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Abstract

In the past few years, Internet of Things (IoT) devices have emerged and spread every-

where. IoT has the potential to make people’s lives more comfortable and more effi-

cient. Many people use smart home devices, and such devices can communicate with

each other without user intervention. To control, configure, and interface with the IoT

device, a companion mobile application comes with each IoT device, which needs to

be installed on the user’s smartphone or tablet.

IoT devices send information in three different ways. The first way is from the IoT

Device to the Cloud (D-C). Through this way, the device can send the user’s data to

the IoT device’s cloud. The second way is from the IoT app to the IoT Device (A-

D). In this way, the IoT app sends a command(s) to the IoT device to work based

on a specific command. The third way is from the IoT app to the IoT Cloud (A-

C). Through this way, the device can also send user’s data to the IoT device’s cloud.

Despite the importance of the privacy risk, the majority of IoT users don’t understand

what kind of information is being collected about them or their environment. Privacy

is not only limited to encryption and access authorization, but also related to the kind

of transmitted information, how it’s being used, and with whom it will be shared.

Accordingly, many researchers have been motivated to study the security and privacy

issues of those devices due to the sensitive information they carry about their owners.

Thus The limitation of existing methods are:

1. They only study the security and privacy issues by analyzing the traffic that goes
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directly from the IoT device to the IoT cloud (i.e. D-C).

2. They never study the privacy violations between the IoT traffic with its PPA, i.e.,

compliance violations.

In contrast, this research aims to study the privacy violations through analyzing the

alternate path, i.e. (A-C). In particular, we consider the compliance issues between the

data sent from the IoT mobile app to the IoT cloud and what the manufacturer of this

IoT device states about the data that they collect about its users. IoT manufacturers

are compelled to issue Privacy Policy Agreements (PPA) for their respective devices as

well as ensure that the actual behavior of such devices complies with the issued PPA.

To evaluate this compliance, we make the following contributions:

The first contribution is investigating issues around IoT privacy in general and the

compliance violations between the IoT devices with their PPA. To do so, we need to

implement two stages. The first stage is to read and study, manually, the PPA of eleven

IoT manufacturers. The results reveal that half of those IoT manufacturers do not have

an adequate privacy policy specifically for their IoT devices. Consequently, we create

eight main criteria, based on the GDPR, that any IoT manufacturer should implement

when designing its PPA. Also, we argue that the IoT manufacturer should apply these

criteria as well as adhere to them when they issue their new IoT products. While the

second stage is to design a testbed to capture the traffic of two IoT devices (i.e., Tp-link

smart plug and Belkin NetCam). Then, we analyze the collected traffic to find out the

type of data transferred from the devices to their manufacturer’s cloud. Finally, we

evaluate the compliance of the actual behavior of the IoT devices (Tp-link smart plug

and Belkin NetCam) with their PPAs as well as with our eight criteria. The results

prove that the data sent from the two IoT devices to their clouds does not comply with

what they stated in their PPA.

The second contribution is a tool that automatically infers the actual behavior (i.e. the

type of the transmitted data) of an IoT device from its encrypted network traffic. In par-

ticular, the tool infers three critical things; first of all, the tool reveals from the traffic
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the interaction type between the user and his/her IoT device through the IoT device’s

app (e.g., the user login to the IoT app to control the device). Second, it reveals whether

the IoT device sends sensitive Personal Identifiable Information (PII) about the user to

its cloud. Finally, the tool reveals the content type of such sensitive information (e.g.,

user’s location detail). This information helps IoT users to make rational decisions re-

garding their privacy risks. We implement this tool using supervised machine learning

algorithm, we obtain the following classification accuracy values of inferring the three

types of information, as mentioned above, respectively: 99.4%, 99.8%, and 99.8%.

This high accuracy proves the reliability of our proposed method.

The third contribution is a method to analyze the text of IoT PPAs. In this method,

we aim to imitate the way that an ordinary person, with an average education level,

reads and understands such long policies. To do so, we implement a text-mining tool

to read and extract specific type of information using a supervised machine learning

algorithm. Our goal is to determine the types of personal information that the PPA

mentions are collected about the IoT device users. Furthermore, we categorize such

information according to its sensitivity level to either sensitive personal information

or non-sensitive personal information. Using our tool, we analyze and label 31,661

sentences from 50 IoT PPAs. The high accuracy achieved by the classifier (i.e. 98.8%)

proves the validity and reliability of our proposed method.

Finally, we combine the second and the third contributions to investigate whether there

is a mismatch between the actual data sent to the IoT manufacturer cloud with what

the manufacturer states in its PPA.

The experimental results demonstrated in this thesis confirm our hypothesis that most

IoT manufacturers don’t provide sufficient information in their PPA or they don’t com-

ply with what they state in their PPA.
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Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) refers to the tens of billions of low-cost devices that

communicate with each other and with remote servers on the Internet autonomously.

It comprises everyday objects such as lights, cameras, motion sensors, door locks,

thermostats, power switches, and household appliances, which facilitate our daily lives

in almost every aspect [25, 96, 106, 113].

IoT technology has become one of the fastest developing and growing technologies

today due to its ability to provide a new platform for services and decision making. In

November 2019, Statista Research [93] projected the number of connected IoT devices

to be 75.44 billion worldwide by 2025. According to McKinsey Global Institute, the

financial impact of the IoT market on the global economy may reach as much as $11.1

trillion by 2025 [54, 55].

It is important to emphasize that most of these smart devices are manufactured for per-

sonal use; therefore, they deal with a user’s Personal Identifiable Information (PII) [45,

76] all the time. IoT devices can monitor, collect, and store a massive amount of sens-

itive data and information about their users [43]. The popularity of wearable tech is

one trend that is currently supporting much more extensive data capturing processes.

For example, many users wear smartwatches most of the time, and thus their personal

information, habits, and behavior are collected and sent to the smartwatch manufac-
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turer’s cloud [84]. However, this proliferation creates essential security and privacy

problems. When such sensitive personal data is released to third parties, the possibility

of an unintentional or malicious privacy breach, such as detection of user activity, is

very high [43]. Thus, IoT users need to know what kind of personal information will

be collected by the IoT device and why.

In the Information Commissioner Office (ICO) report [8], the General Data Protection

Regulation (GDPR) sets the criteria for manufacturers’ data collection processes. The

report emphasizes that companies are required to protect the privacy of their EU cus-

tomers by keeping their PII secure. Companies whose business practices are found to

be inconsistent with their privacy policies will face regulatory enforcement actions [2].

PII can be categorized to either sensitive PII (e.g. login information) or non-sensitive

PII (e.g. email address); see chapter 2.2.4 for more details. Hence, as PII can be sens-

itive, it is essential to notify IoT users with respect to their personal data and help them

make rational decisions about their privacy risks.

IoT manufacturers need to clearly specify in their Privacy Policy Agreement (PPA)

what data type they collect from the users of their IoT products. In fact, it is essential

for IoT manufacturers not only to have a sufficient PPA for their respective devices

but also to comply with what they state in this PPA. It should be noted that privacy is

not only about access authorization and encryption; rather, it also emphasizes on the

type of transmitted information and on how it will be used and shared by the legitimate

recipient (e.g., IoT manufacturer) [37].

To the best of our knowledge, most academic research focuses only on:

• Analyzing IoT devices’ security and privacy issues,

• Discover IoT attacks and violations,

• Perform different attacks targeting various types of IoT devices; related to user

data disclosure.
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In contrast, we are the first who highlight the importance of enforcing IoT manufac-

turers to issue a sufficient PPA as well as monitoring the behavior of such devices to

ensure their compliance to the PPA.

1.2 Main Problem

In this thesis, when we talk about the IoT compliance issues, we mean the mismatch

between the actual behavior of the IoT device and what the PPA of this particular IoT

device states. It is difficult to ensure privacy in IoT devices because they are capable

of transmitting substantial amounts of data, including the user’s personal information

and his life pattern.

IoT devices talk to each other as well as to their manufacturer’s cloud. Consequently,

they transmit sensitive information about their users most of the time, resulting in po-

tential security and privacy issues, see Figure 1.1.

IoT users have no control over their IoT devices’ communication. On the other hand,

the IoT manufacturer’s use of obtained data can go beyond the reasons for which it was

initially collected, or may exceed what is permissible within the PPA. Therefore, risks

can be identified regarding the collected data’s security and privacy.

Despite the importance of the privacy risk, most IoT users are not completely conscious

of the kind of information being collected about them or their environment, even being

uncertain of whether the information is being shared with others. Instead, they choose

convenience over privacy as sharing their data is not a big deal for them. However, lots

of people do have a concern about their data privacy [82, 69].

According to our published work in [94], IoT devices are often not compliant with their

PPA requirements. Also, an examination of 121 shopping apps revealed that many PPA

are vague and fail to convey how apps handle consumers’ data [74]. Consequently, any

conflict can have real consequences as they may lead to enforcement actions by the
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Figure 1.1: Overview of the IoT data privacy problem

GDPR and other regulators. In fact, without the presence of effective mechanisms to

ensure the compliance between the IoT device and its privacy policy, managing data

flow can be particularly problematic.

1.3 Motivation

Compared to computer or smartphone traffic, the characteristics and features of IoT

traffic are very different, as explained in detail in chapter 2.2.3.

Previously, Internet user activity was mostly user-initiated web browsing. Neverthe-

less, this phenomenon has changed with the emerge of IoT devices. The contents,

patterns, and metadata of IoT network traffic can all reveal sensitive information about

a user’s physical activities. In parallel, IoT manufacturers run cloud and other services

externally to a domestic IoT network. They capture and store data that is conveyed to

them by IoT sensors that are constantly on and monitoring even clients’ offline actions;

this data capture differs from traditional internet browsers, as it happens surreptitiously.

As with website publishers, IoT manufacturers are accountable for issuing PPA to de-
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Figure 1.2: General overview of our suggested tool to evaluate the compliance of

the IoT device with its PPA and present the results to the IoT end users.

tail the type of such collected information when the user interacts with their respective

devices. Despite the importance of reading such PPAs before using any IoT device,

many users still ignore them because they are too long and complex.

Based on the above observations, we believe that IoT end users need a tool that auto-

matically detects and describes their data collection practices. Such a tool can evaluate

the level of compliance of the actual data flows from the IoT device with the data type

that its PPA collect. Figure 1.2 illustrates the general overview of our suggested tool,

that we aim to implement through this PhD research. We are sure that this tool will be

useful not only IoT end users but also IoT manufacturers for the following reasons:

1. Researchers found that privacy violations often appear to be based on developers’

difficulties in understanding privacy requirements rather than on malicious in-

tentions [27]. Therefore, such a tool will help them ensure compliance between

their IoT devices and the legal PPA before they launch the new IoT devices in

the market.

2. Using this tool will help preserve the privacy of IoT users. IoT end users will be

aware of whether their privacy has been violated or not as well as give them a

free choice to decide what IoT device they want to use.
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1.4 Hypothesis and Research Questions

Our main hypothesis in this thesis is: IoT devices send sensitive PII about their users

to their manufacturer’s cloud. In turn, most IoT manufacturers either don’t provide

sufficient information with regards to the type of such information on their PPA or

don’t comply with what they state in their PPA with regards to the actual behavior of

the IoT device.

Due to this conflict, we want to automatically evaluate the level of compliance between

the actual behavior of the IoT device with its PPA presented in the IoT manufacturer

website. In order to verify this hypothesis, we address the following set of research

questions:

Research Question 1: Is the data sent from the IoT device limited to an identified

purpose of their PPA? If so, do the IoT end users know what type of information is

being sent about them?

Research Question 2: Can the encrypted traffic of the IoT device expose sensitive PII

about their end users? If so, can we know the type of such information sent from the

IoT device to its cloud?

Research Question 3: Can an automated text mining mechanism help IoT end users

avoid reading long and complicated IoT PPA text to know whether such PPA collects

sensitive PII about them, and knowing the type of such information?

Research Question 4: Can we automatically inform the IoT end users whether the

data sent from an IoT device complies with its PPA?

1.5 Contributions

The main contribution of this thesis, which has not been in the focus of IoT research

yet, is the development of a method for evaluating the compliance of the actual beha-
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vior of the IoT device with its privacy policy, see Figure 1.2. To achieve this contribu-

tion, we made several contributions during this PhD research as follows:

1. We provide a theoretical overview of issues around IoT PPAs and argue that

there is an urgent need to update the privacy law of the IoT devices. Moreover,

we focus on the language used within PPA by merging and analyzing the existing

privacy principles. As a result, we establish eight privacy criteria based on the

GDPR. We argue that any IoT manufacturer should adhere to those criteria when

they issue their PPA for their IoT products. The main objective of this work is

to find out whether the data transferred from the IoT app to the IoT cloud (A-

C) comply with what stated in its PPA. To do so, we design and implement a

practical testbed to evaluate, manually, the compliance of the actual behavior of

two different IoT devices (i.e. Tp-link smart plug and Belkin NetCam) with their

PPAs as well as with our eight criteria. The results prove that the two IoT devices

don’t fully comply with what they state in their PPA, nor they comply with the

eight criteria. This work was published in [94].

2. We show how passive packet-level analysis can be done to infer the behavior of

an IoT device through its encrypted network traffic emit from its apps (i.e. A-C).

Furthermore, we show how an attacker can violate user’s privacy through monit-

oring such traffic. Consequently, we develop a novel method that automatically

analyze the collected encrypted traffic from IoT app in order to infer critical

information regarding user’s data privacy. Theses information are the following:

• Whether the traffic of an IoT device sends sensitive information about the

end user to its respective cloud,

• The type of such sensitive information,

• The type of user’s interaction(s) with the IoT device.

We named this innovative tool IoT-app privacy inspector tool (IoT-app PIT),

which combines three different multi-class classifiers. Each classifier used to
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infer one type of the information above. The objective of such a tool is to in-

volve IoT end user to take an active role in protecting their privacy. This work

was published in [95].

3. We propose a novel method for analyzing the PPA text of any IoT manufacturer.

This method aims to extract only the type(s) of personal information collected

by such a manufacturer. Then, it classifies the collected data to either sensitive

PII or non-sensitive PII. Finally, it presents such data to the IoT end-user. In our

method, we don’t ask the users to read the whole PPA text, nor we shorten the

length of the text nor we highlight the paragraphs that refer to the data collection

practices, then ask the users to read such paragraphs. In contrast, our innovative

method focuses only on informing the IoT end users about the types of their

collected PII. The objective of this method is to help end users make rational

decisions before using any IoT device based on a prior understanding of the

type of collected data from such device(s). To do so, we develop a text mining

tool, called IoT-PPA reading tool, that automatically reads and analyzes long and

complicated IoT PPA text. As a results, it only informs the end user about the

data collection types as well as the category of such data types i.e. sensitive PII

or non-sensitive PII.

4. We propose a new method to compare the outputs of the two main tools to eval-

uate the level of compliance between the actual behavior of the IoT device with

its PPA. Each of these tools has its own input and output data types. The first

tool is the IoT-app PIT, which automatically detects the encrypted traffic of the

IoT device. In comparison, the second one is the IoT-PPA reading tool that reads

the IoT PPA text of this specific IoT device. To evaluate the compliance of an

IoT device, the user must run IoT Behavior Compliance Tool, then select the IoT

device that he wants to evaluate. This tool will execute and produce the results

from the two tools mentioned above. After that, it will analyze and compare

the results to present to the end user the compliance level of this particular IoT
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device. This holds especially true for the analysis of the IoT devices and what

data they send to their cloud.

1.6 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2- Background and Related Work- provides general background regard-

ing the IoT. In particular, the chapter introduces the concept of IoT network

technologies, IoT network traffic, as well as defines the fundamental terminolo-

gies used throughout this thesis. Also, the chapter reviews the related work in

the area of IoT privacy testbeds, monitoring the IoT traffic, and issues around the

PPA in general, and the ones related to IoT PPA in specific.

• Chapter 3- Data Collection Methodology- introduces the datasets used in this

work, covering both IoT traffic data and IoT PPA data. First, it describes the

testbeds and the controlled experiments used to obtain ground-truth information

about the IoT network traffic generated by IoT-device and its IoT-apps. This data

used to identify sensitive PII in IoT network flows. Then, the chapter describes

the methodology used for collecting and analyzing the IoT PPAs to extract the

type of collected PII from such PPA.

• Chapter 4- Ensuring compliance of IoT devices with their Privacy Policy Agreement-

first demonstrates the issues around IoT PPA by focusing on the language used

within such policies. This chapter also introduces eight data privacy criteria that

must be applied by any IoT manufacturers as well as comply with these criteria.

Second, the chapter explain a practical testbed that carried out with the aim of

proving whether there is a compliance issue between the actual behavior of the

IoT device and its PPA. Surprisingly, the results of this experiment show that

there is a compliance issue, that need to be addressed.
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• Chapter 5- Detecting IoT User Behavior and Sensitive Information in Encrypted

IoT-App Traffic- presents how a passive network observer can infer the interac-

tion type between the IoT end user and the the IoT device through analyzing the

encrypted traffic of its apps. In addition he can infer whether the IoT app sends

sensitive PII to the IoT manufacturer cloud as well as the exact type of such PII

data. A novel tool called the IoT-app PIT has been developed in this chapter to

inform the IoT user about the previous information in order to help him preserve

his privacy information.

• Chapter 6- Automated Approach to Analyze IoT Privacy Policies- presents the

proposed method for analyzing the IoT PPA by developing a text mining tool

called IoT-PPA reading. The tool focuses on reading long and complicated texts,

then present to the end users the types of PII that the IoT manufacturer’s PPA

collects about them.

• Chapter 7- IoT Behavior Compliance- discusses a novel tool that combines and

executes two different tools, each of which serves different purposes; then, it

compares the results of these tools. Based on this comparison, the tool will

evaluate the level of compliance between the actual behavior of the IoT device

with its privacy policy agreement and presents the final results to the IoT user.

• Chapter 8- Conclusion and Future Work- concludes the thesis by summarizing

our contributions, findings, as well as highlighting proposals for future work.

1.7 Summary

To sum up, this chapter introduces the background, the main problem, and the mo-

tivation behind evaluating the compliance between the IoT device and its PPA. Also,

we discuss the hypothesis and the main research questions of this thesis. Finally, we

highlight the thesis contributions and structure of the current thesis.
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Before we explain our main contributions to this thesis, first we need, in the next

chapter, to provide a more detailed background and highlight previous studies to put

the thesis in the context of existing work.
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Chapter 2

Background and Literature Review

2.1 Introduction

In order to better clarify the innovative contribution of this thesis, this chapter dis-

cusses related works regarding IoT in depth. In particular, we discuss the existing

literature about security and privacy i.e. IoT testbed for privacy violations and mon-

itor and analyze the IoT traffic. Also, the chapter provides a general background or

several key concepts used in this thesis. First, Section 2.2 of this chapter presents

the required background knowledge about the concept of the IoT; the network tech-

nologies used by the IoT; the main differences between the IoT network traffic and

the non-IoT network traffic; what do we mean by the term Personal Identifiable In-

formation as well as how we use it in this thesis; finally, we explain the meaning of

PPA and data privacy. Section 2.3 discusses the IoT literature relevant to this thesis.

Literature focusing on IoT security and privacy testbeds, as well as different attacks

and vulnerabilities targeting various types of IoT devices are disussed in Section 2.3.1.

This literature serves chapter 4 which ensure the compliance of IoT devices with their

PPA. While Section 2.3.2 and 2.3.3 discuss tow closely related researches which serve

chapter 5, which is: privacy research that monitors IoT network traffic to infer sens-

itive information contained in the traffic and research that monitors and classifies IoT

traffic. Section 2.3.4 presents a summary of various research that has been proposed to

solve some of the PPA issues such as: evaluating the readability of PPA documents and

assessing the language used, evaluating the content, and transparency of PPAs. Also, a
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particular discussion recording the IoT PPA of systems and devices analysis has been

provided in the same section. This literature is related to chapter 6. To serve chapter 7,

Section 2.3.5 presents the current researches that address different compliance issues.

Finally, Section 2.4 summarizes the main topics discussed in this chapter.

2.2 Background

2.2.1 The concept of Internet of Things (IoT)

The concept of the IoT was first proposed in 1999 by Kevin Ashton, noting that the

IoT is interoperable, uniquely identifiable things with Radio Frequency Identification

(RFID) technology [24]. As Figure 2-1 shows, the IoT is a multi-domain (physical and

digital) environment. It is made up of multiple services and devices, which are linked

up and used to gather to exchange data. IoT devices are connected to the Internet so

that they make the shift from functionality to connectivity and data-driven decision

making, meaning that a device can produce and share information to become more

useful. However, the IoT is not just a collection of devices and sensors connected in a

wired or wireless network; it is an intense condensation of virtual and the real world,

where people and devices communicate. It can be considered an interlocking medium

of networks of different sizes [50], which form a large global network. The diversity

of IoT application domains is wide, including smart cities, smart homes, logistics and

transportation, environmental monitoring, smart enterprise environments [101].

In this thesis, we mainly focus on addressing smart home devices. When talking about

smart homes, people may ask what makes a smart home different from the traditional

home? Four main characteristics differentiate a smart home from a conventional home,

as mentioned in detail by Edwards andGrinter [41]. A smart home environment uses

sensor data to evaluate the current state and make a decision (for example, if someone

walks around, the motion sensor picks up this movement, and therefore a decision is
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made to open the light in the room). The recent rapid development of the IoT and its

ability to offer a new platform for services and decision-making have made it one of

the fastest-growing technologies today. This new disruptive paradigm of a pervasive,

physically connected world has a significant impact on social interactions, business,

and industrial activities [43].

Figure 2.1: The deployment map of IoT

[92]

2.2.2 IoT Network Technologies

This section briefly describes the network technologies of IoT devices to give the read-

ers a better understanding of how do the IoT devices communicate and exchange data

with each other.

In the context of a smart home environment, IoT devices must be interconnected to

exchange information. The ways in which these devices and sensors communicate are

determined by communication protocols, which classified into three groups based on

the propagation medium: 1) wired, 2) wireless, 3) hybrid. Noting that choosing the

right technology for use depends on the use case and the size of the network [64].
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When we look at the smart home networks,in particular, we find that IoT applica-

tion domains use wireless communication protocols to connect them to the Internet,

due to the ease of use and lower costs of setting up the network and installing new

devices [63]. The most commonly used wireless protocols used in smart homes are

Wi-Fi, Bluetooth, Z-wave, Zigbee, and 6LowPAN [63], [64], [99]. Due to the hetero-

geneity of IoT devices present in a smart home, the problem of interoperability between

devices using different communication protocols arises.

In this thesis, we only study IoT devices that use Wi-Fi protocol to connect to the

Internet.

2.2.3 Differences between IoT traffic and non-IoT traffic

This section highlights the different characteristics of the network traffic of IoT devices

and non-IoT devices. Also, we briefly mention the previous works that been done to

discover such differences.

Before we analyze the behavior of any IoT device, it is important to understand the

nature of their network traffic, why it’s different than non-IoT traffic, and what are the

key attributes that distinguish IoT traffic from the non-IoT traffic. According to [87],

there are many reasons why it is important to classify IoT traffic from other traffic.

First of all, from a security perspective, the most important reason for distinguishing

IoT traffic is to detect and mitigate cyber-security attacks. For example, knowing that

a particular IoT device from a specific manufacturer is connecting to the network (e.g.

security camera) can help the network administrator to apply specific security rules

i.e. limit the camera only to do specific behavior [81]. Secondly, a network admin-

istrator will be able to control unnecessary multicast/broadcast traffic as well as limit

their impact on other applications. Finally, the network administrators of smart cities

and enterprises will be able to define their networks to measure appropriate levels of

performance in terms of reliability, loss, and access time needed for environmental,
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health, or safety applications. However, the process of classifying IoT traffic (e.g.

smart bulbs, smart camera) from non-IoT traffic (e.g. computers, mobile phones, tab-

lets) within a specific LAN network consider a big challenge. Due to the heterogeneity

of IoT devices, researchers motivated to propose network-level security mechanisms

that analyze traffic patterns to identify attacks [112], [90]. It should be noted that the

success of these approaches relied on understanding the nature of IoT traffic.

IoT devices have been manufactured to perform specific tasks, unlike non-IoT devices

such as laptops or smartphones. For example, a smart plug or smart lamp can be

turned on or off, or even the brightness level of a smart lamp can be adjusted. In fact,

we don’t expect IoT devices to perform like laptops i.e. browsing YouTube or send

emails to others. Due to such limited functions of an IoT device, it generates a stable

pattern of network traffic, which makes it predictable and easy to distinguish from the

network traffic of the non-IoT device.

Meidan et al. [60], [59] emphasize that locating and detecting IoT traffic in a network

become clearly evident. They prove with high accuracy (99.281%) that by analyzing

network traffic, one can differentiate between IPs that belong to IoT devices, PCs, and

smartphones based on their single session.

Sivanathan et al. [88] have demonstrated that there are eight critical attributes based

on the basic characteristics of network tracking, by which IoT devices’ behavior can

be distinguished from the non-IoT device. These attributes are flow volume, flow dur-

ation, average flow rate, device sleep time, server port numbers, DNS queries, NTP

queries, and cipher suites. However, some IoT devices can be distinguished by consid-

ering one or two attributes, such as DNS, port numbers, or cipher suite [88], [89].

Also, the work done by [44] found that unlike non-IoT devices, IoT devices have small

buffer size for TCP stack and therefore commonly has a smaller TCP window size.

Once a device has been identified, techniques such as the one presented in [13] can be

used to further determine the current state of the IoT device.
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In our research, in terms of a smart home, we leverage how to distinguish IoT traffic

from non-IoT traffic and identify its type to study their behavior in more depth. Such

information can help to infer the life pattern of a specific house as well as infer the user

data that the IoT device sends to its manufacturer. Consequently, knowing this type of

information by an illegitimate person (i.e. hacker) raises different concerns related to

violating the user’s data privacy.

2.2.4 Personal Identifiable Information

In this section, we aim to define the term of Personal Identifiable Information (PII),

and how we employ it through this thesis.

PII is a generic term referring to "information which can be used to distinguish or

trace an individual’s identity" [34]. While the GDPR defined Personal Data as follows:

"Article 4(1): ’personal data’ means any information relating to an identified or iden-

tifiable natural person (’data subject’); an identifiable natural person is one who can

be identified, directly or indirectly, in particular by reference to an identifier such as

a name, an identification number, location data, an online identifier or to one or more

factors specific to the physical, physiological, genetic, mental, economic, cultural or

social identity of that natural person" [45], [76].

The meaning of PII and Personal Data is similar. However, the difference between

PII and Personal Data is mostly a difference between US and EU legal definitions.

Sweeney [98] writes that "Personal Data is considered to be the European equivalent

of PII."

In this thesis, we use the term PII, not Personal Data, to refer to the user personal data.

According to [98], [49], we classify the type of user PII as follows:

1. sensitive PII- which comprises information related to the user that is not for

public use or may violate the individual privacy and security by being made
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publicly available, e.g., Credentials (username, password), telephone number,

date of birth, and Location (GPS latitude and longitude, zip code).

2. non-sensitive PII- which is information that can identify the user but will not

affect his privacy or security, such as email address, first name, nickname, social

media profile, website, device, or OS installation.

2.2.5 Privacy Policy Agreement and Data privacy

This section describes the meaning and the objective of using a Privacy Policy Agree-

ment (PPA) and why IoT manufacturers need to issue and adhere to their PPA.

PPA aim to answer questions related to the users’ privacy simply and understandably,

such as: what information is collected by the manufacturer? Who collects such in-

formation? How is the information collected, used, and protected? Who can access

my information, and what information is being shared and with whom? Thus, the

importance of having a PPA is to safeguard individual privacy. While most privacy

policies look similar, the details vary depending on the scenario and why they seek

such information. It should be noted that the definition of ’Personal Identifiable In-

formation’ can also change, depending on who is collecting it. Nevertheless, they all

include general information like names, email addresses, and details like IP addresses

and browsing history.

The Internet Security Glossary has described Data Privacy as "the right of an entity

(normally a person), acting in its own behalf, to determine the degree to which it inter-

acts with its environment, including the degree to which the entity is willing to share

information about itself with others" [83]. Recently, the majority of governments do

treat data privacy as an essential human right [4]. Most have created laws designed to

protect citizens and prevent manufacturers from taking their information without con-

sent. It is now the norm for businesses to be obligated to state precisely why they want

the information and why they plan to do with it [8]. Privacy is not only about access
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authorization and encryption; rather, it also emphasizes on the type of transmitted in-

formation [37], and on how it will be used and shared by the legitimate recipient (e.g.

IoT manufacturer).

Based on the EU Commission report on the IoT, The Cluster of European Research

Projects on the IoT [96], privacy and security continue to be the biggest challenge

for IoT research that contains privacy-preserving technology for heterogeneous device

sets. They suggest that a lot more research is needed to uncover better forms of se-

curity and find more effective ways to protect the privacy of user’s data. The FTC

(Federal Trade Commission) [2], which advises businesses and manufacturers as to

their responsibilities regarding data privacy in US, provides information on the best se-

curity techniques and works closely with manufacturers to try and create stronger, safer

devices. The head of the FTC, Edith Ramirez, is keen to point out that, if businesses

don’t take the right steps, their relationships with consumers could be damaged, he said

"The only way for the Internet of things to reach its full potential for innovation is with

the trust of American Consumers. We believe that by adopting the best practices we’ve

laid out, businesses will be better able to provide consumers the protections they want

and allow the benefits of the Internet of things to be fully realized".

2.3 Literature Review

2.3.1 IoT Testbeds for security and privacy violations

In this section, we examine the available IoT literature focusing on IoT security and

privacy testbeds as well as different experiments of attacks and vulnerabilities targeting

various types of IoT devices that are related to user data disclosure, as shown below.

Most of the security and privacy research regarding IoT devices has focused on se-

curity issues [40]. Other security research monitors IoT traffic to detect intrusion at-

tempts [19] or has discovered various IoT vulnerabilities [107].
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Secu Wear [46] is a testbed designed for wearable IoT devices proposed by Hale et al.

this testbed aimed to assess both software and hardware vulnerabilities. Its platform

consisted of several open-sourced technologies such as Django, MetaWear, Ubertooth

One, and Apache Cordova. The shortcomings of this testbed were; first, it only tests

the security of BLE (Bluetooth low energy). Secondly, it tested security using basic

intrusion attacks only.

Another state-of-the-art testbed targeted wearable IoT device was proposed by Siboni

et al. [84]. Its main goal is to apply a set of security requirements against wearable IoT

devices in order to test their security level. Also, it tested the behavior of those wear-

able IoT devices under several conditions, for example, when different applications

are running. While the testbed of this thesis aims to examine the behavior of the IoT

device in order to detect the type of personal information being sent from IoT devices.

Other researches have been carried out, which were intended to discover different vul-

nerabilities in smart IP cameras [100, 1, 52]. The testbed used in this thesis includes the

same Netcam device used in [100]. However, such testbed aims to collect IoT traffic

in order to prove the level of compliance between the actual data transferred from the

Netcam and whether its PPA stated this particular data practices, which is different

than the objectives of the researches mentioned above.

To conclude this section, the previous literature is limited to either unauthorized access

to personal data (e.g. anticipating the users’ behavioral patterns by sniffing wireless

traffic exclusively) or applying different experiments of attacks and vulnerabilities tar-

geting various types of IoT devices that are related to user data disclosure. In contrast,

the first IoT testbed of this thesis (Section 4.3) proves the existence of the compliance

issue between the actual behavior of IoT devices with their respective PPA, which has

not been in focus in the field of IoT devices before.
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2.3.2 IoT privacy concerns

In this section, we present the most relevant and state-of-the-art researches that aim to

discover different privacy violations in the field of IoT devices. Motivated by privacy

issues, Apthorpe, Reisman, and Feamster [22] showed how a passive network observer,

e.g., an Internet Service Provider (ISP), can analyze traffic data to infer sensitive in-

formation about consumers as well as the type of connected IoT device even when

the traffic is encrypted. They examine four commercially available IoT smart-home

devices and find that an IoT device’s particular activity and its type can be revealed

through network traffic rates by anybody passively monitoring the traffic rate pattern.

For example,

1. An Amazon Echo’s traffic1 can indicate when the intelligent personal assistant is

being engaged with by a user.

2. Motion detection by a camera, as well as a user is observing its live images, can

all be determined from a Nest Cam2 Indoor CCTV’s traffic levels.

3. Whether a Belkin WeMo switch3 device is on or off in a smart house can be

inferred from its traffic.

4. The sleep pattern of a user can be understood from a Sense sleep4 device’s traffic

levels, by someone monitoring such traffic.

Our work is similar to the above in that we also study and analyze the encrypted traffic

of the IoT devices, see chapter 5. However, in their research, the focus was on: (1)

examining the traffic that goes directly from the IoT device to the IoT cloud (D-C), i.e.

path A, see Figure 3.2, (2) studying only the traffic rate pattern to infer the type and

the activity of the IoT device. In contrast, our focus is on the traffic that goes directly

1https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E
2https://nest.com/cameras/nest-cam-indoor/overview/
3http://www.belkin.com/us/
4https://sleeptrackers.io/sense/
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from the IoT app that controls the IoT device to the IoT cloud (A-C), i.e. path C, see

Figure 3.2. Also, we do a more in-depth analysis by examining the size and sequence

of the packets, and because of this we are able to infer the user interaction with the

IoT device (e.g., login to the IoT device), the user sensitive data, and finally the type

of such sensitive data (e.g., password).

Siby et al. [85] developed a system called IoTScanner to analyze the IoT environment.

This system can scan traffic in the Wi-Fi, Zigbee, and Bluetooth Low Energy frequen-

cies. Furthermore, IoTScanner gives an overview of active IoT devices in a particular

environment as well as the communication taking place between them. As a result, they

find that it is possible to violate user privacy by classifying active Wi-Fi IoT devices,

via the ratio of the send and receive traffic. In contrast, in this thesis, we prove that user

privacy can be violated by monitoring the IoT traffic to determine user behavior with

the IoT device via its app (e.g. login to the IoT app to control the IoT device). Also, we

infer the type of such sensitive information revealing from such behavior (e.g. login

credentials).

Torre et al. [102] discover a new kind of privacy risk related to personal data leakage

when users share their data with third parties while using IoT applications. They define

several algorithms in order to conduct inference attacks as well as offer strategies to

avoid such attacks. An Adaptive Inference Discovery Service has been proposed by

them, which helps users configure their permissions to share personal data and to allow

them to identify any risks related to this shared information. Notice that the proposed

system works as an add-on to personal data managers PDMs as a recommended system.

Wang et al. [105] present another contextual attack system called MoLe (Motion Leaks

through Smartwatch Sensors) using the smartwatch device. They were able to prove

that the user’s sensitive and personal information has been leaked by using smartwatch

devices.

The work done by [23] and [13] used the traffic levels to determine the behavior of the

IoT device. They find that encryption processes would still enable packet headers and
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smart home traffic levels to be used by a passive network attacker to determine local

activities by profiling network traffic using machine learning algorithms.

In contrast, our research is different than the previous studies [102, 105, 23, 13] in the

following:

1. The proposed system by [102] works as an add-on to personal data managers

PDMs as a recommended system. While in our work, we invent an interactive

tool to notify the IoT user about his sensitive PII data or non-sensitive PII data

that the IoT device sends to its cloud via its app of a specific interaction.

2. The proposed system by [105] found that it is possible to recognize and identify

the keyed words with reasonable accuracy. This indicates that the user’s pri-

vacy could be violated by an attacker using such an attack within the context

of keyboard keying. In contrast, our study proves that user interaction with the

IoT device (e.g. user login to the IoT app to control the IoT device) can be also

inferred with high accuracy of 99.8%.

3. Similar to [23, 13], the privacy tool invented in this research can detect with

high accuracy (99.8%) the encrypted packets of a smart home traffic. However,

our tool differs from them in that it only detects the packets that carry sensitive

information (e.g. login credentials). It can also determine the behavior of the

IoT user by observing the pattern and the sequence of the IoT traffic.

A comprehensive security test has been applied in [48, 38] on the fitness device, which

is a popular tracker device. They mainly examine the Bluetooth connection between

the tracker device and its paired Android smartphone device, which includes the Fitbit

application. They analyze the communication between the Fitbit application and its

web service. Interestingly, they find that sensitive information such as the BLE cre-

dential is sent in plaintext from the Fitbit web server to the smartphone application.

This means that an attacker could obtain this information with a Man-in-the-Middle-

Attack (MITM). Also, they point out that smartphones could eavesdrop on any close
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Fitbit devices and send their MAC addresses to the Fitbit server; notice that these se-

curity issues will allow anyone to track other Fitbit users. While Symantec analysis

of self-tracking devices investigate [29] shows that lots of self-tracking devices and its

applications have security and privacy threats.

The work of Obermaier et al. [66] on cloud-based cameras found that although the

device had what appeared to be a strong password (36 characters of alphanumeric

and symbols), the password was the MAC address of the camera reversed and Base64

encoded.

To conclude this section, the second contribution of this thesis (section 5.3) is to em-

phasize the privacy risks and vulnerabilities associated with the type of personal in-

formation (e.g. user location) being transferred from the IoT device via its app to the

IoT cloud. In addition, we aim to inform IoT users whether such information could

reveal his activity with the IoT device (e.g. user login, or log out from the IoT app),

which has not been addressed before.

2.3.3 IoT Traffic Classification

In this section, we first examine the researches that classifies IoT traffic. Second, we

considered the most relevant research to ours, which is privacy research that monitors

IoT network traffic to infer sensitive information contained in the traffic.

Even though there is a huge body of work characterizing general Internet traffic, re-

search focusing on characterizing IoT traffic (also called machine-to-machine-M2M-

traffic) is still in its infancy. One of the first huge-scale studies to investigate the nature

of M2M traffic has been done by Shafiq et al. [80]. They want to understand whether

IoT traffic imposes new challenges for cellular networks in terms of their design and

management. The work done by [51] has suggested that vast quantities of IoT device

information reflecting common behavior, and a sole IoT device’s communication be-

havior can be determined through a Coupled Markov Modulated Poisson Processes
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model.

Sivanathan et al. [89] characterize, classify, and analyze 21 distinct IoT devices in smart

cities and campuses. Three weeks of data from traffic traces were obtained during

the research, which was then put in the public domain. Subsequently, the protocols,

signaling, activity trends, and other features of the traffic were statistically assessed.

Ultimately, a classification method was devised with a greater than 95% precision rate

for determining specific IoT devices, in addition to being able to ascertain whether the

device was IoT-enabled or otherwise.

A logical IoT device classification model was developed in [53]. However, their model

was limited to only classify the IoT devices into two categories, namely high vs. low

energy consumption. Hence, as the authors state, it is still at a primary stage.

Furthermore, Y. Meidan et al. [59] propose a machine learning algorithm to categorize

the IoT devices and the non-IoT devices based on network traffic analysis. They use

features extracted from full TCP sessions (from SYN to FIN) of two smartphones, two

computers, and ten IoT devices with a 99.281% precision rate in the classification.

Contrary to the other mentioned approaches, M. Miettinen et al. [62] uses a variety of

features extracted during the device setup phase to develop a method for determining

the type of IoT device connected to the network. They train one classifier per device

type with the aim of restricting the communications of vulnerable IoT devices.

All previous research deals with IoT traffic classification with the aim of (1) classifying

the IoT traffic from the non-IoT traffic, (2) classifying the IoT traffic to determine

specific IoT device, (3) classifying the IoT traffic into low energy or high energy in

order to understand the current behavior of the IoT device. In contrast, in this thesis,

we leverage the advantage of the correlation between traffic patterns of IoT device and

sensitive activities to apply machine learning in order to classify IoT traffic aiming to

infer accurately:

1. Packets that reveal the interaction type between the IoT device and its corres-
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ponding IoT app.

2. Packets that reveal sensitive Personal Identifiable Information (PII) about their

user.

3. Packets reveal the content type of such sensitive information

2.3.4 Privacy Policy Analysis

A growing body of literature has examined the privacy policies of websites and mobile

apps in different fields. Section 2.3.4.1 presents several studies that focus on evalu-

ating the readability of PPA documents of Internet websites and mobile apps as well

as assessing their language. While in section 2.3.4.2, we discuss various approaches

that focus on annotating and categorizing the text of privacy policies. A few works

have recently emerged, focusing on analyzing the IoT privacy policies of systems and

devices, which we discuss in section 2.3.4.3.

2.3.4.1 Difficulties in Reading Privacy Policies Analysis

One strand of research [79, 28, 58, 109] examines the reasons why most users ignore

the PPA, what is the best time to display privacy notices to users, and why privacy

policies are full of jargon and not understandable to users.

While other research [56, 36] suggests solutions to help users not to read the full PPA

but to read only the paragraphs that belong to the categories that interest them. The

previous methods aim to shorten the privacy policies, so users read few paragraphs

as possible. However, the problems of understanding complicated, ambiguous, and

hidden information [35] have not been solved.

Another strand of research has studied the readability of PPA documents within mobile

environments [86, 97].
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In our approach, we aim to solve the previous problems in IoT privacy policies by only

informing the users with the type of PII information that has been collected by the IoT

manufacturer without asking them to read the full PPA or specific paragraphs. Also,

we do our analysis automatically, avoiding problems with manual analysis.

2.3.4.2 Privacy Policy Annotation and Text Categorization Analysis

Baalous et al. [26] relied on manual testing and review to analyze the type of inform-

ation collected, collection mechanisms, the purpose for collection, sharing of inform-

ation, user controls, and the information period of privacy policies of cloud storage

mobile applications which claim zero knowledge. However, manual testing is time-

consuming despite the correct results.

The work of [47] proposed an automated framework for PPA analysis (Polisis), which

automatically annotates, with high accuracy, each segment with a set of labels de-

scribing its data practices. They compared their automatic annotation with the manual

annotation done by [108] to prove the accuracy of their results. Although in their ap-

proach, the users will read only a few paragraphs, the problem of the complexity and

the difficulty in understanding the hidden meanings in such paragraphs still does not

solve [35].

Massey et al. apply an automated text mining analysis to analyze PPA documents.

They perform a large-scale analysis of 2,061 policies providing the most extensive

evaluation. However, they didn’t focus on their legal analysis but rather their read-

ability and suitability for identifying privacy protections and vulnerabilities from a

requirement engineering perspective [57].

[16, 72] used machine learning techniques for text categorization on privacy policies to

determine whether the company has access to personal data as well as if the users can

cancel, terminate, or delete their accounts. Whereas Sathyendra et al. [78, 77] aimed

to detect the provision of choices in the PPA as they focused on extracting opt-out
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instances.

In contrast, our research is different from the previous researches in the following:

1. We focus on the PPA text of the IoT manufacturers.

2. We propose an automated tool to read and extract the text that only collect PII

about the users when they use and interact with the IoT devices.

3. We categorize the sensitivity level of the collected PII by the IoT manufacturer

into sensitive-PII and non-sensitive PII according to the GDPR [49].

4. Our classifier works at the level of sentences instead of segments or word level

as we analyze 31661 sentences from 50 IoT privacy policies.

Reidenberg et al. [73] propose a method to score parts of privacy policies based on their

ambiguity. Hence, in their study, they develop a theory of vague and ambiguous terms

that could address privacy policies’ ambiguity. They used machine learning techniques

to classify ambiguity in "share", "collect", "retain" and "use".

Our work is similar to the previous study in that we also study and analyze ambiguous

language but in IoT privacy policies. However, their method does not take any further

steps in solving these ambiguities within privacy policies. In contrast, in our research,

we propose a method to solve such ambiguity. Consequently, we come up with ten

different corner cases that may affect the way of understanding the correct meaning of a

PPA. In each case, we apply different sets of rules to solve different types of ambiguity

in order to understand the true meaning of such privacy policies, see chapter 6.3.2

2.3.4.3 IoT Privacy Policy Analysis

We find that all previous studies have focused either on; making the privacy policies of

the websites and the mobile apps either:

• more readable by shortening their duration,
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• determining whether personal information can be collected,

• determining whether personal information disclosed to advertisers,

• or determining whether personal information kept indefinitely.

While a few works have emerged focusing on analyzing the IoT PPA. IoT users under-

stand that their PII is used for some purposes. For example, smartwatch users expect

their data to be transferred to the company’s servers to calculate their burned calories.

However, they do not know the type of personal information that was transferred, nor

if this information might violate their privacy[70].

Recently, the following studies are the only ones that focused on addressing issues

around IoT PPAs. However, none of them solved the problem of understanding such

long and complicated text as well as informing the IoT users with the PII type that the

IoT manufacturers collect about them stated in their PPA.

Shayegh and Ghanavati [82] analyzed 25 IoT privacy policies and proposed a set of

new annotations. They used these new annotations to manually classify IoT PPA in

order to present short notices on the IoT device’s screen. As a result, they generated

a graph-based view and showed data practices in a better way to users. However, lots

of IoT devices do not have a screen like smart switches or smart labs. Their goal was

to propose a method for software designers and developers to create more effective

privacy policies. In contrast, our work is different from them in that; first, we ana-

lyze twice as many as their policies (50 policies). Second, we propose a new set of

annotations for:

• specifying the type of information collected, i.e., whether the IoT manufacturer

PPA collects user login information,

• categorizing the collected data to either sensitive PII or non-sensitive PII accord-

ing to the general data protection regulation to the GDPR [49]. For example, if
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the IoT PPA states that it collects user login credentials, then we categorize it as

collecting sensitive information.

The work of Perez et al. [71] is different from Shayegh et al. [82] in terms that they

provide an analysis of the privacy practices instead of proposing a model for the ana-

lysis of privacy practices for six IoT devices and systems. They presented a review

of issues related to privacy policies about the practices that manufacturers provide re-

lated to data collection, data ownership, data modification, data security, external data

sharing, policy change, and policies for specific audiences. In contrast, our study is

the only one that analyzes the largest dataset of IoT PPAs, among other IoT PPA re-

searches. Furthermore, we propose a novel method to inform the user about the type

of PII that has been collected by the IoT manufacturer’s PPA as well as categorizing

the sensitivity level of such information;see chapter 6 for more detail.

2.3.5 Compliance to Data Protection Regulation

The European Union affirms that all individuals who communicate online have the

right to privacy and accordingly have drafted data protection legislation. The Federal

Trade Commission (FTC) has sent complaints to Microsoft, Google, and Facebook

because of posting privacy policies that do not conform to the company’s actual prac-

tices, which led to the deception and misleading of users. In 2011 Apple Inc. has also

been accused of collecting and tracking user’s locations without their knowledge [12].

Apple’s defense regarding this tracking was to save battery power in the device by

using the location caching algorithms [67].

Recently, the research community has shown interest in the area of compliance with

requirements and policy documents, which has led researchers to discuss such require-

ments. For example, an integrated strategy has been developed by Anton and Earp,

focusing on the initial identification of security and privacy policies and their activa-

tion in system-compliant system requirements [20]. In addition, they have technologies
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to identify early conflicts as well as prevent incompatible behavior, and unsafe imbal-

ances and requirements, so that security and privacy are built instead of being added at

a later stage [21].

The Theory of obligations, privileges, and rights has been used by Young et al. to de-

termine software requirements based on the obligations organizations express in their

policy documents (such as privacy notices, terms of use, etc.) [111, 110].

Allison et al aimed to seek compliance with the FIPPs by creating a PPA element model

for information systems in Service-Oriented Architectures [14].

While a framework called REQMON has been developed by Robinson which monitors

requirements compliance with policy documents at run-time [75].

In contrast to the above researches, the objective of this thesis is to evaluate the level

of compliance between the actual behavior of the IoT device with the requirements of

its PPA.

On the other hand, there are several analyses have been performed to address the com-

pliance issues between android applications and their privacy policies. For example,

Sivain et al. [91] proposed a method to check whether an Android application complies

with its PPA by linking the PPA statements with Application Programming Interface

(API) that produce sensitive information.

While Zimmeck et al. [114] develop a method to collect and analyze free Android apps,

their research has two parts: (1) PPA analysis and (2) mobile application analysis, then

evaluate the compliance between them.

Our research differs from previous studies in the following:

1. The proposed method done by [91] seeks compliance between the android ap-

plication and its PPA. While in our research, we develop a tool to evaluate the

compliance of the IoT device with its PPA by linking the PPA statements with

the actual behavior of such a device.
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2. Similar to [114], our invented tool evaluates the level of compliance by combin-

ing the results of two parts. However, we differ from them in that we analyze

the encrypted traffic of the IoT device in the first part; then, we analyze the texts

of the IoT PPA in the second part. Finally, we link the results from both parts to

evaluate the compliance level, as described in chapter 7.

Recently, few works have emerged from analyzing and evaluating the compliance of

the IoT systems and devices with their privacy policies. For example, Neisse et al. [65]

have developed a security toolkit called SecKit that specifically designed to cope with

the unique security issues posed by the IoT and to facilitate adherence to data protection

legislation. SecKit integrates with the Message Queue Telemetry Transport (MQTT)

protocol layer. MQTT is extensively used to manage information flow among devices

connected via the IoT.

While Perez et al. [71] developed a testbed aimed at investigating traffic generated

by two IA assistive devices, Amazon Echo Dot 2.0 and Google Home, when they

actively and passively listen to sounds. They found that the two devices behaved as

described in their privacy policies: the sound only recorded when the "wake word" is

used. However, their work is limited because:

1. They only used voice-activated IAs, while in our work, we use a various range

of IoT devices e.g., smart plug, smart cameras, and smart lamb.

2. They did not consider encryption traffic generated by the IoT device, and they

suggested a tool to collect the IoT packets to analyze it.

In contrast, our work solves the previous issues by developing a tool that automatically

reads collected encrypted IoT traffic and infers, with high accuracy (99.8%), the type of

data transferred to the IoT cloud (Chapter 5). Also, we develop another text mining tool

that automatically reads IoT privacy policies. Finally, we link the two tools together to

evaluate compliance according to the actual behavior of the IoT device with what the

manufacturer states in its PPA.
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2.4 Summary

In this chapter, we discuss the important background and definitions of the main ter-

minologies we used in this thesis. To gain a full understanding of the topic, we review

the recent literature in four main arias that are related to our study. First, we review

the current IoT testbeds techniques and the objectives of each one. Second, we discuss

the latest studies and experiments related to the IoT data privacy concerns and the type

of data leak from the IoT device. Also, we have briefly discussed some of the most

recent literature in collecting and analyzing IoT traffic as well as review the existing

work in analyzing different issues related to reading, understanding the complicated

meanings, and annotating privacy policies. Thirdly, we pay particular attention to the

literature that focuses on analyzing IoT privacy policies. Finally, we discuss the re-

cent studies targeting compliance issues between the Android apps and their privacy

policies as well as the studies targeting compliance issues between the IoT device and

their privacy policies.

With the acquired information from this chapter, we can proceed to the next chapter

in order to discuss the methods we used to collect the dataset that will be used in this

thesis.
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Chapter 3

Data Collection Methodology

3.1 Introduction

In this chapter, we explain how the data were collected and extracted to serve this

research. In particular, we cover the methodology used to collect the required data

from two different data sources to conduct the first contribution in chapter 4, the second

contribution in chapter 5, and the third contribution in chapter 6. To collect the first

data source, we study the IoT device’s network behavior and analyze its pattern by

using the traffic properties obtained at the network level. Using this, we establish the

ground truth in order to develop a tool to classify the encrypted traffic that emerged

from the IoT device. For the second data source, we study in-depth the language used

within IoT PPAs. Then we annotate the texts to create an automated tool that can read

long and complicated privacy policies to extract relevant information.

In Section 3.2, we describe the IoT devices used in this thesis. While, Section 3.3

describes the methods used to collect the data to achieve the first contribution. In

Section 3.4, we describe the methods used to collect the data to perform the second

contribution. Section 3.5 describes the methods used to collect the data to conduct the

third contribution. Finally, the summary of this chapter is presented in Section 3.6
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3.2 IoT Devices

Our analysis covers four IoT devices. We selected these devices based on the follow-

ing factors: First, we expect an average consumer can afford the price to buy such

IoT devices. Second, we choose IoT devices based on their popularity and customer

ratings.

The devices included in this thesis, see Table 3.1 for more details, are two smart cam-

eras and two smart home automation devices i.e. smart plug and smart lamp. Also,

we use an Android smartphone to install the recommended apps of each IoT device in

order to control its functions.

Type of Devices Model Type IoT Device Manufacturer Type of IoT-app (iOS, Android)

Smart Plug HS110 TP-link KASA version 2.11.0

Smart Camera NC200 TP-link TpCamera version 3.1.12

NetCam HD F7D7601fc Belkin NetCam version 2.0.4

Smart Lamp B22 Lifx LIFX version 3.13.0

Table 3.1: IoT devices used in this thesis

3.3 Data Collection Experiments for the first contribu-

tion

The objective of this experiment is to determine to what extent IoT manufacturers are

adhering to their PPA presented on their website. To achieve this, we implement two

different stages, i.e. theoretical and practical stage, each of which has its own data

source. Then, we compare, manually, the results from both stages to evaluate the level

of compliance between the data transfer from the IoT device with what stated in its

PPA. The results of our experiment are presented in chapter 4.4. Now we explain each

stage separately.
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3.3.1 Stage one (Theoretical)

The objectives of this stage are: First, determine whether IoT manufacturers have a

PPA that is appropriate for their IoT products? Second, create eight main criteria,

based on the GDPR, that must be applied by all IoT manufacturers when they design

their PPA. The aim of implementing such criteria is to preserve the privacy of the IoT

end users. To do this, we analyze eleven popular IoT manufacturers with the aim of

finding out if such manufacturers offer appropriate PPA for their devices. The second

aim is, to investigate whether the IoT manufacturers provide sufficient information

in their PPA, such as what kind of personal data they collect from their IoT device,

whether they interact with a third party or not, etc. The eleven IoT manufacturers that

we analyze are the following:

1. LIFX.

2. AWAIR (Bitfinder).

3. Google Home.

4. Tp-link.

5. Samsung smart home.

6. Belkin.

7. Nest Labs.

8. Hive.

9. Toymail.

10. Philips Lighting.

11. Honeywell.
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The results of this analysis proved the there are critical issues related to the IoT PPA

that has not been addressed before. Accordingly, we establish eight main criteria in

which any IoT manufacturer should apply them when creating a PPA for their respect-

ive IoT devices. These criteria can be found in chapter 4.4.1

3.3.2 Stage two (Practical)

The objective of the second stage is to investigate the actual behavior of the IoT device.

To do this, we conduct a testbed to collect the traffic from two different IoT devices,

i.e. Belkin NetCam and Tp-Link Smart Plug (see Table 3.1). In particular, we need to

find out precisely from such traffic what kind of information is being transferred from

the IoT device, and whether these information are sufficiently detailed in the IoT PPA.

We explain in the following subsections the network configuration, the data collection,

and the interaction experiment used to collect the traffic.

3.3.2.1 Network configuration

Figure 3.1 illustrates that, in this context, traffic is transmitted (and therefore needs to

be monitored) among three points: IoT device, IoT app installed in a smartphone, and

IoT manufacturer’s cloud. In this testbed, we use two IoT devices as we mentioned

earlier. Also, we use the Kali Linux laptop for traffic sniffing/monitoring, Ethernet

cable, and home router. For IoT devices that require a companion app, we use an An-

droid smartphone (Samsung S8 edge) to install the recommended app of each device,

see Table 3.1. The methods used to analyze the traffic as well as the results of the

analyses will be discussed in more detail in chapter 4.4.2.1

First, we need to configure the Kali Linux laptop to work as a Wi-Fi hotspot to connect

the IoT devices and the Android smartphone to the Internet. To do this, we connect

the Kali laptop to the router via the Ethernet cable to access the Internet. Then, we

activate its Wi-Fi hotspot, as described in [7]. Second, we install the recommended
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Figure 3.1: IoT Compliance Testbed

app of each IoT device in the Android smartphone. Next, we connect the smartphone to

the Internet using the Kali hotspot. Finally, we configure the two IoT devices through

their IoT apps to connect them to the Internet through the Kali hotspot. Using this

configuration, we were able to sniff and monitor the local traffic moving between the

IoT devices and the android application to the IoT cloud (and vice versa).

3.3.2.2 Data Collection

All the traffic of the testbed’s network was automatically collected using the Wireshark

tool [11] running on the Kali Linux laptop. We used the MAC address of each device

as an identifier to separate its traffic from the traffic mix that includes other devices

in the network. The resulting traces were stored as pcap files on an external storage

device. We started logging the network traffic in our smart home environment from

1-April-2017 to 20-Jul-2017; each raw trace data contains packet headers and payload

information.
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3.3.2.3 Interaction Experiments

To analyze the behavior of the IoT device and thus find out whether its actual behavior

complies with its PPA, we conduct several active interactions with each IoT device.

These include manual and automated interactions as following:

1. Control the functionality of the Tp-Link plug through its app:

• Switch on/off the plug manually.

• Set up a timer to switch on/off the plug automatically.

• Define a schedule with specific times within one day to switch the plug

on/off automatically.

2. Control the functionality of the Belkin Netcam through its app:

• Record live videos and capture pictures manually.

• Set up a timer to record live videos automatically.

• Define a schedule with specific times to record videos and capture pictures

automatically.

3.4 Data Collection Experiments for the second contri-

bution

The objective of this testbed is to study in-depth data disclosure from path C in Fig-

ure 3.2. The information sends to the IoT cloud from the IoT app i.e. path C, is much

more sensitive than the information sends to the IoT cloud from the IoT device itself

i.e. path A. This information not only reveals the type or the traffic rate of the IoT

device, but also it reveal user’s PII, such as credentials, location, as well as the inter-

action between the IoT end user and the IoT device. The latter type of information
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Figure 3.2: Methods of IoT communication with its cloud to transfer data

is not evident from the traffic on path A. In the following subsections, we explain the

network configuration, the data collection, and the interaction experiment to establish

the ground truth for the second contribution.

3.4.1 Network configuration

We set up our smart home testbed with four well-known and commercially available

IoT devices as a representative example of a smart home. The devices include in this

testbed are TP-link smart plug, TP-link smart camera, Belkin NetCam, Lifx smart

bulb. Also, we use an Android smartphone and connect it to the network. We install

the recommended apps on the smartphone to control the functions of each IoT device

in our testbed; see Table 3.1 for more details. Additionally, we use Kali Linux laptop

to perform two tasks: (1) monitor and continually collect the network traffic between

the IoT device and the smartphone app, and also between the smartphone app and the

cloud, and (2) perform a Man in the Middle attack (MITM) as we explain in the next

section. Figure 3.3 displays the architecture of the smart-home testbed.
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Figure 3.3: Detecting the behavior of the IoT user testbed network architecture.

3.4.2 Data Collection

We conduct our experiments to establish ground truth from November 2018 until April

2019. We use Wireshark [11] running on the Kali Linux laptop to passively capture

and collect the traffic data of the IoT devices and their relevant IoT apps: First, we

determine the IP address of each IoT device within the smart home network; then,

we identify the IP address of the smartphone that has the installed IoT apps. The

second and third steps are performed in parallel: In the second step, we intercept and

therefore collect the traffic by conducting a MITM attack with ARP spoofing between

the smartphone and the IoT cloud, the steps of performing this attack are detailed

in [5]. This attack allows us to record all network traffic between the IoT cloud and

the IoT app in both directions. Figures 3.4 and 3.5 illustrate the redirection that ARP

spoofing causes in the traffic between the IoT app and the IoT cloud. Before ARP

spoofing, the traffic goes via the router, Figure 3.4; after the ARP spoofing, the traffic
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Figure 3.4: All traffic goes through the router.

Figure 3.5: IoT-app traffic is redirected through the Kali laptop (Attacker).

goes via the attacker device (in this case via our Kali laptop), then Kali sends it to the

router as Figure 3.5 shown. While the MITM attacks are active, we interact with

each IoT device mentioned in Table 3.1 separately. We perform several interactions

because they are common among IoT apps (see the next subsection). This second step

collects encrypted TLS traffic that we need to decrypt to establish the ground truth
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about the packets that the IoT app sends to the IoT manufacturer’s cloud. We do this

decryption in the third step, while we are collecting the traffic. First, we used the Burp

Suite tool [6] on our Kali laptop. In Burp Suite, we set up the proxy server port to

8080 to listen to the network traffic of the smartphone and the IoT device. Second,

we configure the Wi-Fi setting of the smartphone to use the same proxy server port.

Finally, we install the Burp Suite certificate onto the smartphone User Trust Store.

It should be noted that these steps only work if the IoT app does not employ certificate

pinning [61]. In our case, KASA, TpCamera, and NetCam do not employ certificate

pinning, but Lifx does. One of the solutions to solve the certificate pinning problem

is to reverse engineer the IoT app. Then, install the fake certificate from the Burp

Suite [6]. Finally, recompile the new version of the IoT app and re-install it on the

smartphone. We make the collected traffic of some IoT devices publicly available at

( https://github.com/Alanoud-Subahi/IoT-app_PrivacyInspector).

3.4.3 Interaction Experiments

To understand what information does the IoT device sends to its cloud, we conduct

several interaction experiments with each device. First, we wait for each device to

start up, then we perform one interaction at a time. Next, we start capturing the traffic

and label it with the name of this interaction. The time specified for each interaction

varies depends on the type of device. The type of interactions we consider for these

experiments are the following:

1. Login to the IoT application: permitting the user to control the IoT device func-

tions.

2. Alter settings including changing the password: permitting the user to modify

the IoT device settings or the password.

https://github.com/Alanoud-Subahi/IoT-app_PrivacyInspector
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3. Delete the IoT device: allowing the user to cease use of the IoT device by delet-

ing it from the application, and consequently deleting it from the IoT cloud/server

database.

4. Logout from the IoT application: which ends the user’s access or control of the

IoT device functions.

3.5 Data Collection Experiments for the third contri-

bution

The goal of this experiment is to simulate how an average person can read and assim-

ilate the information in IoT PPA, especially if the text is long and complicated.

Therefore, we study in-depth the complicated and ambiguous sentences that average

end users won’t understand with the aim of informing them about the data collection

practices as well as the type of personal information that IoT manufacturer’s PPA col-

lects when they use its products. The results of this analysis can be found in chapter 6.

3.5.1 Data collection

To perform our analysis and apply our annotation scheme, we need to collect a range of

IoT PPAs. We select our policies based on the popularity of the IoT manufacturers. In

total, we come up with 50 different IoT PPAs, covering smart home appliances, smart

kitchen appliances, smart security devices, smart wearable devices, and smart health

and fitness devices. However, the tool we create in chapter 6.4 trained to accept and

analyze the URL of any IoT manufacturer PPA.
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3.5.2 Data Pre-processing

To prepare the collected IoT PPAs for the analysis conducted in chapter 6, we need first

to pre-process the collected data. The methodology that we use includes the following

steps:

1. We use Urllib.request module for fetching the URLs of the IoT PPA; the result

of this module is a text contained HTML and XML tags.

2. To extract the HTML text only and remove all unwanted tags, we use the Beautiful-

Soup2 library.

3. We use Regular Expressions to remove non-ASCII characters such as punctu-

ation and special characters.

4. The final text has been tokenized into sentences using Natural Language Toolkit,

and lower case them.

In contrast with other approaches, i.e. [82], we do not remove English stop words such

as "you", "we", "they" etc. because, in our analysis, we consider the role of the party

who performs the action. In total, we process 31,661 sentences from 50 IoT privacy

polices.

Once the IoT PPAs are ready, we start applying our annotations scheme to each sen-

tence. After that, we use these sentences as instances to extract the relevant features

for the classification algorithm. More details are explained in chapter 6.2.3.

3.6 Summary

In this chapter, we describe the environment of two different IoT testbeds used to col-

lect and synthesize the network traffic from various IoT devices, each of which serves
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different contribution. In addition, we explain the methods we use to collect and pre-

process 50 different IoT PPA to prepare them for the feature extraction and labeling

process to serve the third contribution.

Now that we have described the data necessary for this research, we can move on to

address our hypotheses and research questions discussed in chapter 1. In particular,

in the next chapter, we will prove the existence of a compliance issue between the

actual behavior of the IoT device and its corresponding PPA. In addition, we analyze

eleven IoT manufacturer and establish the eight criteria that any IoT PPA should apply

to preserve the privacy of the IoT users.
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Chapter 4

Ensuring compliance of IoT devices

with their Privacy Policy Agreement

4.1 Introduction

As we discuss in chapter 2, most of the existing IoT literature is limited to either ana-

lyzing IoT device’s security and privacy issues, discovering IoT devices vulnerabilities,

or performing different attacks targeting various types of IoT devices, which related to

user data disclosure. However, no attention has been given to risks and vulnerabilities

associated with the type of personal information being collected from IoT devices, nor

to the level of compliance to the corresponding PPA. In fact, a significant proportion

of users do not understand what kind of information does the IoT device collects about

them, or that they are sharing information in the first place [70].

In this chapter, we consider reading and analyzing, manually, the PPA of eleven popular

IoT manufacturers. The results reveal that half of those IoT manufacturers do not have

an adequate PPA specifically for their IoT devices. Also, we capture the traffic of two

IoT devices (i.e., Tp-link smart plug and Belkin NetCam) to prove that the data leaked

from the two devices don’t comply with what they stated in their PPA.

The rest of the chapter is organized as follows: In Section 4.2, we explain why it

is essential for IoT devices to have separate PPA, while Section 4.3 discusses some

significant differences between website PPAs and IoT PPAs. In Section 4.4, we present
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our methodology in proposing the main eight privacy criteria that should be applied to

any IoT device; also, our IoT compliance testbed design and results are explained in

detail in this section. Finally, the conclusion is presented in Section 4.5.

4.2 The importance for IoT devices to have separate

PPA

In this section, we explain why it is important to have a separate PPA for IoT devices.

As we mention in chapter 2.2.5, if a manufacturer intent to collect personal information

about the user, it should state that in the form of a PPA to safeguard individual priv-

ileges. Therefore, IoT devices need special PPA because they collect personal inform-

ation about their users. However, existing privacy laws and regulations are not focused

on IoT devices specifically. We argue that they are insufficient to capture important

differences between general data protection scenarios and IoT-specific scenarios. We

now provide some arguments to support our claim:

1. IoT devices are being manufactured for close, personal use. For example, a

smartwatch could be worn for most of the day, which would collect a huge

amount of information about the personal habits and behavior of the wearer [84],[33].

Therefore, the user has the right to have prior knowledge of what kind of sensit-

ive information is being transmitted.

2. The financial value of IoT users’ data is connected to the ability of this data to

help manufacturers sell more products (e.g. by knowing the user behavior or

the user preferences). It could be argued that IoT manufacturers have a vested

interest in collecting user data without informing users about it [84]. In this

scenario, to prevent IoT manufacturers from using user’s data for their interest,

they should issue a sufficient PPA and comply with it.
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Therefore, consumers need to be made aware in advance that their information is not

completely secure and private. They should also know that outside entities may be

able to eavesdrop on their information. This prior knowledge is typically encoded in

a PPA, which covers the whole data lifecycle, from the exact point in time when the

IoT device’s sensors capture data packets until the phase where raw data is effectively

deleted, specifically for sensitive data gathering devices [70]. Furthermore, it is vital

that users recognize their own rights, even if they agree to a PPA and the use of their

data, they still have a right to take it back at any time [68].

The FTC [2] stated that putting PPAs on websites only does not do the job of inform-

ing users about its data practices implementation. The correct alternative, according

to them, was to clearly state the PPA through its device setup or upon purchase. A

study by the ICO [8] reveals that six in ten IoT devices do not come with sufficiently

comprehensive PPAs. These agreements fail to explain why and how IoT devices util-

ize personal data fully. The study also reveals that 59% of IoT device PPAs did not

clearly explain to the users how their information was going to be collected, used, and

disclosed. In comparison, 68% failed to specify how they store the information ad-

equately. Also, a high percentage (72%) of IoT devices did not mention how users

could edit their information (delete, update), and finally only 38% adequately explain

how users could contact the manufacturer if they have any privacy concerns.

4.3 Difference between Website PPA and IoT PPA

It should be acknowledged that the actual creation of PPA is not always an easy task.

For website designers and developers, the focus is on transparency and clarity. The

goal must be helping users get a comprehensive picture of why their data is being

collected and what to do if they wish to prevent this. Consequently, the words and

concepts should be expressed as simply as possible so that the user has a chance to fully

understand everything on the PPA. There must be no ambiguities or grey areas, and it
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must be clear how the device manufacturer plans to treat their PII. When it comes to

websites anyway, there is much evidence to suggest that PPA do work, but are changes

to the traditional method needed for IoT devices? This is the big question. Is the IoT

so fundamentally different from older technologies that it requires a completely new

approach?

According to Perez et al. [71], there are three different ways in which the IoT PPA

is organized. The first one is "All included," which refers to the PPA that covers all

the privacy practices of the manufacturer in addition to the IoT system and devices

e.g. Ecobee, Rachio, and Fitbit. The second way is "Referencing," which refers to a

separate IoT system/device PPA on a different web page but still linked to the manufac-

turer’s general PPA, such as Google Home and Amazon Echo devices. While the last

way is "Isolated," which refers to a totally separated IoT system/device PPA from the

manufacturers’ privacy practices e.g. Nest smart devices, and this is the most suitable

approach.

Moreover, it is important to highlight that there are some significant differences between

IoT PPAs and traditional PPAs for websites due to the following reasons:

1. IoT privacy has changed the concept of previous website PPA content due to the

sensitivity of personal data transferred from the IoT devices to the cloud and vice

versa.

2. The data captured by, e.g., a wearable device, which reveals the pattern of the

user’s life, is transferred from the IoT device to its cloud. This information is

much more sensitive than what happens when data is collected and transferred

while a user is browsing, searching, or even emailing through websites.

3. IoT devices create data while they are actively connected to the internet. With

wearable tech and other IoT devices, for example, it is not always necessary

to manually connect to the web, so there is the potential for data capture and

transfer at times when the user is not aware.
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Therefore, IoT manufacturers need to be thinking about these issues when designing

and implementing PPAs for their IoT devices. In fact, Governments, along with in-

dustry stakeholders, have already established several regulations and policies to stand-

ardize and ensure IoT privacy [42], such as:

• Before using an IoT device, users must be fully informed of the ways in which

their data will be used and must give their consent to these terms. Users must

be clearly told, in the form of a PPA, about what information will be stored and

shared, why this information is being collected, and who will be able to access

it.

• IoT users should have the freedom to decide whether to participate or not in any

exchange of information.

• IoT users should always be allowed to remain anonymous (not share identifying

details) on domains that require identity proof.

4.4 Methodology

The goal of this section is to prove that most IoT manufacturers are not adhering to

what they state in their PPA. To do this, we split our methodology into two phases.

Section 4.4.1 explains phase one, which is the theoretical analysis in order to establish

the eight privacy criteria. While section 4.4.2 describes phase two, which is the prac-

tical testbed in order to prove whether there is a compliance issue between the actual

behavior of IoT devices with their respective PPA or not.

4.4.1 Theoretical Phase

In this stage, we focus on the language used within the IoT PPAs. The goal of this

phase is to determine the following:
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1. How many IoT manufacturers have a PPA that is appropriate for their IoT products?

2. To what extent do these IoT manufacturers adhere to the eight criteria outlined

in this section?

3. Which criteria are most and least likely to be sufficiently met?

To achieve these goals, we conduct two separate studies. The first study is to read and

analyze the PPA of eleven popular IoT manufacturers, as we mention in Chapter 3.3.1.

The objectives of this analysis are:

1. find out if these companies offer appropriate PPA for their devices;

2. for those who provide PPA, investigate whether they provide sufficient informa-

tion in their PPA.

As a result of this study, we discover some crucial issues:

1. According to [71], we found that most of the eleven IoT manufacturers have no

separate PPA for their IoT products i.e. "Isolated". Instead, the vast majority are

categorized either as "All included", or "Referencing".

2. In terms of the manufacturers who have separate PPA, most of them did not

apply the Government standard regulations [42]. On the contrary, we found that

there are no standard criteria to cover and explain all the information that the

user needs to know before using such IoT devise, i.e., what kind of personal data

they collect from their IoT device, whether they interact with a third party or not,

etc.

based on the above mentioned results, we conduct the second study, which focuses on

setting standard criteria based on the GDPR that each IoT manufacturer must imple-

ment in their PPA. To create these key standards, we conduct research on the respons-

ibilities of modern IoT manufacturers. Consequently, we propose eight main privacy

policy criteria in the form of the following obligations for any IoT manufacturers:
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Criterion.1) Explain what kind of personal and non-personal information the manu-

facturer will collect from their IoT device and explain why they need it.

Criterion.2) Clearly specify to IoT users what specific information will be provided

by IoT users themselves, once they create their IoT account.

Criterion.3) Explain to IoT users what information will be collected from them auto-

matically when they perform specific action with their IoT devices and why the

manufacturer needs to collect that information.

Criterion.4) Explain to IoT users how their information will be used and treated by

the IoT manufacturer.

Criterion.5) The rights of IoT users to control (edit, delete) their data saved in IoT

cloud.

Criterion.6) Clearly specify to IoT users how long they will store their PII on the IoT

manufacturer’s cloud.

Criterion.7) Clearly ask for the IoT user’s consent in order to collect/share extra in-

formation and explain the reason for this request.

Criterion.8) Clearly inform the IoT users of the geographical location of the IoT serv-

ers where the manufacturer keeps/stores the IoT user’s data.

These criteria have been supported by the ICO report [8] based on the following con-

siderations:

1. The standards set in place by the GDPR clearly state that any personal data

should be processed in highly secured environment and guarantee total privacy

of personal data, for instance protecting any type of unauthorized access by using

standard security methods. The GDPR has set the criteria for manufacturers on

what data needs to be collected about the users through a table created by them.
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Categories of personal data represent one such information. This point support

criteria number 1,2, and 3.

2. The GDPR underlines the importance of telling users how their data is being

used. This point covers criterion number 4.

3. The GDPR is critical on the fact that users have the right to remove their personal

data at any time with no restrictions as be totally forgotten. This point covers

criterion number 5.

4. The GDPR states that users have the right to know the period of keeping their

personal data under the manufacturer’s possession. In addition, they have the

right to withdraw their consent at any time. This point covers criterion number

6,7.

5. Special restrictions have been imposed by the GDPR on the transfer of personal

data outside the European Union, to third countries, or to any international or-

ganizations without prior user knowledge and approval, to ensure that the level

of individual protection is not undermined. This point covers criterion number

8.

4.4.1.1 Analyze the level of compliance of the eleven IoT manufacturer to the

eight criteria

After we analyzed the PPAs of eleven IoT manufacturers, as mentioned earlier, we

manually apply the eight key criteria to each IoT manufacturer. Then, we identify the

respective levels of adherence of each manufacturer as well as identify which criteria

are most likely to be sufficiently met according to this analysis. Tables 4.1(a) and

4.1(b) illustrate each individual company’s compliance (eleven IoT manufacturers) to

the mentioned eight requirements. We establish the level of compliance by studying

the PPA for each IoT manufacturer.
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As we can see from Tables 4.1(a) and (b), the most likely criteria to be fulfilled are

criteria no 1,2,4 and no 5 with (82%), in other words, nine out of eleven IoT man-

ufacturers comply to these four criteria, while eight out of eleven IoT manufacturers

comply to only criterion no.3 (73%), followed by criterion 7 which achieved com-

pliance by seven out of eleven IoT manufacturers (64%). Furthermore, only six of the

IoT manufacturers comply to criterion no.6 (55%). Finally, there is one criterion which

are poorly explained or consistently overlooked, criterion no 8, this criterion achieved

compliance by only four IoT manufacturers (36%). Figure 4.1 demonstrates a com-

parison of levels of compliance to the eight IoT privacy criteria among the eleven IoT

manufacturers. Firstly, the graph shows that only one of the eleven IoT manufacturers

(Awair) comply to all eight privacy policy criteria. While four out of eleven manu-

facturers (88%) comply to seven criteria. Secondly, 63% which represent three out of

eleven IoT manufacturers comply only to five criteria, whereas just two IoT manufac-

turers comply to half of the criteria. Finally, it should be noted that the lowest level of

compliance is for one IoT manufacturer (LIFX) which comply to only 2 criteria.

Based on our results, we could argue that the eleven IoT manufacturers did not achieve

full compliance with the eight criteria. However, it is crucial for any IoT manufac-

turer to comply with the list of criteria because it could be considered as a definitive

breakdown of the things that IoT manufacturers must tell users both before and after

they activate their IoT devices. In addition, according to Edith Ramirez statement [2],

by adhering to these criteria, IoT manufacturers will gain transparency, honesty, and

trustworthy relationship between them and their IoT users/consumers, which will have

a great impact on the IoT manufacturers’ profits.

4.4.2 Practical Phase:

In this phase, we design and implement a practical testbed to investigate whether there

is a compliance issue between the actual behavior of IoT devices with their respective

PPA or not. To do so, we need to identify if the two IoT devices are adhering to
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Figure 4.1: How many of the 8 privacy criteria does each IoT manufacturer ad-

here to.

their own PPA presented in their website as well as to our eight privacy criteria. The

network configuration of this testbed and the process of collecting the IoT traffic, has

been explained in detail in chapter 3.3.2.

4.4.2.1 Results of IoT Compliance Testbed Experiments

Belkin NetCam The NetCam smart camera relies on a digital video recording cloud

service called Seedonk (cloud.seedonk.com) for storing images and video streams.

NetCam could be controlled remotely via its app called "NetCam.", see Table 3.1.

This app allows remote access to the cam as well as view live video either from a

smartphone, a computer, or any other device. Besides, the app supports two-way audio

and allows users to communicate with each other.

A) Packet analysis using Wireshark

Using the IoT architecture illustrated in Figure 3.1, we managed to sniff the

data packets moving between the NetCam and its cloud, as well as between the

NetCam app and the cloud. Using Wireshark installed on Kali Linux, we were

able to monitor the traffics and observe the following:
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IoT company and

Privacy policy

main criteria

LIFX Google Home Samsung smart

home

Nest Labs Toymail

Criteria no.1 X X X X X

Criteria no.2 X X X X X

Criteria no.3 X X X X X

Criteria no.4 X X X X X

Criteria no.5 X X X X X

Criteria no.6 X X X X X

Criteria no.7 X X X X X

Criteria no.8 X X X X X

(a) apply the 8 criteria to the first 5 IoT manufacturers

IoT company&

PPA main criteria

AWAIR TP-link Belkin Hive Philips Lighting Honeywell The % of compli-

ance to each cri-

terion

Criteria no.1 X X X X X X 82%

Criteria no.2 X X X X X X 82%

Criteria no.3 X X X X X X 73%

Criteria no.4 X X X X X X 82%

Criteria no.5 X X X X X X 82%

Criteria no.6 X X X X X X 55%

Criteria no.7 X X X X X X 64%

Criteria no.8 X X X X X X 36%

(b) apply the 8 criteria to the last 6 IoT manufacturers

Table 4.1: The level of compliance between 11 IoT manufacturers against 8 cri-

teria.

a) SSL/TLS traffic as well as unencrypted traffic. It was clear from Wireshark

that video files aren’t transferred using encrypted methods.

b) Two distinctive communication patterns that give details about the NetCam

network. The first one relates to how the TCP connection is maintained via
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the Seedonk cloud. While the second exposes the consistent DNS queries

designed to find the IP address of the Seedonk server.

c) After the TCP handshake, a packet is delivered from the camera to the cloud

and significant amounts of data can be inferred from this packet such as the

username of the device owner, the MAC address of the IP camera, and the

local IP address.

B) Mobile app analysis using Burp suit tool

As we mentioned previously, some traffic was encrypted. In this section, we use

the Burp Suite tool to intercept the SSL/TLS encrypted traffic between the Net-

Cam app and the Seedonk cloud using man in the middle (MITM) attack. We set

up the Burp Suite by following [6], and then we download the Burp Suite cer-

tificate in the Android smartphone (Samsung S8 edge) trust store. It should be

noted that this kind of attack only works if the application does not employ cer-

tificate pinning [61]. By accessing the burp suite interface, the SSL/TLS traffics

were displayed in plain text form, see Figure 4.2. It’s worth saying that we could

not uncover any user credentials via the NetCam application. Consequently,

we attempted to do so in another way. We navigated to the NetCam website

https://NetCam.Belkin.com from the Android smartphone. Accordingly, we

manage to break the SSL/TLS connection between the smartphone web browser

and between the NetCam web servers and uncover the credentials in plain text

form, see Figure 4.3.

C) Belkin NetCam Compliance to its PPA

As regards information which complies with the NetCam PPA:

a) Netcam application does not transmit information about the exact location

of the device. In this case, we did not give consent for this data to be cap-

tured. This demonstrates a high level of compliance because the privacy

agreement states that no such information can be collected without permis-

sion from the user.

https://NetCam.Belkin.com
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b) NetCam appears to transmit only data that has been expressly permitted

and described in the agreement. This includes technical information about

the NetCam device (model, version, H.W, S.W, firmware, etc.) and utility

settings (resolution, status, size, mode, notifications, etc.).

c) We could not capture any information related to the smartphone, such as

(O.S, H.W, manufacturer, model number, etc.). This demonstrates a high

level of compliance because the privacy agreement states that no such in-

formation can be collected.

As regards information which does not comply with the NetCam PPA:

a) We discover that the Belkin NetCam uses encryption technology to protect

PII data as it moves between the application to the cloud (and vice versa).

While this encryption is a good way to ensure that personal data is secure,

there is no proper mention of this in their PPA. Therefore, the manufacturer

needs to think about providing more details about its encryption process. If

it does not, customers might feel deceived, and it could reflect badly on the

IoT manufacturer and even damage its sales. On the other hand, most users

are aware of the importance of employing data encryption methods.

b) Even though the NetCam PPA does not include the name of the cloud server

used by them, we are able to discover this information. Also, attempting

to uncover the geographical location of the cloud server we find two loc-

ations, one server located in Ireland/Dublin and the other located in the

United States/Virginia, this finding violates criterion number 8. According

to GDPR, the user has the right to know the geographical area containing

the servers/clouds where their personal data is kept.

c) We found that, although NetCam collects user’s images and videos and

sent them to the cloud server, there is no explicit mention of this process

in the NetCam PPA. This critical finding violates two main criteria, which

are number 1 and number 3. According to FTC [2] and ICO [49, 8], it is
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Figure 4.2: Decrypted SSL traffics of NetCam application, as seen in Burp Suite

after a Man-in-the-Middle attack.

highly important to inform the users of what kind of information is being

collected about them.

Tp-link Smart Plug The Tp-link smart plug contains two physically operated but-

tons. The first one is an on/off switch, while the second one is a device reset button.

Also, Tp-link smart plug uses "Tplinkra" cloud servers to store any information about

the user and his devices. The smart plug could be controlled remotely via the KASA

app, see Table 3.1. This allows the user to switch the smart plug on and off without

touching the physical buttons. The device (and its remote app) provides energy monit-

oring and scheduling capabilities.

A) Packet analysis using Wireshark

As we mentioned, the KASA app controls the Tp-link smart plug. Hence, we

attempt to sniff the traffic moving between the smart plug and its app, which



4.4 Methodology 61

Figure 4.3: Decrypted SSL traffics of NetCam application, as seen in Burp Suite

after a Man-in-the-Middle attack.

installed in the Android smartphone (Samsung S8 edge), and between the app

and the smart plug "Tplinkra" cloud as illustrated in Figure 3.1. After observing

the Wireshark network traffic, we detect encrypted traffic during the interaction

between the KASA app and the smart plug. Next, we successfully decompile

(reverse engineer) the KASA app and find the encryption function that is used to

encrypt the traffic between the KASA app and the Smart Plug server. We use this

encryption file to apply the Wireshark dissector in the LUA code. By plugging

in the new LUA file, the traffic will automatically decrypt [9]. As a result, we

are able to monitor the communications between the KASA app and the Smart

Plug on their local Wi-Fi in plain text.

B) Mobile app analysis using Burp suite tool

In order to intercept the SSL/TLS traffic between the KASA app and the cloud

via the burp suite tool, we follow the same steps described in Belkin NetCam

Section B). We find that when we launched the KASA app at the first time, login



4.4 Methodology 62

method is triggered and therefore sends user’s credentials to the cloud. However,

every time we open the application to perform any action (i.e. switch Plug on/off

or schedule an event), the helloIoTCloud method triggers and again sends the

user’s credentials to the cloud, see Figure 4.4 and 4.5. Lastly, we uncover eight

main methods of requesting/sending personal data to/from the TP-Link cloud,

which are: login method, helloIoTCloud method, list scenes method, isLinked

method, retrieve location method, list Rules method, pass through method, and

get device list method. The following types of information are transferred using

these methods:

a) Application such as appName, appType, appVersion.

b) Client such as clientId, geolocation, locale time-zoneId, mobileType, user-

Device manufacturer, userDevice model, device osVersion, ownerEmail.

c) Smart Plug information such as: sw ver, hw ver, type, model, mac address,

hwId, dev name, alias, location, fwVer, deviceName, status, deviceType,

appServerUrl, deviceModel, deviceMac, isSameRegion.

C) Tp-link Smart Plug Compliance to its PPA

As regards information which comply with the Smart Plug PPA:

The information collected from the Smart Plug and the Kasa application men-

tioned earlier appears to be in full compliance with the PPA as they stated in

detail what type of information the smart plug will collect.

As regards information which does not comply with the Smart Plug PPA:

a) As with the NetCam, it was discovered that the Smart Plug does utilize

encryption technologies, even though there is no mention of this in the

PPA.

b) There was no information provided about the name of their cloud server,

but we could find out that the manufacturer uses a TPLinkra cloud server.

Besides, we could determine the geographical location of the cloud serv-
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Figure 4.4: Login method with user’s credential

Figure 4.5: Hello IoT Cloud method with user’s credential
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ers, which was located in the United States/Virginia. This finding violates

criterion number 8. According to GDPR, the user has the right to know the

geographical area containing the servers/clouds where their data is kept.

To conclude this section, our findings prove that there is a critical violation in terms of

the IoT companies’ levels of compliance with their PPA. We find that the actual data we

obtained from capturing Belkin NetCam and Tp-link smart plug traffic did not comply

with what they stated in their PPA. Interestingly, we conclude that Belkin NetCam

shows a quite high level of compliance with our eight criteria (88%), whereas from

our experiment we prove that the level of compliance of Belkin NetCam with what

they stated in their PPA is low as they violate 3 statements within their PPA which are

similar to criteria (no.1, no.3, and no.8). In contrast, we find that the Tp-link smart plug

shows a quite high level of compliance to what they stated in their PPA as they only

did not comply to one statement which is similar to criterion no. 8 whereas it shows

only 63% of compliance to the eight criteria see Figure 4.1. Unless IoT companies

issue an appropriate PPA that comply with the eight privacy policy criteria and, more

importantly, comply with what they state in their own PPA, user’s privacy issues will

always be compromised.

4.5 Summary

In this chapter, we discuss the importance of having a separate PPA for IoT devices

as it differs from website PPA, and we implement IoT privacy compliance testbed.

The main objective of such a testbed is to determine the level of compliance of IoT

manufacturers with their respective PPA. We posit eight key criteria and compare them

with the actual PPA carried out by each IoT device.

First, we investigate the PPAs of eleven IoT devices. Then we manually compare their

respective PPA with the eight privacy criteria. The results show that only one criterion
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out of the eight criteria has been fulfilled by eleven IoT manufacturers. In contrast,

only four out of eleven IoT manufacturers comply with 88% of the eight criteria.

The next step is to construct and execute a testbed procedure for two selected IoT

devices; the Belkin NetCam and the Tp-Link Smart Plug. We sniff the data packets

being moved between the IoT device and the cloud, between the IoT device and the

smartphone, and between the smartphone and the cloud. Surprisingly, we find that the

Smart Plug adheres to 63% of the established eight criteria, but as for the terms of their

PPA, they show a high level of compliance because they only did not comply to one

statement which is similar to criterion (no.8) of the promises contained in its own PPA.

Similarly, although we find that the NetCam show quite a high level of adherence to

88% of the established eight criteria, they failed to adhere to their own PPA because

they violate three statements, which are similar to criteria (no.1, no.3, and no.8).

Yet, it could still be argued that the percentages of the adherence to the eight criteria

are not high enough, particularly in the case of adherence to key data privacy targets.

There is a clear need for IoT manufacturers to continue evolving and developing their

PPA by either changing the behavior of the device to comply with their PPA or by

modifying the PPA to reflect the actual behavior of the IoT device.

We proved in this chapter that there are compliance violations in between the IoT

manufacturers with their PPA. Consequently, we seek to overcome these issues by

inventing a method that can automatically check the actual behavior of the IoT device

as well as read its PPA at the same time. To do so, we have to work into two phases,

as we explain in Figure 1.2. We implement the first phase in chapter 5, which aims

to analyze the encrypted traffic of the IoT devices in order to understand the behavior

of each one from its traffic pattern. While chapter 6 describes the implementation of

phase two, which aims to analyze the text of the IoT PPAs. Finally, in chapter 7, we

combine the results from the two phases in order to build our compliance tool. Such a

tool will present to the IoT end user whether the actual behavior of his IoT device(s)

comply with its PPA or not.



66

Chapter 5

Detecting IoT User Behavior and

Sensitive Information in Encrypted

IoT-App Traffic

5.1 Introduction

In this chapter, we start with the observation that there are two different ways of send-

ing information about the IoT user to the IoT cloud i.e., D-C and A-C. To the best of our

knowledge, no research has been conducted on the second way i.e. A-C. In addition,

we prove in this chapter that an adversary who observe and collect smart home traffic

can reveal sensitive information about the IoT user throughout the packet sizes and the

packet sequences. For example, the adversary can infer, in real time, that a specific

interaction (e.g. login to the IoT app) is occurring between the user and a smart plug

via its respective IoT app. Also, the adversary can infer which packets carry sensitive

PII about their user, as well as the type of this information (e.g. user location or user

credential).

Our contribution in this chapter is a multi-class classification tool, called IoT-app PIT,

using supervised machine learning to raise the awareness of the IoT users through

informing them whether there is a compliance violation of their IoT devices. The

objective of this tool is to:
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1. Classify the interaction(s) of the user with every IoT-app (e.g. login to/logout

from the IoT-app).

2. Classify the packets generated by the user interaction(s) according to their sens-

itivity level (e.g. sensitive PII, non-sensitive PII, non-PII).

3. Classify the content of the sensitive PII (into e.g. user credentials, user location)

and the content of the non-sensitive PII (into e.g. user email, username).

This tool can be continuously applied to classify newly collected (unlabeled) IoT

device traffic data. The results of applying such a tool show that 99.4% of the user

interactions with the IoT app are correctly detected, whereas 99.8% of the packets the

carry sensitive PII caused by this interaction are correctly detected. Finally, 99.8%

of the content type of this sensitive PII packets are correctly detected. We leverage

the observation that the traffic generated by IoT apps follows a limited set of patterns,

which allows us to perform the three classifications above. Finally, we clarify that if

an attacker identifies a user’s interaction type (e.g. login to the IoT app), he can infer

sensitive PII packets caused by this particular interaction. Thus, he can infer the con-

tent type of such sensitive PII packet (e.g. login credentials or geographical location).

According to Wang et al. [103, 104], 77.38% of users reuse one of their existing pass-

words. Also, Das et al. [39] estimate that 56% of users change their password at least

once every six months because they tend to have the same passwords. This means that

if an attacker manages to find the packet that contains the user’s password, he could

mount an offline password attack to crack the password, which is impossible to detect

and faster than an online attack. Therefore, he can gain access to every account the

user has.

The rest of the chapter is organized as follows: Section 5.2 discusses the communic-

ation methods between the IoT device and its cloud. While Section 5.3 outline how

an attacker could attack and collect smart home traffic using our attacker model, fol-

lowed by a detailed description of the method we use to establish the ground truth in
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Section 5.4. In Section 5.5, we present our attack design and implementation, while in

Section 5.6 we develop our inspector tool with three multi-class classification methods,

each one used to infer a different goal; we also evaluate our tool in the same section.

We present the results and discussions in Section 5.7, followed by a summary and

conclusion in Section 5.8.

5.2 Methods of Communication between the IoT device

and its Cloud

According to [15], there are three different methods of communication between the

IoT device and its cloud:

1. IoT device to IoT cloud (D-C);

2. IoT mobile application to IoT device (A-D);

3. IoT mobile application to IoT cloud (A-C).

In fact, there are ample research efforts to uncover IoT security vulnerabilities and

exploits, such as [25, 113, 17, 90]. However, researchers that address the privacy risks

of IoT devices have focused on the traffic that goes directly from the IoT device to the

IoT cloud (D-C) Path A in Figure 3.2. Nevertheless, a significant number of home-

based IoT devices come with a companion mobile application. Each IoT manufacturer

creates its own mobile application to control, configure, and interface with the device.

Therefore, data from the IoT device can also reach the IoT cloud via the IoT app

installed on the smartphone (Paths B and C in Figure 3.2).

To the best of our knowledge, no research studies this alternative path. Based on our

analysis, the information that is being sent to the IoT cloud from the IoT app (path C)

is much more sensitive than the information sent to the IoT cloud from the IoT device
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itself (path A) because this information not only reveals the type or the traffic rate of

the IoT device, but also it could expose users’ credentials, users’ location, or users’

current interaction with the IoT device via the app. The latter type of information is

not evident from the traffic on path A.

We now demonstrate the two different ways that IoT devices use to communicate with

their manufacturer’s cloud:

1. Device-to-cloud (D-C): as Figure 3.2 illustrates, path A represents the direct data

transfer from the IoT device to the IoT cloud. To the best of our knowledge, most

research, i.e. [51, 22, 23], focuses only on this path to study the contents, pat-

terns, and metadata of IoT network traffic that reveals sensitive information about

user activity. However, this type of information does not violate user privacy as

the second way (A-C) does.

2. App-to-cloud (A-C): all IoT devices are controlled and configured via their mo-

bile apps [89]; no two IoT devices from two different manufacturers are sharing

the same app. For example, a TP-link smart plug is controlled by a mobile ap-

plication called KASA, while a WeMo smart plug is controlled by a different

mobile app called Wemo, See Table 3.1. These mobile apps are recommended

by the IoT device manufacturers and installed on the smartphone or tablet to

control the IoT device. In a typical scenario, as in Figure 3.2 paths B and C,

when a user wants to switch on/off a smart plug, he first needs to log in to the

IoT app and then press the switch on/off button. In this case, a command is sent

to the smart plug via its app to switch on/off, i.e path A. In parallel, traffic with

sensitive PII is sent to the smart plug cloud from the IoT app to inform that the

user has logged in to the app and switch on/off the smart plug, i.e. path C.

In this thesis, we focus on collecting and analyzing the data transferred from the IoT

app to the IoT cloud (A-C). It is important to highlight that many IoT devices use

TLS/SSL when communicating with cloud servers, so the traffic we collect is encryp-
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ted. Given the increasing focus on security in the IoT community, we expect that

encrypted communications will become standard for smart home devices.

5.3 Attacker Model

We consider a passive network observer who accesses smart home traffic. We as-

sume that our adversary can collect the transport layer traffic of a smart home. Also,

we assume that packet contents are encrypted using TLS. This adversary can be the

ISP provider, who can collect and store traffic regularly, or, in general, it can be any

adversary who knows the SSID and the WPA2 password of the smart home router. Fi-

nally, the adversary can get a database of labeled traffic from smart-home devices for

training machine learning algorithms. The adversary’s goals are the following:

1. Infer the user’s interaction(s) with IoT devices in a smart home (e.g., logging

into the smart-plug app).

2. Determine whether the transmitted data carries sensitive PII, non-sensitive PII,

or non-PII about the user.

3. Determine the type of sensitive PII (e.g., the password for the IoT device app) or

non-sensitive PII (e.g., user email) that is being transmitted.

5.4 Methodology

In this section, we give an overview of the IoT-App Privacy Inspector tool (IoT-app

PIT) in section 5.4.1. Then, we describe the smart home environment testbed in sec-

tion 5.4.2.
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Figure 5.1: IoT-app PIT overview

5.4.1 Overview of the IoT-App Privacy Inspector tool

The IoT-app PIT takes as an input, encrypted traffic collected from different IoT devices.

The first classifier classifies the packets according to whether they contain sensitive

PII or non-sensitive PII, or none. While, the second classifier classifies the content

type of such sensitive PII packets (e.g. carry user location information) or the con-

tent type of non-sensitive PII packets (e.g. carry username information). Finally,

the third classifier classifies the packets based on the user interaction type with the

IoT device (i.e. login, logout, delete a device, change password). Figure 5.1 gives

an overview of the proposed tool. We make our tool publicly available at ( https:

//github.com/Alanoud-Subahi/IoT-app_PrivacyInspector).

5.4.2 IoT Smart-Home Testbed

The main objective of this testbed is to study the alternative data disclosure, i.e. path C

in depth. As we explained in chapter 3.4, we set up a laboratory smart home environ-

ment with several commercially available IoT devices to establish the ground truth; see

Table 3.1. Details of the network configuration of the testbed and the interaction exper-

iments with the IoT devices are given in section 3.4.1. An overview of our experiments

can be seen in Figure 5.2

https://github.com/Alanoud-Subahi/IoT-app_PrivacyInspector
https://github.com/Alanoud-Subahi/IoT-app_PrivacyInspector


5.5 Attack Design and Implementation 72

Figure 5.2: Overview of the steps used to collect the encrypted TLS traffic and the

encrypted one of the IoT device to establish the ground truth of the IoT-app PIT.

5.5 Attack Design and Implementation

The steps below give a high-level description of our implementation methods for col-

lecting the IoT traffic, which is what the attacker would do:

1. Select IoT devices whose traffic should be classified by the tool.

2. Establish ground truth about user interactions with the IoT devices by doing the

following steps:

A) Collect IoT traffic while performing various interactions with each device
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to generate traffic.

B) Analyze the IoT traffic in order to identify the interaction type, the packets

containing sensitive PII, non-sensitive PII, and non-PII, and within the PII

traffic (both sensitive and non-sensitive) identify the content type (e.g., user

credentials or username).

C) Annotate the traffic by labeling each packet with the interaction type that

created it.

3. Use the labeled traffic as training data for a classifier to infer the three goals stated

above (Section 5.3) from unlabeled/unseen traffic. This point will be explained

in detail in Section 5.6.

5.5.1 Activity Inference from Collected Traffic and Identification

of Packets Comprising User Interaction, Sensitive PII, and

the Content Type of the Sensitive PII

In this section, we present our observations from a passive packet-level analysis of col-

lected traffic from the IoT devices installed on the smart home testbed. As we explain

in the Data Collection section 3.4.2, for each of the four interactions with each of the

four IoT devices, we collect one encrypted pcap file from the Wireshark and one cor-

responding decrypted burb file from the Burp Suite. To analyze and therefore identify

the type of user interaction with the IoT app, the packet sensitivity level, and the pack-

ets that contain personal information along with the type of personal information that

they contain. We analyze each pair of burb file and pcap file for each interaction with

each IoT device separately.
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5.5.1.1 Analyzing the Burp Suite Files

We establish the ground truth about the user’s interactions with the IoT devices by

analyzing the decrypted traffic we obtain from the Burp Suite file of each IoT app. In

particular, we correlate the actions that the user invokes on the IoT device with the

packet sizes and sequences that result from these actions.

We find that each IoT app communicates with several domain names associated with

the IoT device manufacturer. Interestingly, we realize that each domain name is re-

sponsible for certain types of interaction. For example, the KASA and TpCam apps

from TP-link communicate with two different domain names, while the NetCam app

from Belkin communicates with three different domain names, and finally the LIFX

app from Lifx communicates with five different domain names.

Figure 5.3 illustrates an example of the two domain names that the KASA app com-

municates with, which are api.tplinkra.com and eu-wap.tplinkcloud.com, both owned

by TP-link. Each domain name is responsible for a particular set of methods. See Ap-

pendix A for the rest of the IoT-apps domain names. For example, each time the user

logs in to KASA app, the methods listed in Table 5.1 are executed, always in the same

sequence. Each method always generates a request packet from the KASA app to the

domain name responsible for this method. It is followed by a response packet from

that domain name to the KASA app, with the indicated packet sizes and sequences.

In Table 5.2, we observe the sequence and the packet sizes of the methods that are

executed when the user logs out from the KASA app, and we see that they are different

from Table 5.1. We observe similar differences for the other actions of this and the

other IoT devices; see Appendix B. Because these sizes and sequences are unique to

each action, an attacker can use them to identify the invoked actions. Also, because

each packet in a sequence always contains the same type of information, the attacker

can detect the packets that contain sensitive information.

Based on these findings, we conclude that we can rely on the packet sizes, and se-
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Login Action

Domain Name Methods Request packets

size in bytes

Response packet

size in bytes

eu-wap.tplinkcloud.com login 548 318

api.tplinkra.com auth token 315 278

eu-wap.tplinkcloud.com postPushInfo 692 178

api.tplinkra.com helloIotCloud 1031 435

api.tplinkra.com listRules 700 566

eu-wap.tplinkcloud.com getDeviceList 415 1143

api.tplinkra.com listScenes 768 568

api.tplinkra.com isLinked 662 817

eu-wap.tplinkcloud.com passthrough 520 873

api.tplinkra.com retriveLocation 662 574

Table 5.1: User login interaction with KASA app that controls TP-link smart

plug. Methods are always invoked by the app in the order shown – top to bottom

("retrivelocation" is mis-spelled like this in the packet contents). The sizes are of

decrypted packets..

Logout Action

Domain Name Methods Request packets

size in bytes

Response packet

size in bytes

eu-wap.tplinkcloud.com logout 521 178

api.tplinkra.com helloIotCloud 888 427

api.tplinkra.com isLinked 542 772

api.tplinkra.com retriveLocation 542 380

eu-wap.tplinkcloud.com helloCloud 546 204

Table 5.2: User logout interaction with KASA app that controls TP-link smart

plug. Methods are always invoked by the app in the order shown – top to bottom.

The sizes are of decrypted packets..

quences to infer whether the user interaction with the IoT app is login, logout, and

so forth. Furthermore, we manage to identify the length of every packet that sends to

or receives from the IoT cloud any PII (e.g. user location, username and password).

For example, we can confirm that any packet sent by the KASA app with a packet

size of 520 bytes and a received size of 873 bytes from the TP-link domain name
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Figure 5.3: TP-link smart plug domain names that KASA app communicates

with. Each domain responsible for specific methods.

eu-wap.tplinkcloud.com, is the passthrough method. This method is always triggered

when the user logs in to the KASA application, and it carries information regarding the

user’s geographical location, see Figure 5.4; similarly for the remaining methods.

In some cases, we notice that the packet sizes do vary across executions of a method.

This variation is small and thus does not affect our classification negatively, but it can

reveal additional information. For example, the size of the request packet for the login

method, see Table 5.1, is always 542 bytes plus the length of the user’s password. This

means that the password length is only 6 bytes in this example. From a security per-

spective, this is an important finding because the attacker can determine the password

length, and therefore determine whether a brute force attack is feasible to obtain the

password. Note that this attack can be done offline, so any measures on the IoT cloud

side to block repeated failed password submissions would not help.
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Figure 5.4: Screen shot from Burp Suite showing user’s exact location (latitude

and longitude).

5.5.1.2 Analyzing the Wireshark file

We now aim to match the encrypted packets from the Wireshark file to the equivalent

decrypted packets from the Burp Suite file. We can then label each packet of the

encrypted traffic and use this labeled traffic to train our machine learning classifier.

The most straightforward way to do this match would be to match encrypted packets

to decrypted packets of the same size. However, the sizes of encrypted and decrypted

packets are not similar, so we design a new method to find this match. We believe that

this new method will be the cornerstone of helping other researchers on how to analyze

the IoT payload data.

We apply our method to all actions of the IoT apps. We describe this method in the

steps below, in which we aim to match encrypted-decrypted packets for the logout

action in KASA app as an example.
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1. First, we filter the pcap file to keep only the packets whose source IP address

belongs to the smartphone that has the IoT app, and whose destination IP address

belongs to one of the two IoT domains of the KASA app, see Table 5.2.

2. Then, in the pcap file, we look for a sequence of encrypted packets whose source

and destination IP addresses match the corresponding sequence in the methods

of the logout action in the decrypted packets from the burp file. For example, the

user logout action from the KASA app triggers five methods. Therefore, in the

pcap file, we expect to find the same five methods in the same order. As we can

see in Table 5.2, the first method in the logout action is the logout method, which

communicates with the eu-wap.tplinkcloud.com server, followed by the second

method helloIotCloud, which in turn communicates with the pi.tplinkra.com

server and so on for the rest of the methods. Therefore, we should find in the

pcap file the same domain names in the same order. As we mentioned earlier,

each domain name is responsible for specific methods. By finding the same

sequence of the domain names, we can prove that we have found the correct

expected method.

3. After identifying the correct method, we now want to match the actual packets.

We compare the request and the response packet size of the logout methods from

the pcap file with the response and the request packet size of the equivalent logout

methods from the burp file. We find that encryption always adds a constant

number of bytes to the plain packet size:

• The size of the encrypted packet for the logout method request is equal to

the decrypted packet size plus 148 bytes (decrypted: 521 bytes; encrypted:

669 bytes).

• Similarly, for the response traffic, the encrypted packet size is equal to the

decrypted packet size plus 95 bytes (decrypted: 178 bytes; encrypted: 273

bytes).
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We observe the same constants (148 bytes for request packets and 95 bytes for

the response packets) for all packets of the KASA app. We link this constant to

the type of cipher suite that KASA app use, which is TLS-ECDHE-RSA-WITH-

AES-128-GCM-SHA256. Other apps also exhibit the same behavior, only with

different additive constants for their request and response packet sizes, because

they have different cipher suite. For example, the netcam app uses the TLS-

RSA-WITH-AES-128-CBC-SHA cipher suite.

4. Finally, as a visual verification step that we match the correct packets, we create

a plot per decrypted action and a corresponding plot per encrypted action. By

comparing the two plots, we find that they are equivalent. Figure 5.5 illustrates

the logout action and the method sizes and sequences from the burp file from

the KASA app. After applying our method, we find the same methods with the

same order in the pcap file, as you can see in Figure 5.6. Note the packet sizes

are for encrypted packets. The plots for the rest of the actions can be found in

Appendix C.

Figure 5.5: User logout interaction from KASA in decrypted format
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Figure 5.6: Equivalent user logout interaction from KASA in encrypted format

5.5.1.3 Feature selection and Data labeling

During this stage, we compose all packets that are transmitted between the same pair

(IP-src, IP-dst) to a group of sessions. Next, we select the most important features that

help us manually label all the encrypted session according to the following categories:

1. the user interaction with the IoT device that the packet is part of;

2. whether they contain sensitive information;

3. the content type of the packets that contain sensitive information.

These features are the following:

1. IP-src: refers to the IP address of the smartphone running the IoT app;

2. IP-dst: refers to the IP address of the IoT app domain.

3. Comm-type: refer to which domain name the IoT app communicates with (e.g.

KASA app communicate with two domains, so if the IP-src belongs to the smart-

phone and the IP-dst belongs to the second domain name, then the comm-type

set to 1.2);
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4. Req-len: refers to the length of the sending packet (from the IP-src to the IP-dst);

5. Resp-len: refers to the length of the receiving packet (from the IP-dst to the

IP-src).

We label the sessions in three different ways, thus creating three different datasets.

Each one is used to train and test one classifier, see Figure 5.7. For the first data-

set, named IoT-interactionType, we label the packets according to the interaction type

between the user and the IoT app with either "Login," "Logout," "Change Password,"

"Delete," or "None." For the second dataset, named IoT-PII, we label the packets ac-

cording to their sensitivity level with either "Sensitive PII," "Non-sensitive PII," or

"None." For the third dataset called IoT-user-PIItype, we label the sensitive packets

(sensitive PII or non-sensitive PII) according to their content type with either "User

credentials," "User location," "username," or "None."

Once an adversary creates or obtains such labeled traffic for the IoT devices of his

choice, he can create a classifier to identify packet streams pertaining to a specific IoT

device. Then, he can infer a specific user interaction in unlabeled traffic. Therefore, he

will be able to infer the packets that carry sensitive information and the content type of

this sensitive information. In the next section, we describe the design of the classifiers.

5.6 Machine Learning-Based Classification

We treat the tasks of identifying user interaction type, packet sensitivity level, and

sensitive data type as a multi-class classification problem. Accordingly, six classifiers

were selected based on their ability to support multi-class classification.

To evaluate the performance of the selected algorithms and hence choose the best clas-

sifier for our problem, we apply several measures. The most common measures are
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Figure 5.7: Overview architecture of the multi-class classifier

precision, recall, F-mean, and accuracy. As an example, the first multi-class classifica-

tion problem is evaluated relative to the training dataset, producing the following four

outputs:

• True positive (TP)– packets are predicted as a sensitive PII, when they are truly

sensitive PII.

• True negative (TN)– packets are predicted as a None when they are truly None.

• False positive (FP)– packets are predicted as sensitive PII, when they are truly

None.

• False negative (FP)– packets are predicted as None when they are truly sensitive

PII.

Precision (P) measures the ratio of the packets that were correctly labeled as sensitive

PII to the total packets that are truly sensitive PII [Precision = TP/(TP+FP)]. Recall
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(R) measures the ratio of the packets that were correctly labeled as sensitive PII to the

total of all packets [Recall = TP/(TP+FN)]. F-measure (F) takes both false positives

and false negatives into account by calculates precision and recall. Then, it provides

a single weighted metric to evaluate the overall classification performance [F1 Score

= 2*(Recall * Precision) / (Recall + Precision)]. Accuracy measures the ratio of the

packets that were correctly predicted to the total packets number of the packets [Ac-

curacy = (TP+TN)/(TP+FP+FN+TN)]. However, using accuracy to measure the per-

formance of a classifier is a problem. This is because if the classifier always infers a

particular class, it will achieve high accuracy, which makes it useless when it comes to

building such a classifier.

The goal is to maximize all measures, which range from 0 to 1, to achieve better classi-

fication performance. Table 5.3 illustrates the overall results based on previous meas-

urements. As we can see, the Random forest exhibits the best performance across

all six classifiers. Therefore, we develop our classification tool based on the Random

Forest classifiers. To support our choice, a recent survey on ML methods for secur-

ity [31] discusses the advantages of using Random Forest. Their study is related to our

research as it combines decision-tree induction with ensemble learning; these advant-

ages are:

1. Very fast when classifying input data

2. Resilient to over-fitting.

3. It takes a few input parameters.

4. The variance decreases as per the increment of tree numbers, excluding any

biased results.
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Packet Sensitivity

type Classifier

Packet Content type

Classifier

Interaction

type Classifier

Classifier P R F Time P R F Time P R F Time

Decision Tree 97.1 97.1 97.1 0.093 97.1 97.1 97.1 0.088 97.1 97.1 97.1 0.072

Naive Bayes 74.0 42.1 38.8 0.043 65.3 42.05 37.6 0.035 61 51.1 49.1 0.041

K Nearest Neighbor 98.5 98.5 98.5 0.161 98.5 98.5 98.5 0.159 97.7 97.7 97.7 0.189

Multi-Layer

Perception
54.2 73.6 62.4 0.873 1 71.4 83.3 1.206 52.7 72.6 84.1 1.501

Support Vector

Machine
96.1 95.4 95.6 125.165 95.7 94.8 95 179.739 93.5 92.9 93.5 166.316

Random Forest 99.8 99.8 99.8 0.35 99.8 99.8 99.8 0.35 99.4 99.4 99.4 0.35

Table 5.3: The results of all selected classifiers based on the most common meas-

urement; precision, recall, and F-mean .

5.6.1 Multi-class Classifier Training

In order to perform our classification experiments, we randomly split each dataset

described in section 3.4.2 into 80% for training, and the remaining 20% for testing.

Notice that each classifier applies to one dataset; see Figure 5.7. Each classifier is re-

sponsible for inferring the possible label of one category. As we can see in Table 5.3,

the Random Forest classifier achieves the best performance resulting in 99.8%, 99.8%,

and 99.8% in the first and the second classifier, while it achieves 99.4%, 99.4%, and

99.4% in the third classifier for the measurements of precision, recall, and F-mean

score, respectively. Additionally, the time taken to classify the tasks for each classifier

is 0.35 seconds.

To validate that the classifier does not over-fit, we perform several experiments:

5.6.1.1 10-fold cross-validation

To determine the optimal hyperparameters of the Random Forest algorithm [30], [3],

we try many different combinations using GridSearch algorithm optimization. Based

on the results, we set our hyperparameters as follows: the number of n-estimator is
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10, min-samples-leaf is 3, bootstrap is "False", min-samples-split is 8, criterion is "en-

tropy", max-features is "auto", and the max depth is 90.

5.6.1.2 Confusion Matrix

To get a better understanding of the performance of the classifier across the experi-

ments, the confusion matrices of the three classifiers in Tables 5.4, 5.5, and 5.6 con-

secutively show the predicted classes for individual packets compare against the actual

ones. Every confusion matrix is a synopsis of inferring the outcome of one multi-

classification problem, which demonstrates the process in which our classification

model is confused upon making an inference. Then correct and incorrect inference

numbers are summarized through count values and decoded to each class. The indi-

vidual confusion matrix gives us an in-depth look into errors being made by a classifier

and mainly focuses on the sort of errors being made. For example, in Table 5.4, the

confusion matrix, which is related to inferring the user interaction, shows that the ac-

tual number of the Delete interaction sessions is 284. However, the classifier infers

correctly 281 sessions as a Delete interaction, while it infers incorrectly two packets

as Logout interaction and one packet as No-action. These results confirm the high

accuracy and reliability of our classifiers.

Predicted Labels

Delete Login Logout Modify Password No-action

Delete 281 0 2 0 1

Login 0 655 7 0 2

Logout 0 0 207 0 6

Modify Password 0 0 1 233 2

True Labels

No-action 9 0 3 0 3694

Table 5.4: Confusion matrix of the first classifier which is responsible to infer the

user interaction. Rows show the actual class of a repetition and columns show the

classifier’s prediction.
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Predicted Labels

Non Non-sensitive Sensitive

Non 3693 6 4

Non-sensitive 5 699 0True Labels

Sensitive 0 0 696

Table 5.5: Confusion matrix of the second classifier which is responsible to infer

the sensitivity level of the packet. Rows show the actual class of a repetition and

columns show the classifier’s prediction.

Predicted Labels

Non Credential Location Location+Credential User name

Non 3643 1 0 0 6

Credential 0 457 0 0 1

Location 1 0 126 0 0

Location+Credential 0 0 0 92 0

True Labels

User name 6 0 1 0 769

Table 5.6: Confusion matrix of the third classifier which is responsible to infer

the type of the sensitive packet. Rows show the actual class of a repetition and

columns show the classifier’s prediction.

5.6.1.3 Compare the accuracy of the training dataset with the accuracy of the

testing dataset

The training accuracy is the accuracy of the classifier on the training dataset, while the

testing accuracy is the accuracy of the classifier on the testing dataset. If the accuracy

of the training data is almost similar to the accuracy of the testing dataset, then there is

no over-fitting issue; otherwise, we have an over-fitting issue. Table 5.7 shows that the

accuracy of the training dataset and the accuracy of the testing dataset are very similar

in all of the three classifiers.

As a result of the previous experiments, we conclude that the IoT-app PIT does not fall

into the over-fitting problem.
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Packet Sensitivity Type Classifier Packet Content Type Classifier Interaction Type Classifier

Train accuracy 99.9% 99.9% 99.7%

Test accuracy 99.8% 99.8% 99.4%

Table 5.7: The accuracy of the training data and the testing data among the three

classifiers.

5.7 Results and Discussion

In this section, we first give an overview of the steps of the IoT-app PIT, as described

in section 5.7.1. Then the results of the performance of our tool are discussed in detail

in section 5.7.2.

5.7.1 Overview of the steps of the IoT-app Privacy Inspector

The steps of the IoT-app PIT are outlined in Figure 5.8. At first, the tool receives

collected unseen IoT traffic in a pcap file format. Next, it extracts the relevant features

from the pcap file, as mentioned earlier (section 5.5.1.3). Three different classifiers

will be applied to this dataset. Each one is used for different inferences (Figure 5.7).

5.7.2 Evaluate the performance of the IoT-app PIT

To evaluate the performance of our tool, we apply the trained classifiers to unseen

datasets. We collect such datasets in section 3.4.2 in order to validate the classifiers.

Notice that we did not include the validation dataset in the original dataset used to

train our classifiers. Accordingly, we conduct two types of evaluations to evaluate the

accuracy and reliability of the IoT-app PIT as following:
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Figure 5.8: An overview of IoT-app PIT for IoT app user interaction type iden-

tification; identification of sensitive packet, and content type of sensitive packet

identification..

5.7.2.1 Classification accuracy for each IoT app interaction separately

In the first evaluation experiment, we test the tool on each IoT device individually (one

IoT device each time). For each IoT device, we apply the tool four times, on a collected

dataset for each interaction Login, Logout, Delete, and Change Password. Thus, we

apply the tool 16 times in total.

The results show that in every experiment, the tool infers the correct class. We sum-

marize and group the results from the sixteen experiments according to each IoT app

in Table 5.8. Each row represents one user interaction and the output of the IoT-app in-

spector tool (the three classifiers). For example, in the first row, the IoT-app inspector

tool accurately infers that when the user logs into to KASA app, only sensitive PII
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packets are sent to the IoT cloud. The type of these sensitive packets is user credentials

and user location.

In Table 5.9, we compare the results of all user interactions with all IoT devices. Our

findings show that most interactions are similar in terms of sending sensitive PII or non-

sensitive PII packets to their IoT cloud. However, we highlight three important things.

First, the change-password interaction and the login interaction send both sensitive PII

and non-sensitive PII packets to the IoT cloud from the Lifx app. This means that

the Lifx app excessively sends sensitive PII packets about their user to the Lifx cloud

through these two interactions. Second, logout interaction from the netcam app doesn’t

send any type of sensitive packets to its IoT cloud, which makes it the safest interaction

among the others. Finally, the delete interaction and the logout interaction of KASA,

TpCam, and Lifx send only non-sensitive PII packets to its IoT cloud. Hence, these

two interactions are seen to be the interactions that least send sensitive PII packets

about the user to the IoT cloud.

5.7.2.2 Classification accuracy with mixed IoT interactions in the same file

In the second evaluation experiment, we test the tool four times on each IoT device in-

dividually (one IoT device each time). For each IoT device, we apply the tool on mixed

user interactions between the IoT app and its IoT device in order to validate the classi-

fication accuracy by inferring the previously mentioned aims. The results presented in

Table 5.10 demonstrate very high classification accuracy of our three classifiers:

• the average accuracy (number of correctly inferred user interactions divided by

the total number of interactions) is 99.4% with F1 score 0.994;

• the average accuracy (number of packets for which the level of sensitivity is

correctly inferred divided by the total number of packets) is 99.8% with F1 score

0.998;
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Sensitivity level of the packet Content type of the sensitive packet

User Interaction Sensitive PII Non-

Sensitive

PII

User Credentials User Location Username

or Email

Address

KASA app

Login X x X X x

Logout x X x x X

Delete x X x x X

Change Password X X X x X

TpCam app

Login X x X X x

Logout x X x x X

Delete x X x X X

Change Password X X X x X

Netcam app

Login X x X x x

Logout x x x x x

Delete x X x x X

Change Password X x X x x

Lifx app

Login X X X x X

Logout x X x x X

Delete x X x x X

Change Password X X X x X

Table 5.8: Summary of the IoT-app PIT results on the IoT apps interactions

• the average accuracy (number of packets for which the content of the sessions

correctly inferred divided by the total number of packets) is 99.8% with F1 score

0.998.

As a result of the previous experiments, we prove the validity and reliability of such a

tool. We achieve high accuracy for inferring the correct type of sensitive information,

as well as for inferring the user interaction type that occurs between the IoT device and

the user.
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IoT apps User Interactions Sensitive PII Non-Sensitive PII

KASA app

Login X x

Logout x X

Delete x X

Change Password X X

TpCam app

Login X x

Logout x X

Delete x X

Change Password X X

NetCam app

Login X x

Logout x x

Delete x X

Change Password X x

Lifx app

Login X X

Logout x X

Delete x X

Change Password X X

Table 5.9: Comparison between the IoT apps user interactions to find out which

IoT app send excessive sensitive PII about their user .

5.8 Summary

In this chapter, we have invented a tool called IoT-app PIT that can automatically infer

the following from the IoT encrypted network traffic:

1. The packet(s) that reveals user interaction type with the IoT device via its app

(e.g. login).

2. The packet(s) that carry sensitive Personal Identifiable Information (PII).

3. The content type of such sensitive information (e.g. user’s location).
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IoT-app privacy inspector Accuracy F1 score

User Interaction Classifier

Login

99.4 0.994
Logout

Delete

Change Password

Packet Level of Sensitivity Classifier
Sensitive PII

99.8 0.998
Non-Sensitive PII

Packet Content Type Classifier

User Credential

99.8 0.998User Location

User name

or Password

Table 5.10: The Accuracy results of IoT-app privacy inspector of inferring user

interaction, packet level of sensitivity, and packet content type.

We use the Random Forest classifier as a supervised machine learning algorithm to

extract features from network traffic. To train and test the three different multi-class

classifiers, we collect and label network traffic from various IoT devices via their apps.

We obtain the following classification accuracy values for the types of information, as

mentioned above: 99.4%, 99.8%, and 99.8%. This tool can help IoT users take an

active role in protecting their privacy.

Our tool aims to help IoT users by notifying them of any interactions that send ex-

cessive personal data to the IoT cloud e.g. when they login to the IoT app. The high

accuracy results achieved by our tool prove the reliability of such a tool. Finally, we

point out a security problem: It is possible for an attacker to identify the packet(s) that

contains the user’s password, and thus to launch an offline password cracking attack.

By the end of this chapter, we will have finished the first phase of building the IoT

behavior compliance tool. Now, we move onto implementing the second phase, which

aims to develop an automated method to read IoT PPA texts and only extract the type
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of PII that the IoT manufacturer collects about its users.
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Chapter 6

Automated Approach to Analyze IoT

Privacy Policies

6.1 Introduction

The goal of this chapter is to introduce a new method of analyzing IoT PPA texts.

In particular, we are focusing on determining whether the IoT manufacturers collect

PII about the end users, without asking them to read the whole PPA nor highlighting

the paragraphs that refer to the data collection practices and then ask to read such

paragraphs. In contrast, we aim in our method to mimic how an ordinary person reads

and understands such policies sentence by sentence.

Our contribution in this chapter is a tool called IoT-PPA reading, that automatically ex-

tracts the type of the user’s information that the IoT manufacturer collects while using

its IoT devices. The objective of this tool is to save time spent on reading long PPA

text as well as reduce the effort on understanding complex and ambiguous meanings

hidden in such a text. Such a tool will help end users make rational decisions before

using or buying any IoT device based on a prior understanding of the type of collected

data. To implement our methods, we use MultinomialNB supervised machine learning

algorithm. The high accuracy achieved by the classifier (98.8%) proves its validity and

reliability.

The rest of the chapter is organized as follows: Section 6.2 discusses how we collect,
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annotate, and select the features from fifty IoT PPAs. While section 6.3 gives an over-

view of the IoT PPA reading tool, as well as a detailed description of the ten cases

used to extract the features from IoT PPA. In section 6.4, we develop our multi-class

classifiers to classify the sentences of IoT PPAs based on their sensitivity level. Then,

we discuss the results and evaluate performance of the tool in section 6.5. Finally, we

provide a summary and conclusion for the chapter in section 6.6.

6.2 Collecting, Annotating, and Extracting the Features

from IoT PPA

6.2.1 Collecting IoT PPAs

To perform our analysis, we collect fifty IoT PPA based on the popularity of the IoT

manufacturers as well as the popularity of their IoT devices among the end users. As

we explained in chapter 3.5.1, we pre process the collected data and remove the un-

wanted texts to make them ready for annotation and feature extraction process.

6.2.2 Annotation Scheme

To annotate the texts of fifty IoT PPA, we apply two sages. Section 6.2.2.1 describes

the first stage, which is manual annotation scheme. While section 6.2.2.2 describes the

second stage, which is automated annotation scheme.

6.2.2.1 Manual Annotation Scheme

In this phase, we manually annotate ten out of fifty IoT PPAs. We create four main

annotation labels, which are "Collect", "Sensitive", "Non-sensitive", and "Not-

include". In addition, we create extra sub-annotations for the last three main annota-
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tions. These sub-annotations help us to be more accurate regarding the type of the

collected data by the IoT PPA, as per the following explanation:

1. Collect: we label any phrase or word that means "collect user information by the

first party", as "Collect". Notice that we only care about the first party collection,

which represents the IoT manufacturer.

2. Sensitive: we label any phrase or word that means "user sensitive PII informa-

tion", such as user location, user login details, or user password information as

"Sensitive". Under this annotation, we create three sub-annotations # Location,

# Login, # Password. For example, the sentence "we collect user location" is

labeled as Collect, Sensitive PII-Location.

3. Non-sensitive: we label any phrase or word that means "user non-sensitive PII

information", such as user email address, username, or device information as

"non-sensitive". Under this annotation, we create three sub-annotations # Email,

# Username, # Device. For example, the sentence "you provide us with your first

name" is labeled as Collect, Non-sensitive PII-username.

4. Not-include: under this annotation, we create nine sub-annotations # Negative-

words, # Wrong-words, # Share-words, # Third-party, # Cookie-words, # Wrong-

credentials, # Wrong-location, # Wrong-email, and # Wrong-name.

Based on the previous annotation scheme, we are ready to label the rest of the IoT PPA

automatically, as we explain in the next phase.

6.2.2.2 Automatic Annotation

It is time-consuming if we continue to annotate the rest of the forty IoT PPAs manually;

hence, we need to automate the annotation process. To do that, we use a web-based

annotating tool called Tagtog [10]. Cejuela et al. [32] illustrated how Tagtog-assisted
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annotation could benefit manual and automatic annotation and shows a successful an-

notation with high accuracy.

To better use this tool, we need first to implement the annotation manually on a few

documents, as we explain in section 6.2.2.1. Second, based on such manual annotation

scheme, Tagtog will generate a model to automatically annotate the new documents by

creating a custom ML model. Figure 6.1 shows the automated annotation process in

the Tagtog tool. It is important to emphasize that we manually verified the annotations

that Tagtog produced.

Figure 6.1: The process of how to use Tagtog custom ML to automate the annota-

tion scheme.

6.2.3 Feature selection

After annotating the fifty IoT PPA texts, we extract only the labeled phrases and remove

the unlabeled one. As a result, we get 31,661 labeled phrases. For example, the phrase

"providing us location" is labeled as "CollectLocation-sensitive", while the phrase "you
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may supply us your e-mail" is labeled as "CollectEmail-nonSensitive", and so forth for

the rest of the phrases. We use this dataset for training and testing our classifier, as

we explain in section 6.4. Moreover, we create five different assistant datasets for our

feature extraction rules,i.e. the ten corner cases, as follows:

Dataset#1) includes phrases or keywords that represent negative meaning (neg-K),

e.g. "not collect", "we don’t collect", "we won’t collect".

Dataset#2) includes phrases or keywords that mention a "collect" keyword without

implying that any user data is being collected, i.e. wrong collect (wc-K), e.g.

"When you access your location", "to provide you with latest update".

Dataset#3) includes phrases or keywords that mention data sharing (share-K), e.g.,

"when you choose to share your location", "we share your personal information".

Dataset#4) includes phrases or keywords that mention third-party involvement (thirdParty-

K), e.g. "we collect your third-party account information".

Dataset#5) includes phrases or keywords that mention cookies collection (cookie-K),

e.g. "our cookies store your log in details".

6.3 Methodology

In this section, we give a brief overview of the IoT PPA reading tool in the subsection

6.3.1. Then, we explain in detail how we create and apply ten different cases to help us

extract the correct features. Also, we explain how such cases can adversely affect the

validity of extracting the results in subsection 6.3.2.

6.3.1 Overview of the IoT-PPA reading tool

Initially, the tool asks the user to provide the URL of the IoT PPA as an input. After

that, the tool processes the document to prepare it for features extraction, as explained
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in 3.5.2. The results are saved in a CSV file for later prediction. After that, the classifier

classifies the sentences of the IoT PPA into one or more of six classes according to

whether it collects sensitive PII or non-sensitive PII information, as follows:

1. "CollectLocation-sensitive",

2. "CollectPassword-sensitive",

3. "CollectLogin-sensitive",

4. "CollectEmail-nonSensitive",

5. "CollectUsername-nonSensitive",

6. "CollectDevice-nonSebsitive".

Figure 6.2 gives an overview of the proposed method. We make our tool publicly

available at ( https://github.com/Alanoud-Subahi/IoT-PPA_Reading_Tool).

Figure 6.2: Overview of the proposed method of analyzing the IoT privacy policy

documents.

https://github.com/Alanoud-Subahi/IoT-PPA_Reading_Tool
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6.3.2 Extracting Relevant Features

In this section, we aim to extract from the IoT PPA sentences, whether it contains one

or more of the previously mentioned six features. Accordingly, we build six different

functions, each of which is responsible for extracting one feature. In our approach, we

aim to imitate how a person could understand the meaning of a sentence, i.e. knows

whether the sentence collects sensitive PII or non-sensitive PII.

Before we explain our method, we must first clarify that the previous approach to find-

ing out whether a PPA collects personal information or not is keyword matching. This

method checks whether the text contains any word from the collection keywords such

as "collect", "collected", "provide", "provided", ...etc. Also, it checks whether the text

contains any word from the PII keywords such as "location", "password", "username",

...etc. Hence, if the keyword matching method finds both keywords in the text, then

the PPA collects PII about the users. Otherwise, it does not collect any PII about the

user. To prove whether such a method is reliable or not, we will test it using three

different examples as follows:

Example.1) if we have the sentence, "We collect your personal information such as

your geographic location, email address and your device software information."

The keyword match method will conclude that the sentence collects your loc-

ation, email address, and device information because it matches the keywords.

This is a positive result.

Example.2) if we have the sentence, "We collect your personal information to improve

our services", the keyword match method will conclude that the sentence dose

not collect PII about the user because it only match the "collect" keyword, and

there is no word matches the PII keywords. This is a positive result.

Example.3) if we have the sentence, "We will not collect your geographic location",

the keyword match method will conclude that the sentence collects geographic

location. This is false results because the sentence does not collect any PII about
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the user. The reason behind this false result is that keyword matching method

does not consider the impact of the negation words within the sentence.

Consequently, the main objective of our method is to overcome the previous false res-

ults and any similar ones due to the ambiguity of the meaning. Thus, we study in-depth

all the possible cases that might affect understanding the correct meaning of such a sen-

tence. As a result, we come up with ten different cases, each of which has its own set

of rules. These rules depend on two main conditions:

1. The role of the party (i.e if its the manufacturer as a first party or the end user as

a second party).

2. The position of the keywords in the sentence (i.e the collect keyword, the sensit-

ive keyword, the negative keyword...etc).

To guarantee that we collect the correct feature(s), We should apply these cases onto

each sentence in order. In Figure 6.3, we applied ,in order, the ten cases with its rules to

illustrate how we extract the location feature from one sentence. The first case explains

how we deal with the negative keyword if its appear in the sentence. While, the second

case until the sixth case, we explain how we address the problem of long, ambiguous,

and complicated sentences. Finally, from the seventh case until the end, we explain

how we treat four different type of ambiguous sentences, which imply hidden meaning

of collecting information. We will now discuss each case separately:

Case 1- Negative sentences: The first checkup is to ensure that the sentence does

collect the user’s information, if so, we continue until we extract the feature(s). Oth-

erwise, we delete the sentence from the list because no information has been collected

by the manufacturer. To do so, we need to check whether the sentence contains any

negative words (neg-K); if so, we have to identify the position of such keywords in the

sentence. The objective of applying this case first is to is to ensure that the sentence
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mentioned that it collects user’s information, which we need to extract. First, the tool

loops through the negative Dataset #1, section 6.2.3, and checks whether any of the

phrases exist in the sentence. If so, we apply three different rules to ensure that we

extract the correct results; these rules are based on the position of the negative word

within the sentence as follows.

• First rule: if the position of the neg-K comes before the position of the sensitive

keyword (s-K) and the collect keyword (c-K), then we ignore the sentence. For

example, in the sentence, "If you do not wish to have your location recorded

while taking a photo, you can turn this off at any time within the camera settings

of the device". The negative phrase "you do not" comes first, then the sensitive

phrase "your location", then the collect keyword "recorded". Hence, if the rule

is (neg-K + s-K + c-K) or (neg-K + c-K + s-K), then we ignore the sentence.

• Second rule: if the position of the neg-K comes in between the s-K or the c-K,

then we also ignore the sentence (c-K + neg-K + s-K) or (s-K + neg-K + c-K).

For example, in the sentence, "We may ask you not to turn on your location". The

negative phrase "not to" comes between the collect keyword "we may ask" and

sensitive keyword "your location". If we apply the straightforward method, that

we explained earlier, on the previous sentences, the results will give us that the

sentences collect the user’s location, although the sentence doesn’t mean collect

your location due to the negation meaning.

• Third rule: if the position of the neg-K comes after the s-K and the c-K, then we

are sure that we extract the correct feature. For example, in this sentence, "This

location data is collected anonymously in a form that does not personally identify

you", the sensitive keyword "location" comes first, then the collect phrase "is

collected", then the negative phrase "does not". Thus, if we apply the rule (s-K

+ c-K + neg-K) or (c-K+ s-K + neg-K), we are sure that we extract the correct

feature. Notice that it doesn’t matter if the c-K comes before or after the s-K.
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Case 2- Long and complicated sentences (combination of wrong collect keywords,

third-party keywords, and share keywords): In this case, we study the first type of

complicated sentences, which include a combination of, wrong collect keyword (wc-

K), third-party keyword (thirdParty-K), and share keyword (share-K). For example, we

have this long and complicated sentence, after processing the privacy policy of Ring

manufacturer for smart doorbell1, "The types of personal information we obtain in-

clude: Contact information, such as name, phone number, and email; Account inform-

ation, such as online password and other log-in details used to access Ring products

and services; Payment information, such as name, card number, expiration date and

security code, which is collected and stored by our third-party payment processor on

our behalf; Information we obtain from third-party social media services (e.g., Face-

book) or payment services (e.g., PayPal) if you choose to link to, create or log into your

Ring account through these services (including when you share Ring videos or content

via your social media account); Information we obtain from third-party business part-

ners if you choose to use our Ring+ Service, such as your account ID, account name

and email address."

Initially, the average reader can be confused in understanding the type of information

that the sentence collects and who is responsible for collecting it. In fact, a sentence

like this is too long and complicated, so the user cannot immediately understand it.

However, by careful reading, we can infer the following information:

1. The manufacturer of Ring obtains personal information such as password and

log in details, which consider sensitive PII, as well as information such as name,

phone, and email, which consider non-sensitive from the user.

2. On behalf of Ring, a third-party payment processor collects payment information

from the user, such as username, card number and expiration date, and security

code.
1https://en-uk.ring.com/pages/privacy-notice
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3. Only if the user chooses to log in to her Ring account through third-party social

services such as Facebook Ring will obtain her personal information, such as

login details.

4. If the user chooses to share her video information via social media such as Face-

book, Ring will obtain this video information from the user.

The user is only concerned about the type of personal information the IoT manufacturer

collects about him, i.e. the first point only. Hence, we build our tool to handle these

long and complicated sentences in order to help users understand the meaning of such

complicated sentences. First, the tool checks if any word from the wc-K and any word

from the thirdParty-K and any word from the share-K exists in the sentence. We have

already built our datasets during the analysis stage (Dataset #2, #3, #4 in section 6.2.3).

If we find all the words, we create a list that contains the index of each word within the

sentence. After that, we divide the sentence into partitions based on these indices. For

the example of the sentence above, the keywords that we find are "to access", "third-

party", and "you share". Hence, the new sub sentences of the previous sentence are

the following:

1. "The types of personal information we obtain include: Contact information, such

as name, phone number, and email; Account information, such as online pass-

word and other log-in details used to access."

2. "Ring products and services; Payment information, such as name, card number,

expiration date and security code, which is collected and stored by our third-

party."

3. "payment processor on our behalf; Information we obtain from third-party."

4. "social media services (e.g., Facebook) or payment services (e.g., PayPal) if you

choose to link to, create or log into your Ring account through these services

(including when you share."
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5. "Ring videos or content via your social media account); Information we obtain

from third-party."

6. "business partners if you choose to use our Ring+ Service, such as your account

ID, account name, and email address."

To guarantee that our tool extracts the correct features, we apply the following rules on

each partition.

• The first rule is related to the wrong collect keyword. If any of the sub-sentences

include either this rule (c-K + s-K + wc-K) or this rule (s-K + c-K + wc-K), then

we collect the feature. Otherwise we ignore the sentence.

• The second rule is related to the third-party keyword. If any of the sub-sentences

include either this rule (c-K + s-K + thirdParty-K) or this rule (s-K +c-K +

thirdParty-K), then we collect the feature. Otherwise we ignore the sentence.

• The third rule is related to the share keywords. If any of the sub-sentence include

either this rule (c-K + s-K + share-K) or (s-K + c-K + share-K),then we collect

the feature. Otherwise we ignore the sentence.

By applying these three rules, we come up with the same results we previously inferred

from the sentence, i.e. the first point. The results: "we obtain name", "we obtain

email", "we obtain password", and "we obtain login".

Case 3- Long and complicated sentences (combination of wrong collect keywords,

Cookies keywords, and share keywords): Case 3 is similar to Case 2. The only

difference is that we search for a cookie keyword (cookie-K) instead of a third-party

keyword (thirdParty-K). For example, we have this long and complicated sentence,

after processing the privacy policy of Google home manufacturer2, "Examples of how

2https://policies.google.com/privacy
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we use your information to deliver our services include: We use the IP address as-

signed to your device to send you the data you requested, such as loading a YouTube

video; We use unique identifiers stored in cookies on your device to help us authen-

ticate you as the person who should have access to your Google Account; Photos and

videos you upload to Google Photos are used to help you create albums, animations,

and other creations that you can share."

By careful reading, we infer from the sentence that Google home manufacturer doesn’t

collect any personal information. Hence, the purpose of our tool is to give us the

same result. Therefore, we apply the same rules related to the wrong collect keyword

and share keyword as before (6.3.2). Moreover, we apply further rules related to the

cookie keywords, which are either (c-K + s-K + cookie-K) or (s-K + c-K + cookie-

K). As a result, we conclude that the previous sentence does not collect any personal

information, which is similar to what we infer manually.

Case 4- Long and complicated sentences (a combination of wrong collect keywords,

and share keywords): In this case, we study the second type of complicated sen-

tence, which only includes a combination of wrong collect keyword and share keyword.

For example, we have this sentence, after processing the privacy policy of Ezviz manu-

facturer3, "When you save and share content through EZVIZ Services, like video clips,

live video streams, images, captions, and comments ("Your Content"), for other in-

dividuals to access, we will collect information to allow you to save and share your

content, such as your email address and email address of the person you elect to share

your content with."

By careful reading, we infer from the sentence that EZVIZ manufacturer doesn’t col-

lect any personal information. We address this case just like Case 2 and Case 3. We

divide the sentence into partitions based on the index of the wc-K and share-K. By

applying the same rules related to the wc-K and share-K mentioned in (6.3.2), we con-

3https://www.ezvizlife.com/uk/legal/privacy-policy
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clude that the sentence does not collect any personal information from the user.

Cases 5 -Long and complicated sentences (a combination of wrong collect keywords,

and third-party keywords): Case 5 is similar to Case 4, however, the sentences in-

clude only a combination of wrong collect keywords and third-party keywords. For ex-

ample, " Information we collect 1.1 Information We obtain About You Contact informa-

tion, such as name, phone number, and email and postal address; Account information,

such as online password and other log-in details used to access Neos products and ser-

vices; Payment information, such as name, billing address and payment card details,

including card number, expiration date and security code, which is collected and stored

by our third- party payment processor on our behalf".

By careful reading, we infer from the sentence that manufacturer collects contact in-

formation, name, email, and user address. We address this case just like Case 2 and

Case 3. We divide the sentence into partitions based on the index of the wc-K and

thirdParty-K. By applying the related rules mentioned in (6.3.2), we conclude that the

sentence does not collect any personal information from the user.

Case 6 -Long and complicated sentences (a combination of wrong collect keywords,

and cookie keywords): Similar to case 4 and 5, the sentences in this case include

only a combination of wrong collect keywords and cookie keywords. For example,

"When you access our Sites, you automatically provide certain information from and

about your computer or mobile device, including the activities you perform on our

Sites, the type of hardware and software you are using (for example, your operating

system or browser), information stored in cookies, IP address, access times, the web

pages from which you came, the regions from which you navigate the web page, and

the web page(s) you access (as applicable)."

By careful reading, we infer from the sentence that manufacturer collects device in-

formation and the user address. We address this case just like Case 2 and Case 3. We
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divide the sentence into partitions based on the index of the wc-K and cookie-K. By

applying the related rules mentioned in (6.3.2), we conclude that the sentence does not

collect any personal information from the user.

Cases 7, 8, 9, and 10 with single keyword These cases are about ambiguous sen-

tences which contain at least one keyword. As mentioned earlier, we have already

built a dataset of all possible phrases that include third-party keywords, share keyword,

wrong collect keywords, and cookie keywords, during the analysis stage (Dataset #2,

#3, #4, #5 in section 6.2.3). We now explain each case separately:

Case 7) In this case,the tool checks whether the meaning of the sentence implies col-

lecting personal information by third-party. Hence, we apply three different rules

as follows to ensure that we extract the correct results.

• The first rule: if the position of the third-party-K comes between s-K and

the c-K, then we collect the feature i.e. (s-K + thirdParty-K + c-K) or (c-

K + thirdParty-K + s-K). For example, "we collect and use information

obtained from Facebook, Google, Amazon, and other accounts you use to

log in to the Services ("third-party Accounts"), such as your name, birth

date, picture, and other details you may have on your account profile".

• The second rule: if the position of the thirdParty-K comes after the s-K

and the c-K, then we collect the feature i.e. (c-K + s-K + thirdParty-K) or

(s-K + c-K + thirdParty-K). For example, "we collect your email, or log in

for a third-party account (like Facebook), to create an online or application

account ("Account") or subscribe to our communications".

• The third rule: if the position of the thirdParty-K comes first then the c-

K then the s-K, we ignore the sentence i.e. (thirdParty-K + c-K + s-K)

or (thirdParty-K + s-K + c-K). For example, "When you purchase LIFX

Products through the LIFX Website, our third-party provider will collect,
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your first and last name, email address, shipping and billing address, and

complete credit card information or bank account information".

Case 8) In this case, the tool checks whether the meaning of the sentence implies

collecting personal information for share purposes. In this case, we apply two

different rules:

• The first rule: if the position of the share-K comes after the s-K and the

c-K, then we collect the feature i.e. (c-K + s-K + share-K) or (s-K + c-

K + share-K). For example, "we will collect information about your exact

location when you choose to share that with us and motion information

from the motion sensors in your Hive products that detect movement in

your home."

• The second rule: if the position of the share-K comes before the s-K and

the c-K, then we ignore the sentence i.e. (share-K + s-K + c-K) or (share-

K + c-K + s-K). For example, "The share information also includes the

information related to you shared by other users who use the services of

Mobvoi including collect location data and log information".

Case 9) In this case, the tool checks whether the meaning of the sentence implies

collecting personal information when it actually didn’t collect any personal in-

formation. Hence, we apply three different rules:

• The first rule: if the position of the wc-K comes after the s-K and the c-

K, then we collect the feature i.e. (c-K + s-K + wc-K) or (s-K + c-K +

wc-K). For example, "We collect information that your Device sends out

or receives to tailor the Services to our users in different regions, such as:

geo-location, IP addresses, and external hardware information from your

Device about surrounding Wi-Fi access points, beacons, and cell towers".

• The second rule: if the position of the wc-K comes between the s-K and

the c-K, then we ignore the sentence i.e. (c-K + wc-K + s-K) or (s-K +
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wc-K + c-K). For example, "Include fulfilling orders for products or ser-

vices, delivering packages, sending postal mail and e-mail, removing repet-

itive information from customer lists, analyzing data, providing marketing

assistance, providing search results and links (including paid listings and

links), processing payments, transmitting content, and providing customer

service."

• The third rule: if the position of the wc-K comes before the s-K and the

c-K, then we ignore the sentence i.e. (wc-K + c-K + s-K) or (wc-K + s-

K + c-K). For example, "You can access your information, including your

name, address, payment options, profile information, and order history in

the "Account" section of the website."

Case 10) In this case, the tool checks whether the meaning of the sentence implies

collecting personal information by cookie. Hence, we apply three different rules:

• The first rule: if the position of the cookie-K comes after the s-K and the

c-K, then we collect the feature i.e. (c-K + s-K + cookie-K) or (s-K + c-

K + cookie-K). For example, "Other information collected automatically

through the foregoing means may include your IP address, location details,

cookie information, mobile device, operating system, the type of browser,

demographic information, application and/or device(s) you’re using to ac-

cess our Services, and other indicators of how you are interacting with the

Services."

• The second rule: if the position of the cookie-K comes between the s-K and

the c-K, then we ignore the sentence, i.e. (c-K + cookie-K + s-K) or (s-K +

cookie-K + c-K). For example, "We treat information collected by cookies

and other technologies as non personal information, except where Inter-

net Protocol (IP) addresses or similar identifiers are considered personal

information by local laws."

• The third rule: if the position of the cookie-K comes before the s-K and the



6.4 Machine Learning-Based Classification 111

c-K, then we ignore the sentence, i.e. (cookie-k + c-K + s-K) or (cookie-K

+ s-K + c-K). For example, "We use cookies, small text files which, for

example, are stored temporarily on your computer system for a shopping

basket or for the OSRAM log in and which your browser stores."

After applying all the ten corner cases, in order, onto each sentence, we are sure that

our tool extracts the correct features.

6.4 Machine Learning-Based Classification

To solve our classification problem, we compare several popular classification al-

gorithms from different literature. The work done by [18] supports the popularity rank

of our selected algorithms to solve similar problems like ours. Accordingly, we train

five machine learning models, i.e. Decision Tree, Linear Support Vector Machines,

Random Forest, Multinomial Naive Bayes, and Multi-Layer Perception to classify IoT

PPA texts based on (a) whether it collects sensitive PII or non-sensitive PII as well as

(b) the type of such PII. To do this, we use the dataset that we have already created

during the analysis stage (section 6.2.3). We randomly split the dataset into 60% for

training, 20% for validation, and 20% for testing and evaluating the performance of

our tool, see section 6.5.

We train each of these classification algorithms using the training dataset, and we eval-

uate them with the following four metrics:

• True positive (TP) – the number of sentences that are sensitive and are correctly

predicted as sensitive.

• False positive (FP) – the number of sentences that are non-sensitive but are

falsely predicted as sensitive.
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• True negative (TN) – the number of sentences that are non-sensitive and are

correctly predicted as non-sensitive.

• False negative (FP) – the number of sentences that are sensitive but are falsely

predicted as non-sensitive.

As is standard in the literature from these four metrics, we calculate three more: preci-

sion, recall, and F-measure. Precision (P) is the fraction of the sentences that are cor-

rectly labeled as sensitive among all sentences that are labeled sensitive by the classifier

[Precision = TP/ (TP + FP)]. Recall (R) is the fraction of the sentences that are cor-

rectly labeled as sensitive among all sentences [Recall = TP/ (TP + FN)]. F-measure

(F) calculates precision and recall; it takes both false positives and false negatives into

consideration to evaluate the overall classification performance [F1Score = 2 *(Recall

* Precision)/ (Recall + Precision)]. Accuracy calculates the fraction of the sentences

that are predicted correctly to the total number of sentences [Accuracy = (TP + TN)/

(TP + FP + FN + TN)].

Based on the results of the previous measurements, shown in Table 6.1, we find that all

the classifiers achieve high accuracy. However, to select the best classifier, we compare

the time efficiency to accomplish the task of each classifier. Hence, Multinomial Naive

Bayes classifier achieves the best performance resulting in 97.4%, 97.4%, and 97.5%,

respectively. Besides, it achieves the shortest time in performing the task with 0.16

seconds for 18997 sentences.

To evaluate the classifier and to ensure that it avoids over-fitting problems, we perform

the following experiments:

Confusion matrix experiments To better understand the performance of the selec-

ted classifier, we create confusion matrices of the classifier in Table 6.2. The predicted

label of the individual sentence appears in the columns while the actual label appears

in the rows. The goal of using a confusion matrix is to look deeply into errors made
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Common Measures

Classifier P R F time

Decision Tree 98.1% 98.1% 98.1% 0.70

Multi-Layer Perception 98.9% 98.9% 98.9% 5.5

Support Vector Machine 98.2% 98% 98% 68.8

Random Forest 98.4% 98.4% 98.4% 1.07

MultinomialNB 97.5% 97.4% 97.4% 0.16

Table 6.1: The results of all selected classifiers based on the most common meas-

urement; precision, recall, and F1-score.

by a classifier as it focuses mainly on the sort of errors being made. For example, we

can see from the confusion matrix that the actual number of the sentences that collect

password information (the fifth row) is 542. However, the classifier correctly predicts

498 sentences as collectPassword-sensitive; in contrast, it predicts incorrectly that 44

sentences are collectLogin-sensitive. The overall results confirm that our classifier

achieves high accuracy, and we can rely on such a classifier to classify the IoT privacy

policy.

Compare the accuracy of the training dataset with the accuracy of the validation

dataset One of the methods that we use to ensure whether we have an over-fitting

issue or not is comparing the accuracy of the validating dataset with the accuracy of

the training dataset. As we can see in Table 6.3, both results are very similar; hence we

conclude that there is no over-fitting.

10-fold cross-validation The best way to determine optimal values of hyperpara-

meters is through GridSearchCV over possible parameter values using k-fold cross-

validation on different random subsets of our labeled dataset. We use k = 10 where

a random (k-1)/k fraction of the dataset is used to train the classifier, and the remain-

ing 1/k are tested for accuracy. Based on the results we set our hyperparameters as
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Predicted labels

cDevice-nS cEmail-nS cLocation-s cLogin-s cPassword-s cUsername-nS

cDevice-nS 1533 0 0 0 0 0

cEmail-nS 0 453 0 0 0 0

cLocation-s 0 0 2019 0 1 0

cLogin-s 0 0 0 572 117 0

cPassword-s 0 0 0 44 498 0

cUsername-nS 0 0 0 1 0 1094

Table 6.2: Confusion matrix of the Multinomial classifier. Rows show the actual

class of repetition and columns show the classifier’s prediction. Row and column

titles have been abbreviated using "c" for "collect," "s" for "sensitive," and "nS"

for "nonSensitive.".

Multinomial classifier

Train accuracy 97.57%

Validation accuracy 97.42%

Table 6.3: The accuracy of the training data and the validating data

follows: alpha = 1.0, fit-prior = True, and class-prior = None.

The results of the previous experiments prove that our classifier doesn’t fall in over-

fitting problems.

6.5 Results and Discussions

To evaluate the performance of our tool, we apply the trained classifier to 20% of

the test dataset (i.e. 6,332 of unseen sentences). The results show that the classifier

classifies the unseen sentences correctly with high accuracy equal to 98.8%. As a

result, we prove the validity of our tool to infer whether the IoT PPA collects sensitive

or non-sensitive information about the end user.
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6.6 Summary

In this chapter, we describe our methods in analyzing and extracting PII information

from the IoT PPA texts to inform the end users of the type of collected information.

We build a multi-class classifier tool to read IoT PPAs, sentence by sentence. Then, the

tool extracts from the sentences the correct feature(s) with high accuracy (98.8%), and

high speed in accomplish such tasks i.e. 0.16 sec to classify18997 unseen sentences.

We study in-depth, long, complicated, and ambiguous sentences that average users

won’t be able to understand. As a result of this study, we come up with the most ten

corner cases that affect the way of understanding the correct meaning of the sentence,

which hasn’t been addressed in the literature before. We study each case separately

and create a set of rules for this particular case. The main goal is to extract from each

case the correct type of sensitive PII and non-sensitive PII that the IoT manufacturer

collects wile using their IoT devices.

In contrast to other research, we save the IoT user’s time and effort by only give him

the relevant information without highlighting the paragraphs or shorten the length of

such long text. The limitation of the previous methods is that they leave it to the user

to try understanding the hidden and ambiguous meaning of such paragraphs, which we

overcome in our method.

By the end of this chapter, we will have finished the second and the last phase of

building the IoT behavior compliance tool. In the next chapter, we will accomplish

building the tool by creating an environment that combines phases one and two to

finally evaluate the level of compliance between the actual behavior of the IoT device

with its PPA.
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Figure 6.3: An Example of how we apply the ten corner cases to extract location

feature.
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Chapter 7

IoT Behavior Compliance

7.1 Introduction

In this chapter, we introduce our innovative tool, which is the IoT behavior compliance

tool. This tool combines and executes two different tools, i.e., phase one and phase

two, respectively. Each of these tools has its own type of inputs and outputs data.

Next, The final results from both tools will be compared and evaluated to conclude the

compliance level of the IoT devices.

The rest of the chapter is organized as follows: Section 7.2 provides an overview of the

IoT behavior compliance tool. While Section 7.3 demonstrates a case study scenario

to evaluate the compliance of an IoT device with its PPA. Finally, we summarize the

chapter in Section 7.4.

7.2 Overview of the IoT behavior compliance tool

As we mention in chapter 1.5, the main contribution of this thesis is, to evaluate the

compliance level of the actual behavior of IoT devices with their PPA. To do that, we

need do the following steps, as Figure 1.2 shows:

1. Monitor the IoT traffic to analyze its behavior to infer the data type transferred

from the IoT device via its app to its manufacturer’s cloud server, see chapter 6
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2. Analyze the PPA text of the IoT manufacturer presented on their website in order

to extract the exact types of PII that been collected about the users, see chapter 6

3. Compare both results from the second point and the third point, which we will

do in the current chapter.

In order to run the IoT Behavior Compliance tool, the user should already have a pcap

file(s) contains collected traffic of his interaction with IoT device(s), saved somewhere

in his smartphone or tablet device.

As we mentioned above, the IoT behavior compliance tool consists of two tools work-

ing, respectively. When the user run the IoT behavior compliance tool, it starts by ex-

ecuting the IoT-app PIT to infer the behavior a selected IoT device, i.e. the type of the

transferred data, see chapter 5 for more detail. Next, the IoT-PPA reading tool executes

by getting the PPA URL of such an IoT device’s manufacturer to read and extract the

type(s) of data collected by such an IoT manufacturer, see chapter 6 for more detail.

Finally, the IoT behavior compliance tool will process the results from both tools to in-

vestigate whether the data type transferred to the IoT manufacturer’s cloud stated in its

respective PPA or not. If so, then the actual behavior of the IoT device complies with its

PPA. Otherwise, there are compliance issues related to this particular IoT device with

its manufacturer. In both cases, we present to the IoT end user the final results, and

he/she can act accordingly. See Figure 7.1. Our tool is publicly available at ( https:

//github.com/Alanoud-Subahi/Evaluating_IoT_behavior_compliance).

7.3 Case study: Evaluate the Tp-link smart plug

In this case study, we have already collected the encrypted traffic between the end user

and the tp-link smart plug device in section 3.4.2. Hence, we apply the IoT behavior

compliance tool to evaluate the compliance of the Tp-link smart plug with its PPA.

https://github.com/Alanoud-Subahi/Evaluating_IoT_behavior_compliance
https://github.com/Alanoud-Subahi/Evaluating_IoT_behavior_compliance
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Figure 7.1: Overview of the IoT behavior compliance tool

At first, when running the the IoT behavior compliance tool, a welcome screen appears

to the end user and briefly explains the purpose of using the IoT behavior compliance

tool. See Figure 7.2

After that, the user is asked to specify three things, as following:

1. Select the IoT device that he wants to evaluate its compliance,

2. The path in which the collected encrypted traffic file (.pcap file) is stored,

3. The path where the results will be saved.

Once the user assigns everything, see Figure 7.3, the IoT-app PIT and the IoT-PPA

reading tool will execute in the background simultaneously. As a result, two main

information will appear to the user on the screen. First, the type of interaction(s) that

the IoT end user made with the smart plug. In this particular scenario, the IoT user

Figure 7.2: A welcome screen appears when running the IoT behaviour compli-

ance tool.
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Figure 7.3: The user selections to specify the IoT devices and the encrypted pcap

file for the evaluation.

Figure 7.4: The first result of applying the IoT behaviour compliance tool

made two interactions: he logged in, then he logged out from the KASA app. See

Figure 7.4

The second result, is a table, demonstrating the following, see Figure 7.5:

1. the first column of the table shows various data types that might be transferred

to the IoT cloud from the IoT device. The first three types are sensitive PII (i.e.

location, login, password), while the last three types are non-sensitive PII (i.e.

username, email, device information).

2. the second column of the table presents the results of executing the IoT-app PIT.

The tool will assign 1 in front of the data type that has been sent to the IoT cloud;

otherwise, it will assign 0.
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Figure 7.5: The final results of applying the IoT behaviour compliance on the

tp-link smart plug.

In our scenario and for the two interactions mentioned above, particular types of

PII have been sent to the IoT cloud, i.e., user location, user login information,

user password details, user username, user email, and the user’s device informa-

tion.

3. the third column of the table presents the results of executing the IoT-PPA read-

ing tool. The tool works similarly to the previous one. If the IoT manufacturer’s

PPA collects the data type, then it will assign 1; otherwise, it will assign 0.

In this typical scenario, the Tp-link smart plug PPA states that it collects all the

data types mentioned in the second point, i.e., the IoT-app PIT.

4. the last column of the table is the compliance decision of evaluating the actual

behavior of the IoT device with its PPA. For example, if the result for a particular

data type is yes, then the data sent to the IoT cloud matches what is stated in the

IoT PPA. Otherwise, if the result assigns in this column for a particular data

type is no, then the user has a compliance issue between the behavior of the

IoT device with its PPA. Figure 7.5, illustrates that in this scenario, we have no

compliance issues.

However, it is important to highlight that the results vary not only among the IoT

devices, but also among the user interaction(s) with the same IoT device. For example,

in a different scenario, we have collected encrypted traffic between a user who deleted

the Tp-link smart plug from its app, i.e. the KASA app. After applying the IoT be-

haviour compliance tool on the collected traffic, we found that there is a compliance
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Figure 7.6: Evaluate the level of compliance of the Tp-link smart plug with its

PPA- "Delete the IoT device" interaction.

issue between the data sent to the Tp-link cloud and what is stated in the its PPA. See

Figure 7.6.

We apply the IoT behavior compliance tool to the rest of the four IoT devices. For each

device, we have a several collected files for various interactions. See the remaining

results in Appendix D.

7.4 Summary

By the end of this chapter, we fulfill our goal in building our novel tool, which aims

to evaluate the level of compliance between the actual data sent to the IoT cloud with

what is stated in its PPA. The tool consists of two parts, each of which is responsible

for different tasks. The first part is for inferring, from encrypted network traffic, the

behavior of an IoT device, while the second part is to extract the PII collected by the
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IoT manufacturer’s PPA.

The tool works by combining and comparing the results coming from both parts to

investigate whether there is compliance between them. If the evaluation result of a

particular data type is yes, this means that there is no compliance issue. Otherwise, we

have a compliance issue.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

This chapter provides a summary of our work conducted through this thesis. First, it

recaps the contributions of this thesis. Then, it summarizes the main findings and the

work done in the previous chapters. Next, it answers the research questions by linking

them to the chapters that aim to solve and address such questions. Finally, it highlights

some suggestions for possible future work.

8.2 Thesis Summary and Contributions

Recently, IoT has become an extension of the physical world. It provides an opportun-

ity to transform traditional devices into smart devices capable of communicating with

other smart devices or with the cloud server, affecting every aspect of our daily life.

Although these devices have spread rapidly with unlimited possibilities to facilitate

our lives, they are highly vulnerable to security and privacy breaches. Therefore, these

attacks and security and privacy threats need to be addressed in depth.

In this thesis, we attempted to explore and discuss a different type of security and

privacy breaches, which has not been addressed before. These types of violations are

related to compliance issues associated with the actual data transferred from the IoT

device to its cloud and with what is stated in the IoT PPA. Consequently, we developed
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a novel IoT tool to automatically evaluate the level of compliance between the actual

behavior of the IoT device with its PPA by using network analytic and text mining

methodologies.

We began our thesis by introducing a general background about the IoT devices; then,

we highlighted the main problem that this thesis attempted to solve as well as the

motivation behind this study. Moreover, we presented the research hypothesis, the re-

search questions, and the contributions of this thesis in chapter 1. We developed several

methods to test and support this hypothesis, which presented mainly in chapters 4,5,6,

and 7.

In Chapter 2, we defined the main terminologies that the readers need to understand in

this thesis. Also, we provided a broad literature review focusing on IoT privacy and

security testbeds, and monitoring and analyzing IoT traffic. Moreover, we summarized

the previous work related to the difficulties of reading and understanding the complex

meaning of PPAs in general, and the one related to the IoT PPA devices in particular.

While in chapter 3, we discussed the methods applied to collect and process the datasets

used in this thesis.

Chapter 4 explained in detail the issues related to the current IoT PPA and why it’s

essential to update the current IoT privacy law. After analyzing the language used in

several IoT PPAs, we have established the eight privacy criteria that any IoT manufac-

turer must apply to preserve the IoT end user’s privacy. Also, we investigated whether

there is a compliance issue between the actual behavior of the IoT device and its PPA

presented in its manufacturer website. To do that, we set up a smart home testbed

to collect the IoT traffic, as explained in this chapter. After analyzing the payload of

the collected traffic, we compared, manually, the data sent to the IoT cloud with what

the IoT manufacturer stated in its PPA about the type of data they collect from the

IoT device. Interestingly, the results prove that most of the IoT manufacturers don’t

comply with what they stated in their PPA, as explained in chapter 4.4.1.1.

In Chapter 5, we illustrated the different methods in which the IoT device can com-
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municate and send the user’s data to its cloud server. Moreover, we proved that any

passive observer could infer critical information by analyzing the pattern of IoT traffic,

which could violate the end user’s security and privacy. Consequently, we developed a

novel tool called the IoT-app PIT to read and interpret the encrypted IoT traffic. After

that, the tool will inform the user whether the traffic transferred to the IoT cloud car-

ries sensitive PII or non-sensitive PII. Also, it will tell the IoT end user with the type of

such PII (e.g. user credentials or user email), as well as the type of interaction(s) that

the user made with such IoT device(s).

In Chapter 6, we proposed a novel method in text mining in order to read long and

complicated PPA texts. In this method, we only ask the user to provide the URL link

of the PPA that he/she want to analyze. Then, the tool will read and extract only the

types of sensitive PII and non-sensitive PII that such PPA collects about their users

automatically, we called this tool the IoT-PPA reading tool. Our tool differ from others

in that it is not asking the user to read the whole text, nor it highlights several para-

graphs and asks the user to read them. In contrast, our novel tool read and understand

the ambiguous texts and the hidden meanings to present to the end user the information

that he needs to know.

Following that, in chapter 7, we developed the IoT behavior compliance tool by com-

bining two different tools i.e. the IoT-app PIT (Chapter 5) and the IoT-PPA reading

tool (Chapter 6). The objective of this novel combination is, to compare the results

coming from two different sources, which are the IoT traffic and the IoT PPA text. As

a result, the tool will present to the IoT users the final decision whether the transferred

data from an IoT device complies with what is stated in the manufacturer’s PPA of

such a device or not.
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8.3 Research Questions Answered

In this section, we repeat the research questions identified previously in Chapter 1.4

and answer them as follows:

• Research Question 1: Is the data sent from the IoT device limited to an identified

purpose of their PPA? If so, do the IoT end users know what type of information

is being sent about them?

To answer this question, chapter 4 proved that most of the IoT devices send in-

formation about their users without specifying the reasons behind such a process,

i.e. explain the reason in their PPA. In addition, most IoT end users don’t know

that they are sharing their information in the first place, nor what type of data

is being sent about them. Moreover, this chapter pointed out the existence of a

compliance issue between the actual behavior of two different IoT devices (Tp-

link smart plug and Belkin NetCam) with its PPA, which has not been addressed

before.

• Research Question 2: Can the encrypted traffic of the IoT device expose sens-

itive PII about their end users? If so, can we know the type of such information

sent from the IoT device to its cloud?

In chapter 5, we explained that analyzing the pattern of the IoT traffic, even if it’s

encrypted, as well as investigating the plain text protocols (e.g., TCP/IP headers,

TLS handshakes) of an IoT device might violate end user’s privacy. Also, we

proved that any eavesdropper could infer the activity type of an IoT device, as

well as the type of user’s sensitive PII being sent to the IoT cloud (e.g., user

location) by passively monitoring such traffic.

• Research Question 3: Can an automated text mining mechanism help IoT end

users avoid reading long and complicated IoT PPA text to know whether such

PPA collects sensitive PII about them, and knowing the type of such information?
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In chapter 6, we answer this question by proposing a text mining tool called IoT-

PPA reading tool. This tool reads and extracts the type of information that is

collected by the IoT manufacturers while using their IoT devices, without asking

the end users to read or understand such long and vague texts.

• Research Question 4: Can we automatically inform the IoT end users whether

the data send from an IoT device complies with its PPA?

We seek to assist IoT end users in maintaining their privacy and let them make

the right decision in terms of using IoT devices. Therefore we attempt to inform

the IoT end user to what extent their IoT device(s) complies with its PPA. To do

this, we need to proceed in two stages: first, read the IoT traffic to determine the

actual data type sent to its cloud. Second, read the IoT PPA text to decide which

data type the IoT manufacturer collects about its IoT end users. Then compare

the results to inform the end users about the compliance decision regarding their

IoT device(s).

We implemented the first tool in chapter 5, while we implemented the second

one in chapter 6. To combine the two tools, in chapter 7, we developed a method

to utilize the previously mentioned tools to work as one tool. The outcome of

this combination aims to evaluate the compliance level of the actual behavior of

the IoT device with its PPA. Then it presents the results to the IoT end user to

inform him if there is any compliance issues or privacy violations.

8.4 Future Directions

In this section, we describe some techniques in which the research of this thesis can be

extended further in the future.

The novel mechanisms for evaluating the level of compliance between the IoT actual

behavior with its PPA outlined in this thesis can be improved and refined based on

real-world deployment scenarios. Some of the key refinements are summarized below:
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• Our tool aims to detect whether there are any compliance issues; then, it informs

the IoT end users with the mismatched data types, i.e. compliance issue detec-

tion method. However, in this thesis, we have not implemented any mechanism

to prevent such compliance issues, i.e. prevention compliance issue method.

Thus, in the future, it will be useful to improve the tool to not only detect compli-

ance issues but also to implement methods to prevent these issues. For example,

if the tool detects that an IoT device’s traffic sends user location while its IoT

PPA doesn’t state such a process. The tool can prevent this by either dropping

that packet or by adding extra padding. By doing this, the attacker won’t re-

cognize the traffic that carries sensitive PII about the user. Furthermore, we can

notify the IoT manufacture to work out such issues from their side.

• In this thesis, we analyzed the packet length and the traffic sequence as well

as interpreted the payload of the IoT traffic using two steps running in parallel.

First, we collected encrypted IoT traffic using Wireshark. Then we used Burp

Suite to decrypt such traffic.

In the future, we can shorten and automate this process by using a certificate

designed explicitly for our tool. Thus, the tool will be able to collect encryp-

ted traffic, decrypt the traffic, analyze the payload of the traffic, and identify the

traffic that carry sensitive PII to the IoT cloud, automatically in one step. For ex-

ample, if any IoT user wants to download our tool to evaluate the compliance of

his/her IoT device(s), he will be notified that our certificate will be automatically

downloaded in his smartphone or tablet as part of the downloading steps.

• We developed a text-mining tool to solve issues around reading long and am-

biguous IoT PPA texts. This method focused on identifying and extracting only

the type of PII that the IoT PPA collects about its users and informing them of

such information.

In the future, this tool can be improved to inform the users whether such collec-

ted information is being shared with third parties. Also, we can design a graph
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to illustrate how much PII the IoT manufacturer collects about its users. For

instance, we can set up three different color coding, each of which represents

the amount of data that the IoT manufacturer accumulates from its end users. If

the graph of a particular IoT PPA, e.g. is red color, then the IoT manufacturer

collects too much PII about its users, which they don’t need to. Similarly, if

the color of the graph, e.g. is yellow, then the IoT manufacturer collects lots of

PII about its users, which they need it. In contrast, if the color is green, then the

manufacturer collects reasonable PII about its users. We can identify the allowed

amount of PII that any manufacturer can collect based on the GDPR [45].

8.5 Summary

In general, the research conducted, and the results obtained throughout this thesis

demonstrate the importance of preserving the privacy of IoT end users not only through

data encryption but also through adherence to the GDPR law regarding user data pro-

tection regulations. Users’ sensitive data should not be sent in any case if there is

no reason for this. In addition, it is important to adhere to what is stated in the IoT

manufacturer’s PPA with regard to the type of data collected by their IoT device(s).

The bottom line and the take-away message is that this thesis, in general, and the IoT

behavior compliance tool, in particular, contribute to helping two main stakeholders:

1. IoT end users to obtain the decision regarding the privacy compliance of their

IoT device(s).

2. IoT manufacturers to investigate the compliance of their IoT device(s) before

launching new IoT products. Also, they can design their IoT PPA based on

the eight privacy criteria. As a result, the developers will be able to create IoT

devices for a smart home in a compliance and compatible way with their PPA.



131

Appendix A

IoT-app cloud server names

This appendix shows the domain names related to each IoT device used in this thesis,

notice that each domain name is responsible for particular interactions.

Figure A.1: TP-link smart camera domain names that TpCam app communicates

with. Each domain responsible for specific methods..
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Figure A.2: Belkin Netcam smart camera domain names that NetCam app com-

municates with. Each domain responsible for specific methods..

Figure A.3: LIFX smart bulb domain names that Lifx app communicates with.

Each domain responsible for specific methods..
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Appendix B

Methods of different user Interactions

B.1 Methods of different user Interactions

This appendix explain the packet sequences and the sizes of the methods that are ex-

ecuted when the user interact with the IoT app.

B.1.1 TP-link smart Plug app KASA user interactions packet sizes

and sequences

change password action

Methods Request length in byte Response length in byte

modifyCloudPassword 600 171

getDeviceList 415 205

listScenes 768 381

listRules 700 381

isLinked 662 381

login 517 330

listScenes 768 381

authenticate

token
315 278

postPushInfo 692 178

getDeviceList 415 1143

helloIotCloud 1031 435

passthrough 520 873

Table B.1: User change password interaction with KASA app that controls TP-

link smart plug. Methods are always invoked by the app in the order shown - top

to bottom. The sizes are of decrypted packets.
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Delete action

Methods Request length in byte Response length in byte

unbindDevice 513 171

deviceRemoved 716 419

getDevice 415 646

listScenes 769 629

isLinked 663 889

retrieveLocation 663 655

listRules 701 642

Table B.2: User delete interaction with KASA app that control TP-link smart

plug. Methods are always invoked by the app in the order shown - top to bottom

("retrivelocation" is misspelled like this in the packet contents). The sizes are of

decrypted packets.



B.1 Methods of different user Interactions 135

B.1.2 User interactions with TP-link smart cam appTpCam, meth-

ods are always invoked by the app in the order shown - top

to bottom. The sizes are of decrypted packets

Login action

Methods Request length in byte Response length in byte

Login 508 318

Post push info 713 178

Get device 434 653

Subscribe msg 431 178

Passthrogh 565 464

Get device config info 497 267

Get intl fw versions 642 190

Table B.3: Packet sizes and sequence of User login interaction with TpCam app

Logout action

Methods Request length in byte Response length in byte

logout 442 178

postPushInfo 713 178

subscribeMsg 431 178

getAppConfigInfo 474 190

getAccountInfo 450 252

login 508 318

getDeviceCofigInfo 497 370

passthrough 565 462

Get device list 434 653

Table B.4: Packet sizes and sequence of User logout interaction with TpCam app
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Change password action

Method Request length in byte Response length in byte

GetupgradeList 1007 227

modifyPassword 1379 227

login 1108 235

HTML 812 257

requestRelyService 927 290

options 464 333

requestURL 589 346

login 1112 428

login 1114 428

isRelyReday 627 466

passthrough-changepass 682 572

getMyList 1012 809

Admin 821 35375

Cloud 812 61668

updateInfo 953 63854

Table B.5: Packet sizes and sequence of User change password interaction with

TpCam app.

Delete action

Method Request length in byte Response length in byte

unbinedDevice 506 178

Get device list 434 205

getDeviceCofigInfo 497 267

passthrough 565 464

Get device list 434 653

Table B.6: Packet sizes and sequence of user deletes interaction with TpCam app..
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B.1.3 User interactions with Belkin NetCam cam app netcam ,meth-

ods are always invoked by the app in the order shown - top

to bottom. The sizes are of decrypted packets

Login action

Method Request length in byte Response length in byte

Login

1190 324

1092 541

1043 454

993 459

528 451

HTML login

1020 16228

1028 16228

970 13350

1102 3098

1002 3089

1102 3098

1002 3089

Table B.7: Packet sizes and sequence of User login interaction with Netcam app
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Logout action
Method Request length in byte Response length in byte

Logout 1013 338

Table B.8: Packet sizes and sequence of User logout interaction with Netcam app

Change-password action
Method Request length in byte Response length in byte

Change password 1130 338

Table B.9: Packet sizes and sequence of User change password interaction with

Netcam app.

Delete action
Method Request length in byte Response length in byte

Camera delete 1022 338

Table B.10: Packet sizes and sequence of User delete interaction with Netcam app.
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B.1.4 User interactions with LIFX smart lamb applifx, methods

are always invoked by the app in the order shown - top to

bottom. The sizes are of decrypted packets

Login action

Method Request length in byte Response length in byte

Sign in

302 721

307 446

409 541

414 531

458 555

Log 472 592

Batch.login 680 114

Table B.11: Packet sizes and sequence of User login interaction with lifx app

Logout action
Method Request length in byte Response length in byte

Batch.logout 716 114

Table B.12: Packet sizes and sequence of User logout interaction with lifx app
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Change password action

Method Request length in byte Response length in byte

forgot-password 292 350

reset-password
540 4698

1295 4751

assets
839 276599

862 32134

Table B.13: Packet sizes and sequence of User change password interaction with

lifx app.

Delete action

Method Request length in byte Response length in byte

Batch.delete 682 114

Device-delete
207 696

402 534

Schedule-delete 368 510

Promotion-delete 396 640

Table B.14: Packet sizes and sequence of User deletes interaction with lifx app
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Appendix C

Visual plots of the encrypted and

decrypted traffic for various actions

from the Tp-link smart plug

C.1 Login interaction Plot

The following plots illustrate the packet sizes and sequences of the login interaction

between the user and the KASA app in encrypted and decrypted format.

Figure C.1: User login interaction from the KASA in encrypted format
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Figure C.2: Equivalent user login interaction from the KASA in decrypted

format.

C.2 Change Password interaction Plot

The following plots illustrate the packet sizes and sequences of the change password

interaction between the user and the KASA app in encrypted and decrypted format.

Figure C.3: User change password interaction from the KASA in encrypted

format.
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Figure C.4: Equivalent user change password interaction from the KASA in de-

crypted format.

C.3 Delete interaction Plot

The following plots illustrate the packet sizes and sequences of the delete interaction

between the user and the KASA app in encrypted and decrypted format.

Figure C.5: User delete interaction from the KASA in encrypted format
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Figure C.6: Equivalent user delete interaction from the KASA in decrypted

format.



145

Appendix D

The results of applying the Evaluating

the IoT behavior compliance tool with

its PPA on the IoT devices

D.1 Evaluate the compliance of Tp-link smart plug

Figure D.1: Evaluate the level of compliance of the Tp-link smart plug with its

PPA-1.
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Figure D.2: Evaluate the level of compliance of the Tp-link smart plug with its

PPA-2.
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D.2 Evaluate the compliance of Tp-link smart cam

Figure D.3: Evaluate the level of compliance of the Tp-link smart camera with its

PPA-1.
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Figure D.4: Evaluate the level of compliance of the Tp-link smart camera with its

PPA-2.

Figure D.5: Evaluate the level of compliance of the Tp-link smart camera with its

PPA-3.
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Figure D.6: Evaluate the level of compliance of the Tp-link smart camera with its

PPA-4.
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D.3 Evaluate the compliance of Belkin NetCam

Figure D.7: Evaluate the level of compliance of the Belkin NetCam with its PPA-1.
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Figure D.8: Evaluate the level of compliance of the Belkin NetCam with its PPA-2.

Figure D.9: Evaluate the level of compliance of the Belkin NetCam with its PPA-3.
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D.4 Evaluate the compliance of Lifx smart bulb

Figure D.10: Evaluate the level of compliance of the Lifx smart bulb with its PPA-

1.
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Figure D.11: Evaluate the level of compliance of the Lifx smart bulb with its PPA-

2.

Figure D.12: Evaluate the level of compliance of the Lifx smart bulb with its PPA-

3.
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