted in the 

MHD, sensitivity and specificity, when the fused data is used. The performance 

di↵erence of the MHD is however noted to be larger than one order of 

magnitude when comparing the fused input to the individual inputs. The 

reason for this is that at lower values of DICE coe cients, the segmented output 

of the network is often consistently irregular in shape. This results in markedly 

elevated values of MHD, despite it being designed to mitigate such e↵ects over 

the regular Hausdor↵ distance. 

Table 5.2 and Figures 5.11 and 5.12, present the averaged performance 

metrics quantified for training the U-NET with di↵erent loss functions and 

with or without the geometric constraints. We observe initially that in 

agreement with the noted di culty of the segmentation task, the performance 

Metric MAB DICE MAB MHD LIB DICE LIB MHD MAB Sens MAB Spec LIB Sens LIB Spec 

  in mm  in mm     

Method      

UNET+CE .936 ± .033 .215 ± .090 .901 ± .045 .349 ± .157 .939 ± .037 .953 ± .036 .936 ± .046 .960 ± .047 
UNET+GDL .941 ± .037 .210 ± .071 .902 ± .060 .341 ± .152 .933 ± .041 .952 ± .039 .932 ± .049 .958 ± .040 

UNET+CE+GC .955 ± .040 .208 ± .072 .917 ± .051 .284 ± .182 .950 ± .050 .968 ± .014 .934 ± .043 .973 ± .052 
UNET+GDL+GC .959 .029 .200 .071 .920 .044 .270 .189 .949 .036 .973 .036 .938 .039 .965 .040 
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of the network in delineating the MAB is consistently higher than the 

performance for delineating the LIB across all methods. The average DICE coe 

cient for the MAB is between 2.7% to 4.0% higher for the various training 

methods. Correspondingly, the average MHD is noted to be 0.07mm to 0.13mm 

lower in the MAB than the LIB, for the various methods. 

Furthermore, when observing the performance of the network when using 

different loss functions, one notes that the weighted GDL slightly outperforms 

the weighted CE function across DICE and MHD metrics. The GDL however 

underperforms slightly on specificity of the MAB, and both sensitivity and 

specificity of the LIB. With the addition of geometric constraints to both loss 

functions, one notes that the average DICE coe cients for MAB and LIB 

respectively improve by approximately 2% for the MAB and the LIB. This 

performance increase of 2 %, despite being moderate, is of comparable 

magnitude to other studies such as Zhou et al. in 2019 [88] who experiment 

with modified CNNs and U-Nets and register performance increases of 0.5% to 

3.3%, and Oktay et al. in 2017 [252] who experiment with anatomically 

constrained networks and register performance increases of 1.2 to 3.1%. 

Paired sample T-tests carried out for both MAB and LIB DICE, showed that the 

addition of geometric constraints respectively to CE and GDL functions yielded 

statistically significant di↵erences (p < 0.05). Conversely, paired sample T-

tests carried out between CE and GDL functions, both with and without 

geometric constraints, did not yield statistically significant di↵erences (p > 

0.05). The addition of geometric constraints also provides improvements to 

the average MHD coe cients for both MAB and LIB by approximately 0.010 to 
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0.070 mm respectively. The overall best performing combination is that of 

training with 

 

Figure 5.11: Perfomance metrics, DICE and MHD, from Table 5.2 
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Figure 5.12: Perfomance metrics, Sensitivity and Specificity, from Table 5.2 

GDL and geometric constraints as opposed to training with CE and geometric 

constraints. The slight improvement is potentially due to the performance 

metric and loss function being both based on the same DICE coe cient, thus 

inherently biasing the result in this direction. 

The results noted in Table 5.2 provide further comparative analyses with 

additional performance metrics of Sensitivity and Specificity. Here a general 

improvement is noted in average performance across sensitivity and 

specificity when adding the geometric constrains to both loss functions. One 

notes however that performances between CE and GDL with the additions of 

the constraints perform very similarly, with both techniques outperforming 

the other in di↵erent instances. 
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The images in Figure 5.13 show a qualitative result on some examples, 

comparing the outputs of the ground truth with that of the U-NET with GDL 

loss function and U-Net with GDL and geometric constraints. The results 

obtained exhibit a DICE similarity of between 93 - 95 % in case of the MAB and 

88 to 91% in case of the LIB, in relation to the manual labelling. Although these 

are high values, they are prone to show imperfections in the segmentation 

process, particularly around the border of the MAB. In the first and second 

column, we may observe two instances where the U-NET with geometric 

constrains achieves an improved, ‘fuller’ result and without ‘notches’ in the LIB 

areas, in similar fashion to the ground truth. This is in contrast to the method 

without constraints, where we may observe notches or concavities along the 

contours. In the first, second and third column, we may observe three 

additional clear examples of improvements on the MAB contour. In all 

instances the technique without constraints produces a contour with notch 

defects, which are filled in or smoothened by the constrained network. These 

qualitative results 
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Figure 5.13: A sample of segmentation results of outer MAB and inner LIB 

borders. [Row 1] - Averaged Ground truth; [Row 2] - Segmentation with U-Net 

and GDL only; [Row 3] - Segmentation with U-Net + GDL + GC 

are important, because although the ‘quantitative’ DICE performance of both 

methods is still fairly high and with largely similar coe cients, the geometric 

constraints imposed have implications on the shape produced, and result in 

smoother contours at the output. Of course, the results produced are not 

consistently perfect, and there are instances where both networks fail, such as 

that shown in the fourth column. Here, a slightly fuller LIB is produced, but the 

contour along the MAB in both techniques exhibits notch defects. Another set 

of examples is shown in Figure 5.14, which shows both the automatically 

obtained MAB and LIB contours (in green) and the manually obtained con- 
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Figure 5.14: A sample of segmentation results of outer MAB and inner LIB 

borders. [Top row] - Examples without geometric constraints; [Row 2] - Same 

examples but with geometric constraints; Network obtained contours are 

shown in green while manually labelled contours are shown in red. 

tours (in red) superimposed on the original B-mode image. The top row shows 

examples obtained without geometric constrains and the bottom row shows 

examples with the geometric constraints. As may be noticed, the application of 

geometric constraints reduces the notches and defects. 

An interesting study is that of the filters which are produced during the 

training process of both U-NETs without constraints and with constraints. 

Unfortunately, with the networks having 28 layer-stacks, and several layers 

more for the banks of filters used within the stacks themselves (the filter bank 

in the middle convolution stack has 128 layers!) - it becomes a di cult task to 

reproduce and compare all these against each other. Instead therefore, a bank 

of 10 x 10 filters present on the final convolution layer stack is reproduced. 

This stack has three banks of 32 layers of 10 x 10 pixels each, one for each of 
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the output segmentation masks produced by the U-NET. Figure 5.15 and 

Figure 5.16 show two corresponding banks of 32 filters, for the U-NET without 

 

Figure 5.15: A bank of 32 output filters for U-NET without constraints. 

 

Figure 5.16: A bank of 32 output filters for U-NET with constraints. 

constraints and the U-NET with constraints, respectively. The filter images are 

all normalised to the maximum and minimum values of the first filter bank; 
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that of the U-NET without constraints. This is done so that the di↵erences 

between them are more visible. 

A comparison of the filters across both figures yields large similarities across 

the board, making it somewhat di cult to visualise any di↵erences at all. 

However, closer inspection of particular filters in Figure 5.16, specifically 

those marked with rectangular boxes, shows subtle di↵erences. The filters 

marked in red boxes show increased intensities over larger areas. The filters 

marked in blue boxes on the other hand, show a more blurred, softened 

version of their counterparts in the non-constrained filters. These types of 

di↵erences, and many others throughout the network which are not visualised 

here, could indicate the mechanisms in which the constrained network 

attempts to smoothen the contour edges or fill in gaps - akin to a low pass 

filtering e↵ect. 

Table 5.3: Averaged results with standard deviation across author’s own di↵erent techniques 

which attempt to segment MAB. 

 ±

 ± 

PCM-AC: Phase Congruency Maps with Active Contours; CNN-CE: Traditional CNN network 

with Cross Entropy; U-NET-CE-GC: U-NET network with Cross Entropy and Geo- 

metric Constraints. 

The results noted in Table 5.3 show the results of a performance comparison 

carried out between the author’s proposed techniques in Chapter 3, 4, and this 

chapter. The Phase congruency maps with active contours yielded a DICE coe 

cient of 87.5%, which is worse than the performance registered in chapter 3. 

Method PCM-AC CNN-CE U-NET-

CE-GC 

 .875 ± 

.067 .929 ± .051 
 

 .815 .150 0.411 .089  
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This is because the technique was now applied on a much larger dataset of 18 

patients as opposed to the small dataset used in Chapter 3. The traditional CNN 

network achieved a relatively good performance which is similar to that of the 

U-NET without geometric constraints reported in Table 5.1. The UNET with 

geometric constraints gave the best performance. Holm-Bonferroni corrected 

paired T-tests yielded statistically significant di↵erences across all three 

results (p < 0.05). The performance registered with MHD shows similar 

patterns to that for DICE. 

Table 5.4: Averaged results with standard deviation across di↵erent studies which attempt to 

segment MAB and LIB. 

 ± ± ± ± ± ± ± ± 

LSM: Level set method; SFL: Sparse field level sets method; ASM: Active shape models method; 

DSL: Distance regularised level set method; UNet: Traditional U-Net method; DCNN/MUNet: 

Dynamic convolutional neural network with modified U-Net; T-CNN: Traditional 

convolutional neural network. 

The results noted in Table 5.4 and in Figure 5.17 (which shows only the best 

performing techniques in comparison to ours) show a comparative 

assessment of performance between the technique in this work and the 

techniques of other studies whose work similarly addressed the problem of 

MAB and LIB segmentation. Table 5.3 shows that this work’s average results 

yield similar performance to that of Zhou et al. in their study in [88] using deep 

learning methods. Additionally, one notes that when comparing the 

performance of U-NETS in comparison to traditional CNNs, a general 

Method LSM [84] SFL [73] ASM [72] DSL [63] UNet [87; 88] DCNN/MUNet [88] T-CNN [88] This work 

Metric   

DSC MAB .954 ± .016 .950 ± .017 .918 ± .035 .915 ± .035 .907 ± .062 .965 ± .022 .960 ± .026 .959 ± .029 

DSC LIB .931 .031 .920 .042 .936 .026 .735 .169 .895 .049  .928 .045 .863 .067 .920 .044 
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improvement in performance is registered. However one must consider that 

this comes at increased computational cost. Figure 5.18 shows the increase in 

computational time incurred when using the proposed U-NET, in comparison 

to the CNN proposed in Chapter 4, which has the same amount of ‘layer stacks’, 

but only one set of convolutions per stack and no skip layers. The 

computational time of the U-NET is approximately double that of the CNN. The 

addition of the geometric constraints is tested in both CNN and U-NETs, and is 

also shown to marginally increase computational cost. 

When comparing the methods used in this work to non-deep learning based 

methods, the technique outperforms that of Ukwatta et al. [84], Yang et al. [72] 

and that of Hossain et al.[63] when segmenting the MAB. But both this work 

and that of Zhou et al. underperforms against [84] and [72] in segmenting the 

LIB. In their work, Ukwatta et al. propose a semi-automated technique based 

on a level-set method, whereby the operator was asked to provide anchor 

points as high-level domain knowledge. In [72], the authors use active shape 

models to segment the MAB and LIB interfaces, but however require user 

intervention to provide anchor points during training. Zhou et al. also re- 
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Figure 5.17: A graph comparing the top performing techniques for: LIB; based 

on ASM [72], and MAB; based on DCNN/MNET [88], to this work. 
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Figure 5.18: Cost of computational time: CNN vs U-NET 

quire some degree of user interaction to provide anchor points to the dynamic 

CNN. In comparison, the technique proposed in this work is a fully automated 

technique, which requires no user intervention, barring the initial training on 

a manually segmented dataset that would have presumably been carried out 

once in the beginning with a large enough and representative dataset. 

Some limitations are of course also present in this study. The size of the dataset 

was limited to only 18 patients, and thus there was not a significant number of 

patients within each stenotic category. A larger data set of highly stenotic and 

irregular images might likely result in a decrease in performance. Additionally, 

despite use of phase information to decrease dependence on intensity gain 

settings, the source of data is still largely dependent on the imaging protocol. 

Di↵erent imaging platforms employing di↵erent and proprietary image pre-
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processing steps invariably result in di↵erent quality of images, and 

potentially, di↵erent performance outcomes for the algorithm. In an ideal 

scenario, the network would be trained on datasets obtained from di↵erent 

platforms and di↵erent users to increase generalisability. Imaging protocols 

are themselves also subject to several parameters, variables and user 

preferences, aside from simply brightness, which also a↵ect the quality of the 

data. These may also be considered as hyper-parameters of the overall system, 

aside from the hyper-parameters of the deep network itself which may be 

adjusted or tuned. Creating a system which is invariant to changes in all such 

hyper-parameters is a non-trivial task, and an exhaustive testing sequence 

which determines the e↵ect of each parameter, is impractical. An additional 

limitation is the dependence on expert labelling. The segmentation 

performance of the system is only as good as the manual labelling that is used 

for training. And inter-expert variability across studies naturally plays a role 

in the comparative assessment of performances across studies. 

5.4 Conclusion 

In this Chapter, a novel system has been developed based on a deep 

convolutional U-NET, for segmenting both the Media-Adventitia Boundary and 

the Lumen-Intima Boundary in transverse carotid Ultrasound images, using a 

fully automated approach. The previously proposed novel fusion of amplitude 

and phase data was used as a bimodal source of data at the input level, and a 

novel, geometrically constrained objective function was developed for the 

training of the U-NET. The author has shown that the addition of the geometric 

constraints results in an improvement of approximately 3% in terms of DICE 

coe cient of performance, in comparison to a U-NET trained with a standard 
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generalised dice loss function. Furthermore, the author has demonstrated that 

although the technique is fully automated, it retains a good performance of 

95.9% and 92.0% for MAB and LIB borders respectively, and that this retains 

comparable performance to techniques from other studies. 
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6 

Clinical Application and Proof of 

Concept 

 

6.1 Introduction 

In Chapter 5, a novel algorithm was proposed for the accurate measurement of 

vessel geometry to take place, allowing one to obtain contours representing 

the Media-Adventitia interface and the Lumen-Intima interface. This chapter 

shows how the proposed methodologies achieve superior performance in 

comparison to similar neural network-based methodologies, when it comes to 

computing the Vessel Wall Volume. Initially the present state-of-the-art 

biomarkers for evaluating clinical risks and outcomes associated with 

atherosclerosis are discussed. Subsequently the on-going paradigm shift from 

classic stenosis measurement techniques to plaque-burden measurement 

techniques involving metrics like Vessel Wall Volume are discussed. Finally, it 

is then shown how the outputs obtained from the proposed algorithm in 

Chapter 5 may be used to compute such metrics, and their reliability is 

evaluated and discussed. 
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6.2 Measures of Cardiovascular Risk 

The measure of Carotid Intima Media Thickness (IMT) as a predictor of 

cardiovascular risk was proposed in the 1980s, and it has since become the 

defacto imaging marker to be used to gauge cardiovascular risk associated 

with atherosclerosis [74]. Many reports have relied on this marker for studies 

associated with risk factors, genetics, and evaluation of lipid-lowering 

medication. Important endarterectomy trials (ECST, NASCET, ACAS) carried 

out in the 1980s to mid-1990s established the basis for considering the degree 

of stenosis as the gold standard metric of stratifying subsequent stroke risk 

[64]. Even until recently, studies still show that carotid IMT together with the 

presence of carotid plaque are accurate predictors of cardiovascular events in 

patients with critical limb ischaemia [74]. 

Concurrently however, the concept of measuring the degree of luminal 

stenosis as a marker of atherosclerotic disease severity has been criticised by 

experts, due to the fact that some plaques producing only mild-to-moderate 

stenosis may still lead to cerebral infarctions [64]. Plaque is known to progress 

at a much faster rate along the vessel wall (in the direction of blood flow), in 

comparison to the rate at which it thickens the vessel wall [63]. Carotid 

stenosis alone is therefore a weak indicator of the volume and extension of 

carotid plaque. There are additional plaque features that are closely tied to 

ischaemic events, and these features significantly increase the risk of stroke, 

regardless of the degree of stenosis [64]. 

According to Kosmas et al. [74], it is a great mystery as to why investigators so 

commonly keep using carotid IMT for risk prediction, when it is no longer 

recommended by the American Journal of Cardiology and American Heart 
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Association - being deemed inferior to other metrics, such as coronary artery 

calcium score or carotid plaque detection. There is need for a paradigm shift 

to more advanced 3D technologies, which may be used to assess plaque burden 

in terms of plaque volume, area, or vessel volume. Indeed, numerous recent 

studies are investigating the use of volumetric methods for vulnerable plaque 

imaging [64]. 

Two such volumetric methods are those of computing the Total Plaque Volume 

(TPV) and Vessel Wall Volume (VWV). The total plaque volume had already 

been proposed as a metric to monitor plaque progression in 2004, by 

Ainsworth et al. [48]. In their work, plaque area was measured by manual 

planimetry using an in-house software across several slices of a 3D image. The 

areas were summed and multiplied by the interslice distance. The authors 

concluded that TPV was more sensitive to change in plaque over time than 

methods limited to measurement of change of thickness. In 2007, the group of 

Fenster et al. [68] however, argued that while TPV provides valuable 

quantitative information, obtaining its measure was di cult and required highly 

trained experts. It also did not provide information regarding the locations 

where the vessel wall is changing. On this basis, they proposed the Vessel Wall 

Volume, which is a measure of the vessel wall thickness and plaque together, 

between the LumenIntima and Media-Adventitia. These two interfaces are 

more straightforward to interpret and more reproducible. The authors 

showed that VWV had lower intra-observer coe cients of variation in 

comparison to TPV [68]. 

In line with recent e↵orts to shift to volume based assessment strategies, 

recent technical literature, which also studied carotid artery segmentation, 
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proposed to segment the MAB and LIB interfaces for the purpose of the 

computation of Vessel Wall Volume [63], [88]. As a proof of concept, the author 

thus applies the outputs of the algorithm in Chapter 5 towards the 

computation of VWV. 

6.3 Computation of Vessel Wall Volume 

Vessel wall volume is a 3D measurement of vessel wall thickness, inclusive of 

plaque where present. It is measured 

by first segmenting the MAB and the LIB, and 

determining the area of the region in 

between these two contours. Previous 

methods would calculate the area using 

the trapezoidal rule [253], however with 

MATLAB, we simply sum over the number 

of pixels within the region. In order to do 

this, we must determine the lateral or 

axial square dimension of each pixel. For 

acquisition of the images, the probe used 

was a model L14-5/38 linear probe, 

Figure 6.1: Probe width corresponds to

 which is known to have 128 piezothe B-

mode image width. electric crystal 

elements, each with a 

lateral pitch of 300 µm. The overall 

scanning width of the probe therefore, which also corresponds to the width of 
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Figure 6.2: The vessel wall volume is computed by summing the product of 

individual frame area (hatched area) by the inter-slice distance. 

the image, is 128 x 300 µm, which is 38.4mm. This is shown in Figure 6.1. We 

additionally know that the B-mode images are scan-converted to a final image 

dimension of 429 (lateral) x 342 (axial) pixels. Thus, 429 pixels must equal 

38.4mm, leading to a single pixel having a square dimensions of 0.0895 mm. 

We further confirm this by computing the axial dimension of 342 pixels x 

0.0895 mm/pix, which is equal to 30mm. This is in agreement with the depth 

setting of 3.0 cm set during the acquisition. 

Proof of Concept. In order for Vessel Wall Volume to be computed, it is 

necessary for a number of image slices to be acquired in transverse view over 

some length x. The acquisition over this distance is normally acquired either 

using a regular freehand 2D probes, or else using 4D probes which sweep a 

short distance mechanically within the probe while acquiring scans. In case of 

freehand 2D probes, the position is tracked using electromagnetic, optical, or 
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accelerometer-based position trackers, or else by fixing the probe to a physical 

linear gauge placed over the patient, and carefully moving it along a linear 

 

Figure 6.3: The electromagnetic transmitter is positioned at the head of the 

couch, closest to the imaging area as possible. 

distance. Either method allows the user to acquire transverse slices along the 

length of the artery, and thus knowing the distance between each slice as 

shown in Figure 6.2. This distance is referred to as the inter-slice distance. 

The work of this project focused on the image segmentation aspect of the 

problem, and therefore developing a rigorous position tracking scheme was 

beyond the scope of the work. This would have entailed devising calibration 

methods which apply geometric transforms from the position sensor’s 

coordinate system to the 3D coordinate system within the imaging space. 
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Instead the author opted, merely as a basic proof of concept, to utilise an 

electromagnetic position tracking system developed by NDI, trakSTAR, to 

sense the position of the probe in the direction along the length of the carotid 

artery. Yaw, pitch 

 

Figure 6.4: [Left] The trakstar base amplifier unit. [Right] The position sensor 

a xed to the ultrasound linear probe with double-sided tape. 

and roll movements were manually kept fixed as much as possible, as were 

movements in the y and z plane. The EM transmitter was placed at the head of 

the couch, close to the head of the patient, since this was the site closest to the 

examination area. This is shown in Figure 6.3. Any equipment unrelated to the 

scanning was kept far away to reduce potential interference. The small EM 

receiver, which is used to track the position of the actual object, was a xed to 

the linear probe using double sided tape as shown in Figure 6.4. Both 

transmitters and receivers were connected to a base unit which feeds the data 

into a computer. The probe was gently moved along the direction of the carotid 

artery in 2mm steps, using the EM position tracker as guidance, and with the 

help of an assistant, images were saved at each interval. The probe’s relative 
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position and yaw, pitch and roll were read o↵ in real time from the tracker 

software, shown in Figure 6.5. The probe was moved through a distance of 40 

mm, thus resulting in 20 images. The process was repeated for a sample of 5 

healthy participants from the laboratory, which formed part of the cohort of 

18 participants used for the whole project. 

 

Figure 6.5: The trakstar software provides the relative position in 3D space. 
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6.4 Discussion 

Since Vessel Wall Volume is reported to be sensitive to temporal changes in 

plaque found in the carotid, we report the performance of the algorithm in 

computing this metric from the automatically delineated contours, and 

compare this against the same metric obtained from the manually delineated 

contours. 

 
Table 6.1 shows the performance of the algorithm by evaluating V WV and 

comparing against results from three other recent studies by Ukwatta et al. 

[73], Hossain et al. [63] and Zhou et al. [88]. The latter metric is computed by 

first taking the di↵erence between the automatically generated volume 

and manually obtained volume , divided by the manually obtained 

volume (ground truth), over a number of measurements for the same patient i 

= 1 

[84]: 

  (6.1) 

where  and  are the mean VWV measurements computed from 

three repeated measurements of VWVs for the algorithm and manual method 

respectively, for one particular patient. The overall mean VWV di↵erence for 

 
all patients, V WV , is then computed as [84]: 

  (6.2) 
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where N is now the total number of patients. Additionally, we also compute the 

absolute VWV di↵erence, | V WV i| for patient i, which is simply the absolute 

term of V WV i. We then report the geometric mean over all pa- 

 
tients, | V WV |. Furthermore, in Figure 6.6 we plot a correlation plot of the 

algorithm and manually generated VWV for the 5 data sets on which this is 

tested. In Figure 6.7, we show a Bland-Altman plot of the di↵erence between 

automatically and manually generated volumes, whereby the bias line is 

plotted along with the upper and lower limits of agreement as 1.96 x standard 

deviation. 

Table 6.1: Averaged results with standard deviation of percentage V WV and | 

V WV | across di↵erent studies, including this work. 

| | ± ± ± ± 

3D-SFLS: 3D Sparse Field Level set method; DRLS: Distance regularised Level 

set method; DCNN: Dynamic CNN and U-NET 

From the table of results, one notices that the mean di↵erence in VWV, 

 

Method 3D-SFLS [73] DRLS [63] DCNN [88] This work 

Metric     

 
V WV (%) 0.56 ± .12.42 0.645 ± 4.93 1.62 ± 8.70 4.91 ± 2.17 

 
V WV (%) 

5.64 8.1 3.43 3.42 6.48 6.14 4.45 1.68 
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V WV , is higher in the proposed algorithm in comparison to that of other 

studies. The reason for this is that in other studies, the VWV computed by the 

algorithm is sometimes larger and sometimes smaller than that computed 

manually. This leads to positive and negative values, which when averaged 

lead to a small mean value. In this work’s proposed algorithm a bias is present, 

whereby the automated algorithm’s VWVs are always slightly larger than that 

computed manually. This is also evident from the Bland-Altman plot in Figure 

6.7, which shows a mean bias of 29mm3. However, when one compares the 

 
mean absolute di↵erence | V WV |, we notice that here the proposed algorithm 

surpasses the performance of the techniques by Zhou et al. and Ukwatta et al.. 

The comparison against the technique of Zhou et al. is particularly relevant 

since the latter also use deep networks in their methodology of segmentation 

and VWV estimation. In Figure 6.6, we see that the values for VWVs obtained 

from the algorithm and manual methods are highly correlated. 
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Figure 6.6: Correlation plot for automated and manually generated 3D vessel 

wall volumes. 

 

Figure 6.7: Bland-Altman plot of the di↵erence between the VWVs generated 

by the automated algorithm and the manual method. 

 

Figure 6.8: A volume render of the two segmented contours being shown from 

di↵erent orientations 
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Lastly, Figure 6.8 shows a volume render from two perspectives of the vessel 

wall volume taken from a particular dataset. This volume is generated in 

MATLAB, and shows how a qualitative reproduction of the vessel wall volume 

would be like for visual analysis by clinicians. A visual representation such as 

that in Figure 6.8 would be useful for the clinicians to visualise the location of 

any protruding plaque areas, and to therefore plan subsequent treatment 

accordingly. Since the acquisition of images was not gated to the subjects’ ECG 

signal (and neither was that of comparable studies which the author looked at 

the time of preparing this experiment [84; 72; 85]), the vessel wall in 3D is 

seen to present with slight undulations. This is an artefact that arises from the 

expanding and contracting nature of the vessel wall in tandem with the cardiac 

cycle, and it may have a bearing on the final volume measured by the 

algorithm. 

Cheng et al. [85] argue that gating is not necessary, since the arteries of 

subjects su↵ering from atherosclerosis are not compliant and exhibit very little 

radial changes. However, while this may be true, if the metric would be used 

as a risk prediction tool it would be envisaged that it would be used also on 

subjects with complaint arteries, and that the undulations would then be 

present and generate artifactual readings. The ideal solution to avoid such an 

artefact impacting the volume measurement would be to gate the image 

acquisition with the same point in the cardiac cycle, to ensure that the volume 

is constructed accurately. Alternatively, when acquiring natively in 3D, if a 

volumetric cine loop is acquired, this would allow post processing algorithms 

to select images at their peak of extension or contraction to have them selected 

at the same point in time. 



Chapter 6 Clinical Application and Proof of Concept 

236 

6.5 Conclusion 

This chapter has shown that the proposed algorithm yields superior results 

when used to produce measures of Vessel Wall Volume, in comparison to other 

neural network based techniques. It has described how the vessel wall volume, 

a novel metric proposed in literature to monitor plaque progression, is 

constructed from the outputs of the algorithm. Its use has been highlighted, 

particularly justifying its need in comparison to other standard methods of 

plaque assessment. Furthermore, it has been shown that the proposed 

automated UNET-based algorithm is capable of producing delineations, which 

result in a VWV that is in agreement with that produced manually by the 

expert. Finally, it has been shown that the performance obtained by the 

automated algorithm in producing VWVs, is comparable to that of other 

techniques in the literature but superior to those also based on neural 

networks. The next chapter will provide concluding thoughts on the whole 

work, summarising contributions, and discussing the limitations of this project 

and future work. 
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7 

Conclusion 

 

7.1 Introduction 

This final chapter shall summarise the contributions produced in this project. 

It shall discuss the limitations encountered during the various stages of the 

project, and propose some future work which could be looked into in order to 

bring the algorithm closer to clinical implementation. 

7.2 Summary of Contributions 

The overarching target of this project was to quantify atherosclerosis in 

vasculature using ultrasound imaging. In order to achieve this goal, the author 

set out to develop an algorithm, which is capable of generating a 3D volume of 

a vascular structure. From this, a volume-base metric is produced, which is 

associated with presence and progression of plaque. The said metric is the 

vessel wall volume, which has been shown in literature to be a valid tool to 

monitor plaque progression. 
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In order to generate the 3D volume of the artery, a technique, which is both 

robust to inter-user variations in settings and which is clinically simple enough 

to implement, is required. For this reason, the research objectives included: 

a) the requirement of developing a technique which is invariant to amplitude 

variations that may come about from di↵erent user-gain settings, and b) the 

requirement that it should also be as far as possible, automated, such that it 

requires minimal user intervention. These objectives have been met through 

the following contributions. 

1. Developing RF derived Phase Congruency Maps of Carotid 

Ultrasound images 

The author has initially established whether phase information present 

in ultrasound RF data is useful for representing anatomical structures 

within the data. This was achieved by asserting that phase di↵erence 

information taken from RF data produces images, which qualitatively 

show tissue structure. An algorithm has then been proposed, which 

produces Phase Congruency Maps from the ultrasound data. Phase 

Congruency Maps are arrays of phase information, which are invariant 

to amplitude / gain settings, and also provide structural information 

about the underlying anatomy. It has also been shown that the latter are 

superior to Phase Di↵erence Matrices for the purpose of representing 

structural information. 

A part of the research in this section has been published in: C. Azzopardi, 

K. P. Camilleri and Y. A. Hicks, ”Carotid Ultrasound Segmentation using 

Radio-Frequency derived Phase information and Gabor filters,” 2015 
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37th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), Milan, 2015, pp. 6338-6341. 

2. Carotid Artery Segmentation using Deep Convolutional Networks 

and Phase Congruency Maps 

In order to produce the vessel wall volumes, a simple to use 

segmentation technique was required to delineate the vessel contours. 

The author has thus proposed the use of deep neural networks, the 

present state-of-theart in segmentation strategies, to delineate the 

vessel in an automated manner, which requires only the selection of a 

region of interest. Selecting ROIs is already a commonly available tool in 

commercial ultrasound machines. Apart from being the first to propose 

the application of DCNs to transverse ultrasound carotid image 

segmentation, the author proposed their application on the fusion of 

amplitude and phase information. It has been demonstrated that this 

yields improved results over using either alone. 

A part of the research in this section has been published in: C. Azzopardi, 

Y. A. Hicks and K. P. Camilleri, ”Automatic Carotid Ultrasound 

Segmentation using Deep Convolutional Neural Networks and Phase 

Congruency Maps,” 2017 IEEE 14th International Symposium on 

Biomedical Imaging (ISBI 2017), Melbourne, VIC, 2017, pp. 624-628. 

3. Bimodal Automated Carotid Ultrasound Segmentation using 

Geometrically Constrained Convolutional Neural Networks 

Finally, the author has proposed a novel modification to the optimisation 

function of the neural network, by applying a priori knowledge concerning 
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the shape of vessels, and by also adapting the neural network to 

simultaneously segment both the Media-Adventitia interface and the Lumen-

Intima interface, thus having both contours necessary for obtaining the vessel 

wall volume. These contours, obtained along the length of the carotid artery, 

are used to generate the vessel wall volume. The author further shows that 

the vessel wall volume generated shows good agreement with that generated 

manually by experts. 

A part of the research in this section has been published in: C. Azzopardi, 

Y. A. Hicks and K. P. Camilleri, ”A Bimodal Automated Carotid Ultrasound 

Segmentation using Geometrically Constrained Convolutional Neural 

Networks,” 2019, IEEE Journal of Biomedical and Health Informatics. 

7.3 Limitations 

The principal limitation in this work was the lack of availability of subject 

volunteers with registered symptomatic presentation of plaque in carotid 

arteries. Although the help of a local vascular surgeon was enlisted for this 

purpose, the author was advised that patients who, upon examination at the 

local government hospital, were found to have significant presentation of 

atherosclerotic plaque in their carotid arteries, were immediately booked for 

carotid endarterectomies. Due to data protection issues, the author was also 

not allowed to contact patients who had known presence of plaque but who 

were as yet ineligible for surgical intervention. Additionally, since the use of 

the Ultrasonix ultrasound device for extraction of RF data was required, it 

proved inconvenient for the vascular surgeon to either use the latter machine 

(which was inferior to his clinical one), or to have the author accompany him 
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in his clinics to repeat the scans of fresh patients coming in for examination 

and who were found on the spot to have significant presentation of plaque. 

Thus, the author resorted to recruiting at random, both young and elderly 

patients, without knowing whether these would have presence of plaque or 

otherwise. From the pool of volunteers recruited, it was indeed established 

that elderly patients had an increased vessel wall volume in comparison to 

younger patients. This is consistent with the presence of accumulated plaque 

build-up. However, only one patient was ultimately found to have a significant 

occlusion. The limitation that the above poses was that the author was thus 

unable to fully test the algorithm on known symptomatic patients with 

stenosis > 60%, and to therefore establish the performance of the technique in 

automatically flagging patients which might need treatment. Furthermore, the 

author was unable to include larger quantities of ultrasound data in the 

network’s training set with significant stenosis. These typically pose a more di 

cult segmentation problem due to shadowing caused by the plaque on vessel 

wall distal to the probe. 

An additional limitation in the project was the hardware used for training and 

testing the deep neural networks. Despite the machines used having a CUDA 

enabled graphical processing unit, or parallel processing capabilities, the 

performance of the machines were such that training and testing of the deep 

networks was a lengthy and laborious process, making it highly impractical to 

fully test the available hyper-parameter space of the network. In future work, 

this may be resolved through the use of cloud computing subscriptions. 

Finally, from the perspective of ultrasound hardware, it is to be noted that 

modern ultrasound platforms are highly superior to the research ultrasound 
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platform used, which was already partially dated at the time of 

commencement of research. Modern platforms provide improved resolution, 

and volumetric matrix probes, which would be able to acquire volumes 

natively, without the need for position tracking hardware. This would 

naturally provide a more accurate reconstruction of segmented volume, which 

in turn yields more accurate vessel wall volumes. Additionally, with the 

availability of raw data already in volumetric format, one may do away with 

segmenting individual slices and consider the native segmentation of the 

volumetric space with the deep neural networks. 

7.4 Future Work 

The author believes that there are three important areas which merit 

immediate further attention in order to bring automated ultrasound plaque 

visualisation and evaluation techniques to market: 

Firstly, from a technical perspective, with the resurgence of artificial 

intelligence and its excellent performance in most fields of computer science; 

with the increasingly readily available parallel processing architectures made 

available through powerful graphical processing units; and with volumetric 

matrix probes with single crystal technology achieving enhanced resolution 

and signalto-noise ratio, future work should focus on using voxel-based 

convolutional neural networks to segment the carotid structures natively in 

the volumetric space. Indeed, research published as recently as September 

2020 by Zhou et al. [89], is already exploring the use of voxel-based fully 

convolutional networks for this application. The geometric constraints 

proposed in this work could potentially be adapted to reflect new constraints 
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and a priori knowledge present in a volumetric problem. Additionally, the 

fusion strategy adopted in this work limited itself to using input level fusion. 

The performance of layer-level or decision-level fusion of amplitude and phase 

information is intriguing and should also be explored to evaluate if improved 

performances are registered. 

Secondly, also from a technical perspective, in order for such algorithms to be 

truly considered e↵ective, there is the need for the establishment of a large and 

common dataset, to be made available to the research community at large 

which is exploring the same problem. A large and continuously updated 

dataset containing manually labelled ultrasound images / volumes would 

provide a common reference for research groups to be able to test their 

algorithms against it. Without this, research groups presently continue to 

develop and test algorithms against di↵erent datasets, which undoubtedly 

vary in quality and acquisition protocol, and this may have an e↵ect on the final 

performance reported. 

Finally, from a clinical perspective, and as mentioned by Kosmas et al. in [74], 

the clinical research community needs to actively transition away from the 

classic stenosis risk prediction strategies based on carotid IMT, given that this 

is no longer recommended by the American Journal of Cardiology or American 

Heart Association. Future work in the clinical community should therefore 

focus more on carrying out clinical studies on the use of 3D volumetric 

parameters, as it is in this manner that su cient momentum and confidence in 

such metrics may be achieved for them to become widely implemented in 

commercial platforms. 
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