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Abstract

Haemodynamic monitoring is an invaluable tool for evaluating, diagnosing and treating

the cardiovascular system, and is an integral component of intensive care units, obstetrics

wards and other medical units. Doppler ultrasound provides a non-invasive, cost-effective

and fast means of haemodynamic monitoring, which traditionally necessitates highly in-

vasive methods such as Pulmonary artery catheter or transoesophageal echocardiography.

However, Doppler ultrasound scan acquisition requires a highly experienced operator and

can be very challenging. Machine learning solutions that quantify and guide the scanning

process in an automatic and intelligent manner could overcome these limitations and lead

to routine monitoring. Development of such methods is the primary goal of the presented

work.

In response to this goal, this thesis proposes a suite of signal processing and machine

learning techniques. Among these is a new and real-time method of maximum frequency

envelope estimation. This method, which is based on image-processing techniques and is

highly adaptive to varying signal quality, was developed to facilitate automatic and consis-

tent extraction of features from Doppler ultrasound measurements. Through a thorough

evaluation, this method was demonstrated to be accurate and more stable than alternative

state-of-art methods.

Two novel real-time methods of beat segmentation, which operate using the maximum

frequency envelope, were developed to enable systematic feature extraction from individual

cardiac cycles. These methods do not require any additional hardware, such as an elec-

trocardiogram machine, and are fully automatic, real-time and highly resilient to noise.

These qualities are not available in existing methods. Extensive evaluation demonstrated

the methods to be highly successful.

A host of machine learning solutions were analysed, designed and evaluated. This led to
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a set of novel features being proposed for Doppler ultrasound analysis. In addition, a state-

of-the-art image recognition classification method, hitherto undocumented for Doppler

ultrasound analysis, was shown to be superior to more traditional modelling approaches.

These contributions facilitated the design of two innovative types of feedback. To reflect

beneficial probe movements, which are otherwise difficult to distinguish, a regression model

to quantitatively score ultrasound measurements was proposed. This feedback was shown

to be highly correlated with an ideal response.

The second type of feedback explicitly predicted beneficial probe movements. This was

achieved using classification models with up to five categories, giving a more challenging

scenario than those addressed in prior disease classification work. Evaluation of these, for

the first time, demonstrated that Doppler scan information can be used to automatically

indicate probe position.

Overall, the presented work includes significant contributions for Doppler ultrasound

analysis, it proposes valuable new machine learning techniques, and with continued work,

could lead to solutions that unlock the full potential of Doppler ultrasound haemodynamic

monitoring.
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Chapter 1

Introduction

1.1 Motivation

Haemodynamic monitoring is used to assess the health of a person’s cardiovascular system.

This is achieved through measurements of blood circulation, perfusion and oxygenation

of tissues and organ systems [1]; these enable at-risk patients to be identified, and their

responses to therapy monitored [2].

Cardiovascular disease is the highest cause of global mortality [3]; considering this,

the importance of haemodynamic monitoring is evident. Monitoring can also facilitate

diagnoses and treatment of conditions such as sepsis [4], which alone account for 300,000

deaths annually in North America [5]. In the case of sepsis, goal-orientated treatment has

been shown to be very beneficial, particularly when treatment is commenced early [4,6–8].

Haemodynamic monitoring can provide multiple desirable outcomes. These include

improved cardiac health, reduced mortality and limitations with respect to associated

economic burdens, which can be vast [9]. However, such monitoring typically requires

invasive techniques, which have inherent risks and are intrinsically linked to increased

mortality, morbidity and hospitalisation costs [10]. Furthermore, there are concerns re-

garding their efficacy and ease of use [2, 11], which make early detection and treatment

difficult. These challenges, and the critical importance of early implementation, make

non-invasive and efficient methods of haemodynamic monitoring highly desirable.

Doppler ultrasound can be used as a means of non-invasive haemodynamic monitoring.

This technology measures blood velocity by analysing changes in the frequency of reflected
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ultrasound waves [12]. In turn, this can be used to calculate an array of haemodynamic

metrics, such as stroke volume (SV) or cardiac output (CO). This was first demonstrated

using Doppler ultrasound over 60 years ago [13], and has over 30 years of safe clinical

use. Modern implementation can be achieved with small, inexpensive portable devices,

which have the potential to enable haemodynamic assessments in preclinical emergency

medicine, such as air rescue, or even on scene [14]. Early treatment using such a device

has shown substantial reductions in mortality rates for cases of septic shock [15].

However, the quality and reliability of measurements acquired using Doppler ultra-

sound are critically linked to operator skill [16], and the necessary experience required

to be sufficiently competent is disputed [17, 18]. Reported limitations of the technology

include difficulty maintaining and locating the correct probe position [19], variations in

interpatient scanning difficulty including deterioration of measurement quality with in-

creased age [16], and further complications such as reduced echogenicity in patients who

have undergone cardiac surgery [20]. A combination of these factors have likely contributed

to the large range in reported validation accuracies [21]. To realise the clinical potential of

portable Doppler ultrasound, these limitations need to be mitigated and the gap between

expert and routine assessment needs to be bridged. This is the motivation behind the

work presented in this thesis.

This document presents research into methods and solutions that could enable Doppler

ultrasound haemodynamic monitoring to be more accessible. The primary goal of this

work is the design of automatic intelligent systems that give feedback reflective of a given

measurement. To this end, a suite of signal processing methods were designed and eval-

uated in this work. These methods enabled the automatic extraction and processing of

data, and were combined with machine learning procedures to develop feedback models. A

selection of novel features were proposed for these models. Furthermore, state-of-the-art

image recognition techniques for Doppler ultrasound analysis were proposed and shown to

be superior to more traditional methods that employ hand-crafted features. The specific

objectives corresponding to this work will now be described.

1.2 Objectives

The primary goal of the presented work is to design methods that can reflect scan quality

and guide probe position during Doppler ultrasound haemodynamic scan acquisition. To
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realise this goal, research is centred upon six objectives. These objectives are listed in Table

1.1, and will be explicitly detailed in this section. This work is focused on measurements of

blood flow through the aortic valve, and subsequent references to Doppler measurements

will refer to this.

The solution adopted for this primary goal is to design automatic intelligent feedback

models. This is reflected by two thesis objectives. The first objective is to develop a scan

quality feedback model. This feedback is a quantitative evaluation of a given measurement,

which indicates whether probe movements are beneficial or not. Through a series of

measurements, this feedback can indicate the IPP or, for example, be used to locate the

best measurements from an examination time-history.

The second objective is to develop a position guidance model. Contrary to the scan

quality model, this feedback explicitly predicts beneficial probe manipulations. In this

regard, a scan history is not required to hone in on the IPP, and the feedback goes beyond

any inference an operator could make using a singular measurement.

Predictive models are developed using features extracted from Doppler ultrasound

measurements. As will be described in Section 3.5, the feedback being considered in this

work is novel, and previous Doppler classification works are limited. Considering this,

the most suitable feature types to construct such models are not evident. To reflect

this, the third objective of the work is to develop and propose valuable features for these

applications.

Several features are derived using the maximum frequency envelope (MFE). The MFE

is a time history of the maximum frequency contained in a measurement, and is propor-

tional to maximum blood velocity; this is described in detail in Section 3.1. The MFE,

therefore, captures the cyclic nature of blood as it is pumped around the body; an example

of an MFE is provided in Figure 1.1. This cyclic characteristic can be used to perform

beat segmentation, which enables features to be extracted from individual cardiac cycles.

In the given application, beat segmentation and feature extraction must continue to

function even when applied to data measured away from the IPP. These data can contain

high levels of noise and atypical Doppler profiles. Furthermore, to preserve the technolo-

gies speed and cost-effectiveness, implemented methods must operate without additional

hardware (e.g., an electrocardiogram (ECG)). This means MFE estimation and beat seg-

mentation can be very challenging, and when performed using existing methods, result in

incorrectly segmented beats and poor-quality features. These limitations are addressed
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using two further objectives.

The fourth objective is to design a stable method of MFE estimation that is capable

of preserving the pulsatile shape of blood flow across a wide range of conditions. The

fifth objective is to develop an automatic method of beat segmentation, which requires no

additional hardware to operate.

Particularly challenging portions of measurements, such as regions that contain erro-

neous signals (e.g., artefacts from sudden probe movements or external noise), can in-

evitably lead to incorrect beat segmentation. In offline settings (i.e., training and testing

models), these observations can be removed. However, in real-time applications, this is

not possible and is detrimental for model performance. Considering this, the sixth objec-

tive is to design a means of rejecting incorrectly extracted data. The primary objectives

Figure 1.1: Example spectrogram of blood flow through the aortic valve with the MFE

displayed in red.

Table 1.1: Summary of thesis objectives

Number Objective

1 Develop a model to provide automatic scan quality feedback

2 Develop a model to provide automatic probe position feedback

3 Propose existing and novel features for intelligent scan acquisition guidance

models

4 Develop a stable and real-time method of MFE estimation

5 Develop an automatic method of beat segmentation that operates using

only the Doppler measurements

6 Develop a model to automatically reject poor quality beats



1.3. THESIS CONTRIBUTIONS 5

outlined above are summarised in Table 1.1, and discussed with respect to corresponding

contributions and thesis structure in the following section.

1.3 Thesis Contributions

The work documented in this thesis centres around the six primary objectives listed in

Table 1.1. The resulting contributions associated with each of these are detailed in Table

1.2. This table includes information regarding chapters documenting the associated work.

As highlighted, the documented work is presented in a chronological order (e.g., the feature

extraction and machine learning tasks proceed the design of the MFE estimation and beat

segmentation methods, which were designed first). The thesis content and structure are

summarised in the following section.
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Table 1.2: Summary of thesis contributions

Obj.1 No.2 Contribution Chapter

1 1 A model designed to give continuous feedback was proposed.

This gives dynamic feedback to reflect beneficial or

detrimental probe movements

7

2 2 Classification models proposed for four classification

scenarios that categorise probe position with respect to the

IPP

8

2 3 Proposed image recognition method of classifying Doppler

signals, this approach was compared to more traditional

methods.

3 4 An analysis of existing and novel Doppler ultrasound

features was performed. Spectral features previously not

used in Doppler ultrasound analysis, and novel envelope

features were suggested.

7, 8, 9

4 5 A real-time stable method of MFE estimation called OMM 5

5 6 A real-time automatic method of beat segmentation, that

functions solely using the MFE called the slope-gradient

method

6

5 7 A real-time automatic method of beat segmentation, that

functions using a characteristic MFE and characteristic low

frequency spectral content called the correlation method

6

6 8 A classification model for rejecting poor quality data was

proposed

9

1 – Objective number associated with each contribution.

2 – Contribution number.

1.4 Thesis Structure

This thesis consists of 10 chapters, including the introduction. This section provides a

brief summary of what is contained within each of these chapters, and how they relate to

the objectives outlined in Table 1.1.

Chapter 1 – Introduction: Introduction to thesis topics, detailing thesis motivations,
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objectives, and overall structure.

Chapter 2 – Background: This chapter builds on the themes summarised in the in-

troduction to give both contextual and prerequisite information. This provides the reader

with a fundamental understanding of the cardiovascular system, current haemodynamic

monitoring methods, and Doppler ultrasound technology. The documented limitations of

Doppler ultrasound technology are discussed, illustrating the need for the presented work.

Chapter 3 – Literature Review: A critical analysis of the work leading up to, and

including, state-of-the-art methods associated with the outlined objectives. Gaps in the

literature are identified, providing a logical basis for the proceeding chapters. Promis-

ing machine learning methods reported for Doppler ultrasound and other disciplines are

analysed.

Chapter 4 – Survey Data: Different data extraction methods and machine learning

techniques are investigated throughout this work. This chapter summaries the data used

to design and evaluate these and describes the survey methodology. This provides a clear

understanding of the challenges involved in the work, and provides context with respect

to feedback models designed in proceeding chapters.

Chapter 5 – Envelope Estimation: A novel image-processing method of MFE esti-

mation is presented. The proposed method is evaluated using phantom, simulated, and

in-vivo data, and is shown to be highly stable in poor signal qualities. The methods

performance is compared to that of three state-of-the-art methods.

Chapter 6 – Beat Segmentation: The chapter presents two novel beat segmentation

methods, which require no additional hardware to function. These methods are used in

subsequent chapters to extract features from Doppler measurements.

Chapter 7 – Continuous Feedback: This chapter describes the large array of different

features extracted in the presented work. The methods used to then train and evaluate

models are described. A model capable of producing continuous feedback reflective of

probe position is designed and evaluated.
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Chapter 8 – Localisation Feedback: The features and methods described in Chapter

7 are used to classify probe positions. Additionally, state-of-the-art image recognition

methods are also investigated.

Chapter 9 – Beat Rejection: This chapter details a classification model and associated

techniques for rejecting poor data in real-time applications.

Chapter 10 – Conclusions and Future Work: The presented work and its primary

outcomes and significance are summarised. Potential future research, based on the progress

and areas highlighted in the presented work, are discussed.

1.5 Publication

The design and evaluation of the novel MFE estimation method, which is presented in

Chapter 5, formed the basis of the following published journal article:

J. Latham, Y. A. Hicks, X. Yang, R. Setchi, T. Rainer. Stable Automatic Envelope Es-

timation for Noisy Doppler Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, 2020.



Chapter 2

Background

Haemodynamic measurements give crucial insight into cardiovascular function. Within

this thesis, methods of processing and extracting information from Doppler ultrasound

haemodynamic measurements are proposed and evaluated.

This chapter provides a fundamental understanding of why haemodynamic assessment

is essential, and the role that Doppler ultrasound plays in this area. The basic underlying

physics and implementation of this technology is given. This details valuable clinical

metrics that can be used to assess the cardiovascular system. This system, the system

upon which every cell in the body relies, will now be described.

2.1 The Cardiovascular System

With every heartbeat, blood is forced around the body. Vessels guide this blood through

a myriad of arteries, veins and capillaries, forming two circuits that start and end at the

heart. One circuit oxygenates the blood, and the second traverses the body, supplying

cells with vital oxygen and nutrients.

At the core of this system is the heart, a muscular organ that acts as a pump. The

heart contains four chambers, as illustrated in Figure 2.1. Each side of the heart has a pair

of chambers: an atrium and a ventricle. Ventricles actively contract and eject blood into

arteries, whilst atria passively fill with blood returning from veins. The left side receives

and pumps deoxygenated blood, whilst the right side receives and pumps oxygenated

blood. Cyclic stimulation of the heart muscles, in response to the body’s needs, enables

9
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the heart to pump blood around the body [22].

Figure 2.1: Diagram of the heart

2.1.1 The Cardiac Cycle

A series of mechanical and electrical events transpire with each heartbeat; this sequence

is called the cardiac cycle [22]. With reference to the heart, events include valve openings

and closures, isovolumic contraction and relaxation, and periods of blood ejection and

filling. The duration of a given cardiac cycle (Tcc,) is determined by the person’s heart

rate (HR).

Tcc(s) =
60

HR
; (2.1)

These events can be used to divide the cardiac cycle into different phases. This can

be performed to varying extents, for example separating the cycle into four [23] or even

seven stages [24].
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In this thesis, the cardiac cycle is considered to have two distinct phases. During one

of these periods, the heart contracts and blood is pumped into the arteries; this period

is termed systole. Following this, the heart relaxes and expands. This allows returning

blood to flow back into the heart; this period is called diastole.

During systole, the heart ventricles contract and blood is ejected through the pul-

monary and aortic valves, on the right and left sides of the heart, respectively. Blood

entering the pulmonary artery is deoxygenated and is channelled to the lungs, where

carbon dioxide is expelled, and oxygen is collected. Blood entering the aortic artery is

oxygenated and is subsequently supplied to a network of vessels that transport it through-

out the body. Diastole follows and is a period of ventricular relaxation, during which

the ventricles are refilled with blood. The left atrium, and subsequently left ventricle, are

filled with oxygenated blood returning from the lungs. On the right side, the deoxygenated

blood returns via the superior and inferior vena cava. The process can now repeat. This

circulation forms a closed system, which can be analysed and measured at different points

and using different technologies.

Figure 2.2: Cardiovascular flow diagram
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2.2 Cardiovascular Monitoring

Cardiovascular disease (CVD) includes several heart and vessel disorders, for example,

coronary and rheumatic heart disease. CVD results in 31% of deaths worldwide, which

corresponds to 17.9 million people and makes it the highest global cause of mortality [3].

Clearly it is imperative that people at risk are identified, and appropriate treatments are

provided. Cardiovascular management is especially vital for patients undergoing surgery.

Only through precise haemodynamic and cardiac monitoring can therapies be guided to

treat CVDs [25]. Changes that can occur in response to CVDs include hypertension,

hypotension, valve diseases and heart failure [22]. Different methods have been developed

to diagnose the cause of such changes, and to monitor aspects of cardiovascular status.

The ECG is a fundamental tool for cardiac monitoring. This familiar device measures

electrical activity of the heart. Signals are acquired using electrodes placed at strategic

points on the body, including the limbs and the chest. The resulting rhythmic waveform

can be used to diagnose a variety of abnormalities, such as atrial or ventricular fibrillation,

or tachycardia [24]. Another standard tool for assessing cardiac health is the phonocar-

diograph. Phonocardiographs monitor heart sounds, which include the iconic ‘lub’ and

‘dub’ components. Respectively, these sounds occur as a result of the mitral and tricuspid

valves closing, and the aortic and pulmonary valves opening. Additional sounds can be

induced – for example due to turbulence – which indicate problems such as regurgitation

or valve issues [22]. These occurrences can be assessed quickly using auscultation, or via

similar methods using Doppler ultrasound [26].

In addition to these metrics, quantitative measures of blood flow can be used to assess

heart performance. In practice, appropriate monitoring will typically necessitate multiple

interdependent parameters, such as blood pressure, stroke volume variation and CO. These

measures can also be used to enable goal-directed fluid therapy. This approach replaces

more traditional and less successful approaches based on a patient’s weight and their

duration without fluids [27]. Monitoring such metrics is also invaluable for the detection

and treatment of sepsis, septic shock and other types of shock or hypertension.

Early goal-directed therapy, which is guided by cardiovascular monitoring, is an effec-

tive method of improving outcomes for patients with severe sepsis and septic shock [4].

Sepsis is defined as a systemic inflammatory response in the presence of an infection, in

which a number of symptoms can present such as an elevated heart rate or an irregular
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body temperature [28]. This dangerous bodily response is a major cause of disability and

death across the world, with 300,000 deaths being attributed to the condition annually in

North America alone [5]. The danger of sepsis is sadly being illustrated by the current

pandemic of COVID-19, in which the inflammatory response is the most common compli-

cation. Following this are respiratory issues, and then heart failure and septic shock [29].

These stark examples illustrate the power of clinical information garnered through car-

diovascular monitoring, and the need for safe, accurate and practical means of measuring

blood flow metrics.

As discussed, a valuable and commonly measured metric is CO. This is the amount

of blood pumped by the heart during 1 minute. It is regarded as a principal variable for

cardiovascular assessment and is often used to guide treatment protocols [30]. This metric

will now be discussed in more detail.

2.3 Cardiac Output

CO is routinely monitored as part of intensive care practice. It is a principal determinant

of oxygen delivery and blood pressure [31], and as such can guide treatment and identify

patients at risk. The first method of measuring CO, the ‘Fick principle’, was described

by Adolph Fick in 1870 and was first clinically used in 1940. However, measurements of

CO only became routine as recently as 1970, following work which detailed catheterisation

of the right side of the heart using a balloon-tipped catheter [32]. This led to specially

designed pulmonary artery catheters (PAC), and a method of CO estimation using ther-

modilution curve analysis. There have been hundreds of studies addressing the accuracy

of this technique. Typically, these demonstrate PAC thermodilution to be a reliable, and

clinically informative method of measuring CO; there are however known inaccuracies with

the method [33]

Drawbacks of PACs include their inherently invasive nature, which introduces risk (e.g.,

arrhythmia, infection or possible pulmonary disruption [34]). This consideration and other

factors such as time restraints, cost, and required level of expertise can limit their use; this

is particularly true within the emergency department [17]. These issues make alternative

and less-invasive methods highly desirable. A number of promising methods have been

proposed. However, inaccuracies associated with PACs have led to debate regarding its use

as a gold standard for validating novel methods. This can make validating an alternative
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method’s efficacy challenging [31].

Non-invasive methods of CO measurement include pulse contour analysis, the partial

rebreathing technique, transthoracic electric bioimpedance and Doppler ultrasound. These

will now be discussed.

2.3.1 Pulse Contour Analysis

Pulse contour analysis was suggested over a century ago [35], however, until recently it

could not be used to produce accurate measurements due to technical limitations [36]. The

method is based on the principle that through analysing the arterial pressure waveform

(obtained from an arterial line), SV can be continuously monitored [37]. The method

has been implemented in a commercial device [38], which has been included in some

comparison studies. An assessment of its role in the care of critically ill patients still

needs to be performed, as well as further validation and improvements to the system [31].

2.3.2 Partial Rebreathing Technique

The partial rebreathing technique is based on the Fick principle discussed above. The

principle is based on the conservation of mass, it states that the total uptake or release of a

substance by an organ remains relatively constant during the non-breathing and breathing

periods, and as such cancel out [36]. Traditional implementation necessitated invasive

measurements, however,a recent innovation is capable of evaluating CO2 elimination, from

which pulmonary blood flow can be calculated. This method is less invasive and can be

used to estimate CO [31]. However, the technique cannot be applied in certain conditions,

such as for infants [39], and is limited due to the need for intubated and ideally ventilated

patients [40].

2.3.3 Transthoracic Electrical Bioimpedance

Transthoracic electrical bioimpedance is an interesting method, first developed by NASA

and Kubicek in the 1960’s [41]. As its name implies, the approach exploits bioimpedance.

This is the resistance to an electrical current being transmitted through the body. The

path of lowest resistivity is that of blood and plasma (i.e., these fluids have the highest

conductivity). An electrical current will flow through the path of least resistance, thus

when a current is applied to the body it will be primarily conducted by these fluids. An
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increase in blood volume is associated with a proportional increase in conductance; dy-

namic changes in blood and plasma, therefore, correspond to varying bioimpedance. This

is most significant where blood flow is pulsatile, for instance, blood leaving the left side

of the heart. Variations in bioimpedance are used to calculate SV, which when combined

with heart rate enables CO to be found [42]. The method has been validated with respect

to thermodilution techniques [43, 44] and has been shown to perform accurately. How-

ever, the technology has a number of limitations, for example, it requires haemodynamic

stability and cannot be applied to certain patients [36].

This technique is non-invasive but does require four pairs of probes comprised of trans-

mitting and receiving sensors [45], and an ECG. This limits the viability of the method in

certain conditions and prevents quick implementation.

2.3.4 Transoesophageal Echocardiography

Transoesophageal Echocardiography (TEE) is a technique that has been used intraop-

eratively since the 1980s and has progressively become more popular [46]. Particular

complications associated with PACs, such as catheter size, have resulted in the method

being common in paediatrics. TEE can measure blood velocities using ultrasound, through

exploiting the Doppler effect (i.e., Doppler ultrasound). This method uses a small spe-

cialised probe that is inserted into the oesophagus. This probe is positioned so that data

is collected from a particular position with known area. This is commonly the left ventric-

ular outflow tract [31]. Measured velocities and area are used to determine CO. Similarly,

oesophageal Doppler can be used to measure blood flows within the descending aorta.

TEE can also determine CO in a non-Doppler manner. Using an imaging modality,

the volume of the left ventricular chamber during systole and diastole can be measured.

The difference between these volumes allows SV to be estimated. However, this is typi-

cally impractical for perioperative cases, and imaging difficulties can result in inaccurate

measurements [31]. TEE methods, as a whole, necessitate a high level of knowledge and

skill to ensure accurate results. Comparatively with transcutaneous approaches, TEE is

more invasive, requires more time, and cannot be used to provide continuous monitoring.
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2.3.5 Transcutaneous Doppler Ultrasound

Transcutaneous Doppler ultrasound is completely non-invasive, cost-effective and easy to

administer. This technique exploits the same physics as TEE methods; SV is calculated

using blood velocity measurements and lumen area. The term “transcutaneous” describes

a method applied across the depth of the skin, meaning that a transducer need only be

placed on the skin and not inserted internally. The ease of applying this technique makes

it highly desirable in certain situations, such as in the emergency department where time

is highly precious. This technique has been implemented using stand-alone commercial

Doppler devices, which are geared towards providing cheap and easy methods of moni-

toring CO. As will be discussed in Section 2.7, this technology has been widely validated.

The operation of such Doppler ultrasound devices are briefly discussed in Section 2.5.

With respect to other non-invasive methods of CO measurement, transcutaneous Doppler

ultrasound can be administered very quickly and accurately. Furthermore, the technology

can be realised in cheap and compact devices. This lends the technology to challenging

scenarios, such as within emergency transport or rural settings. The speed of application

also enables repeat measurements, which otherwise would be impractical.

2.4 Doppler Ultrasound

The preceding sections have highlighted various ways in which Doppler ultrasound has

been implemented in clinical settings, and specifically, the life-saving information provided

by associated blood velocity measurements. In this section, the physical principles of

Doppler ultrasound, and how Doppler measurements can be used to extract haemodynamic

metrics are described. In the proceeding chapters, Doppler signals are processed using a

variety of techniques. The outputs of these are governed by the fundamental principles

outlined here.

Ultrasound has been used as an inspective tool since 1912, following the collision

of the Titanic with an iceberg [47], after which solutions for safer navigation included

ultrasonic technologies. Diagnostic ultrasound research began around 1950, where its

imaging potential was demonstrated by Dussik, who succeeded in generating ultrasound

images of the human brain [48]. Since Dussik, who has been referred to as the ‘Father of

Ultrasonic Diagnosis’ [49], huge advances in physics and technology have allowed diagnostic
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capabilities and applications to grow tremendously [50].

2.4.1 What is Ultrasound?

Ultrasound is the name given to sound waves with frequencies that exceed 20 kHz. As the

name suggests, these frequencies are beyond the normal human auditory range. The most

common form of an acoustic wave is a longitudinal compressional wave; ultrasound (and

sound in general) is of this type. Propagation of longitudinal waves is enabled through

particles oscillating parallel to the direction of travel. These particles move locally but do

not travel with the wave, allowing energy to be transferred across mediums.

Ultrasound has become an essential tool in medical diagnosis, familiar uses include

imaging of foetus’ or other organs. In examinations such as these, transcutaneous ul-

trasound is used to interrogate targets. Resulting reflections are then processed to give

interpretable data. The ultrasound signal is generated by means of an electromechanical

transducer (usually a piezoelectric transducer), with frequencies typically ranging from 1

to 20 MHz. The relationship between wavelength (λ), frequency (f) and speed of sound

is given below.

f =
c

λ
(2.2)

Frequency is inversely proportional to wavelength. Considering this, higher frequen-

cies can be used to produce data with increased resolution. However, higher frequencies

attenuate faster and so cannot penetrate as deeply. For a given application, this trade-off

has to be considered when selecting an operating frequency. In practice, this means lower

frequencies tend to be used to inspect deeper targets and higher frequencies for more

superficial targets [12].

2.4.2 The Doppler Effect

When a vehicle passes you, you may notice that the engine sound, or the music being

played within, varies in pitch. This is because the frequency of sound emitted by a source,

is determined by the relative velocity of that sound source. This phenomenon is called the

Doppler effect. An analogy of this are the waves surrounding a moving ship, those at the

bow of the ship bunch together (i.e., have a shorter wavelength, and higher frequency),

whilst those at the rear of the ship spread apart (i.e., have a longer wavelength, and
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lower frequency). The effect also occurs for other wave types, such as light, and has been

exploited for many uses including within speed cameras, or on a grander scale, to show that

the universe is expanding. The Doppler effect was first described by Christian Doppler in

1842, who used it to describe the colour of binary stars [51].

The effect is also exploited in ultrasound technologies. When an ultrasound beam is

transmitted into the body, a portion of this signal will be scattered and reflected back. If

these scatterers have motion, the returned signal will exhibit a Doppler shift. An increase

in frequency occurs if this motion is towards the transducer, and a decrease occurs if it

is away from the transducer [52]. This Doppler shift can be used to estimate the velocity

of the target. The relationship between target velocity (v), and ultrasound frequency is

given in equation 2.4.

fd = fr − ft (2.3)

fd = ft
v2cos(θ)

c
(2.4)

Where ft, fr and fd are the transmitted, reflected, and Doppler shift frequencies re-

spectively, c is the speed of sound within the medium, and θ is the insonation angle. This

insonation angle and the transmitted and reflected frequencies are illustrated in Figure

2.3.

Figure 2.3: Insonation angle associated with Doppler ultrasound measurements

Use of Doppler ultrasound to investigate blood flow was first reported by Satomura in

1959 [53]. Light later demonstrated quantitative blood flow measurements from the as-

cending aorta using transcutaneous ultrasound [54]. These early examples used continuous
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wave (CW) ultrasound. This form of ultrasound operates by continuously transmitting

and receiving ultrasound, and therefore exhibits no range resolution. This is in contrast

to pulsed wave ultrasound (PW), which transmits and receives ultrasound sequentially,

allowing for localisation of signals with respect to distances along the beam [55]. The basic

operation of these ultrasound systems is given in Section 2.5.

Medical applications were further illustrated in a 1983 study, within which CO mea-

surements obtained using CW Doppler ultrasound and thermodilution were compared [55].

This study found good correlation between the two methods. With respect to Doppler

ultrasound, CO is calculated from the product of SV and heart rate (HR). SV is the

product of the velocity-time integral (V TI) and the lumen cross-sectional area (CSA);

these relationships are shown in equations 2.5 and 2.6.

VTI is the integral of peak velocity during systole and is equivalent to the distance

travelled by the blood column during this time. The measured blood velocity is assumed

to be the instantaneous velocity averaged across the whole CSA (i.e., it exhibits plug

flow [56]).

SV = V TI × CSA (2.5)

CO = SV ×HR (2.6)

2.4.3 Intrinsic Spectral Broadening

With respect to the Doppler equation (2.4), estimating the maximum velocity associated

with a Doppler signal appears to be straight forward. However, in practice, clinical Doppler

measurements can include a host of erroneous signal contributions (for example from tissue

movement or nearby blood flows), as well as many other contributing factors such as

acquisition errors, systematic quantification or signal processing noise [57].

In addition to these contributions, inherent parameters of the Doppler ultrasound

system also gives rise to a phenomenon known as intrinsic spectral broadening (ISB)

and manifests as a blurring of the Doppler spectrum. When measuring a single moving

target using Doppler ultrasound, the measured frequency content contains a range of

frequency shifts and not one singular value. When interrogating blood, many moving

targets contribute to the measured Doppler signal, resulting in a smearing of the frequency



20 CHAPTER 2. BACKGROUND

spectrum [58]. The presence of ISB is attributed to two spectral contributions: local

geometric broadening and transit-time broadening [59].

Geometric broadening occurs due to the finite width of the Doppler beam (i.e., the

aperture) [60]. This means a traversing target has a range of incident and reflected ultra-

sound angles, and as the Doppler shift is proportional to cos(θ), the measured frequency

exhibits a spectrum of values.

Transit-time broadening occurs due to the finite time in which a target traverses the

ultrasound beam. The inhomogeneity of an ultrasound beam means the intensity of re-

flected signals from the target varies as it passes through, and so these reflected signals

are amplitude-modulated [58].

The combination of these two effects results in the measured Doppler spectrum being

smeared, and sharp variations being smoothed. The practical effect of this is that when

inspecting Doppler frequency content, frequencies which correspond to maximum velocity

points can be hard to distinguish, and can mean values are overestimated [61]. In clinical

situations, diagnoses based upon maximum blood velocities must appreciate the effects of

ISB [58].

2.5 Doppler Ultrasound Machines

Doppler ultrasound has been widely researched, and the phenomenon has been exploited

for numerous applications. This has resulted in different Doppler ultrasound devices be-

ing designed, which enable different aspects of the cardiovascular system to be measured.

However, despite this large range of technologies being developed, only a handful of in-

strument types are used regularly in clinical practice. These can generally be classified as

one, or a combination, of the systems described in this section.

2.5.1 Velocity Detecting Systems

Velocity detecting systems produce an output signal that is proportional to the velocity of

the targets being interrogated. Such systems tend to be simple stand-alone devices, with

a single sample volume. The transducer is handheld, and not connected with a location

sensing system (i.e., a system which tracks, and provides feedback on transducer location).

These systems can range from simple arrangements that output audio reflective of
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absolute velocity, to more sophisticated systems that produce directional signals, which

enable further analysis and multiple envelope types to be extracted [12]. Despite the

simplicity of these systems, they can be valuable in detecting the absence or presence of

flows, and monitoring changes in these flow characteristics.

These systems lack imaging capabilities, and as such the incident angle of the ultra-

sound beam and targets cannot be measured. The consequence of this angle is determined

by a simple cosine relationship (see equation 2.4), Table 2.1 illustrates the magnitude of

this effect. At certain anatomical positions, the angle of incidence can be assumed to be

negligible, for example, at the temporal bone when performing cerebral artery measure-

ments. Similarly, measurements of the aortic arch when collected from the suprasternal

notch can be considered to have a very small insonation angle, allowing quantitative ve-

locity measurements to be made [54]. As will be described in Section 2.6, this approach is

employed when using the primary ultrasound device implemented in this work. Acquired

measurements can then be used to calculate information regarding the cardiovascular sys-

tem [62].

Table 2.1: Relationship between incident angle and calculated velocity

Angle (◦) cos(θ) Velocity Reduction (%)

0 1 0.0

10 0.99 1.5

20 0.94 6.0

45 0.71 29.3

60 0.50 50.0

90 0.00 100.0

Velocity detecting systems can be implemented using either CW of PW ultrasound.

CW devices transmit and receive ultrasound continuously. To accomplish this, they re-

quire two separate crystals, one for transmission and one for receiving. These tend to be

contained in the same probe, for example, via two half-moon shaped transducers. As the

transmitted signal is continuous, no range resolution can be achieved, only a maximum

observable depth due to attenuation of the ultrasound. Attenuation of sound increased

with frequency, Table 2.2 illustrate this with respect to ultrasound within the body. This

relationship, combined with safe intensity levels, dictates the frequency used to inspect
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specific targets. Superficial vessels will tend to be interrogated using frequencies around

8 MHz, whereas for deep targets, frequencies as low as 2 MHz may be used [12]. Lower

frequencies are capable of insonifying the aortic valve from the suprasternal notch. Fig-

ure 2.4 displays a block diagram illustrating the design of a simple non-directional CW

velocity detecting system.

Table 2.2: Approximate ultrasound attenuation in human body with respect to frequency

Transmitted Frequency (MHz) Attenuation Coefficient (dB cm−1)

2 4

4 8

6 12

8 16

10 20

In reference to Figure 2.4, the master oscillator outputs an electrical signal that is

amplified and used to drive a transmitting crystal. The transmitting crystal converts the

electrical signal into an acoustic one, usually via the piezoelectric effect. Reflected waves

are recorded by the receiving crystal and converted back into an electric signal. This is

then amplified and passed to a mixer and a low-pass filter [12].

This process allows coherent demodulation to take place (i.e., removal of the carrier

frequency to give an output of the Doppler frequency sidebands). The received signal

and a reference signal from the master oscillator are passed to the mixer. The low pass

filter removes the high-frequency component in this signal, leaving the Doppler frequency.

By fortunate coincidence, these Doppler frequencies typically occur in the audible range,

and thus, can be passed directly to an audio output to produce feedback for an operator.

Figure 2.4: Block diagram of a simple non-directional continuous wave Doppler Ultrasound

system
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Furthermore, this demodulated signal can undergo further processing and analysis.

This straight-forward demodulation technique does not provide directional information

(e.g., the maximum positive and negative velocity). In order to acquire directional Doppler

information, a more complex demodulation process can be used. Several techniques have

been reported for this, but the most common method is quadrature-phase detection or

I/Q demodulation [63].

With respect to CW systems, PW systems are advantageous in that they provide both

range and velocity information of targets [55]. This is achieved by transmitting short

bursts of ultrasound with a specific pulse repetition frequency (PRF), and following a

short delay, analysing a portion of the received signal. The period of this delay is user-

defined and determines the depth from which signals are gathered. Wells demonstrated

this using PW transcutaneous ultrasound measurements of the mitral valve as early as

1969 [64].

However, the maximum measurable Doppler frequency using a PW system is limited

to half the PRF, beyond this, aliasing of the Doppler signal occurs. As target depth is

increased, so is PRF. This is to account for the greater distance travelled by the ultrasound

pulse; such systems are therefore limited to measuring low velocities from deeper targets

[65]. Additionally, PW allows adjustable gain with target depth. These features, however,

introduce complexity with respect to aiming the device, for example, there is additional

user dependency to set range [55].

With respect to CW systems, PW systems require further circuitry to allow trans-

mitted and received signals to be appropriately gated and passed to the demodulator.

Although, the transducer arrangement is simplified if the same crystal is used for both

transmission and reception [12].

2.5.2 Duplex Systems

Duplex ultrasound systems combine B-mode ultrasound (i.e., a 2D ultrasound image) with

Doppler ultrasound. Using the 2D image, the sample volume location used for collecting

Doppler recordings can be specified [12]. This allows one to obtain Doppler signals from

specific anatomical locations [66]. Duplex systems can also be used to measure anatomical

dimensions, such as lumen CSA. Furthermore, these systems can visualise vessel walls,

and therefore the ultrasound angle of incidence. This measurement can be automatically
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performed and used to produce calibrated velocity calculations [12].

The same transducer array is typically used for Doppler measurements and imaging,

this prevents images and Doppler signals being collected simultaneously. The system can,

however, be designed to rapidly switch between the two modes. This gives a refresh rate

that simulates simultaneous data collection [12]. This device type is used in Chapter 5 to

collect phantom data.

2.5.3 Velocity Imaging Systems

As an ultrasound sample volume is moved through the body, the size and strength of

resulting Doppler signals will vary. Through mapping the sample volume location on a 2D

display, and intensity modulating these positions to correspond with either the frequency

or intensity of the Doppler signal, blood flow images can be generated [12]. Construction

of simple blood flow images was demonstrated through performing multiple sweeps using

a CW transducer connected to position sensing gantry [67]. The resulting image was

improved further by colour coding the Doppler quantity [68] (e.g., a temperature scale).

This coding corresponds to the peak frequency measured over the cardiac cycle; meaning

the sample volume must dwell at each location for a minimum of one cycle.

This time constraint was reduced using a fast-swept linear transducer, capable of sam-

pling each scan line multiple times during a cardiac cycle [12]. Use of a PW system

provides depth resolution, allowing an image to be constructed from a desired plane. Such

machines are again limited by the long duration needed to acquire a full scan. Attempts

were made to overcome this using multichannel devices [69].

Velocity imaging systems evolved further by combining B-scan technology with multi-

gate Doppler imaging technology [70]. This allowed for the B-mode monochrome image

to be superimposed with colour coded Doppler information. Since these early systems,

real-time colour flow mapping has experienced a number of improvements and become a

popular clinical tool. As described in Section 3.5.2, previous works have extracted features

from images generated using such systems. These were subsequently used to form linear

regression models for diagnostic applications [71].
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2.5.4 Ultrasound Research Platforms

Research into novel medical ultrasound techniques can be limited using commercially

available clinical machines. This is because such machines offer very little control over

signal processing methods employed, and limit the extent of accessible data.

These restrictions can be overcome using high-level research machines. These devices

offer high programmability, and access to RF data, however, they tend to be expensive

and are not portable [72].

In response to these disadvantages, a number of highly flexible research platforms have

been designed and built [72, 73]. The application of modern technologies in these designs

enables high programmability with high performing digital signal processing. A common

theme through these designs is the use of field-programmable gate arrays. These devices

can be used, for example, to synthesise arbitrary waveforms for transmission, perform

beamforming, demodulation, filtering and down-sampling [72]. As these processes must be

programmed ‘from-scratch’, the user has full control over their design. These advantages

are discussed in Section 8.7.6 and 10 in reference to research into Doppler feedback.

2.5.5 Modern Devices

Modern machines that incorporate Doppler ultrasound range from simplistic foetal heart

detectors to complex ultrasonic machines with extensive imaging modalities and probe

types. The ability to measure CO transcutaneously, in a simplistic manner from locations

such as the suprasternal notch, however, remain a niche application.

The presented work uses a device built specifically for this application, this is the

Ultrasonic Cardiac Output Monitor 1A (USCOM). This device currently stands alone in

terms of its primary application and ease of use, and has enabled research into a breadth of

clinical specialities. The methods designed and investigated throughout this thesis reflect

challenges associated with this machine, however, will also be applicable to other devices

using the same technologies. The research and reported limitations of the USCOM device

are discussed in depth in the remaining two sections of this chapter.
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2.6 The Ultrasonic Cardiac Monitor

This thesis describes an investigation into means of automatically generating feedback

that reflects Doppler ultrasound measurements. Specifically, this is for measurements of

blood flow through the aortic valve, using a CW ultrasound transducer placed in the

suprasternal notch.

This section will introduce this technique, and describe its modern implementation and

validation. This gives an understanding of the central measurement procedure investigated

in this work, and highlights potential sources of error and limitations that the explored

solutions seek to mitigate.

2.6.1 Precursor Devices

Using a modified foetal heart detector, in the late 1960s, Light demonstrated that flow

measurements could be attained non-invasively from the ascending aorta [54,74]. This was

achieved using a 2 MHz CW ultrasound transducer with a slightly divergent beam, and

positioned in an intercostal space. It was noted, that given the knowledge of a person’s

aortic cross-section, one could estimate their CO. Light suggested that the speed, safety

and convenience of this technology could be valuable for clinical assessment; a sentiment

that is echoed throughout much of the literature explored in this project.

Shortly following this, it was surmised similar flow measurements could be acquired

by positioning the transducer in the suprasternal notch [52], an approach which was then

demonstrated using both CW and PW ultrasound [75]. This work discussed the need for

non-invasive methods, which could replace the more costly, troublesome and dangerous

invasive flow measurements using catheters.

This transcutaneous method was later evaluated using a portable CW device called

the Ultracom [62]. Using this machine, the ultrasound probe could be placed within

the suprasternal notch. This allows the ultrasound beam to become parallel, or close

to parallel, with the direction of blood flow. Echocardiography allowed the aortic root

diameter to be measured, and subsequently the CSA to be estimated.

The probe was aimed such that resulting signals exhibited a sudden onset and cessa-

tion of systolic flow, with minimal diastolic flow. Following data collection, the machine

calculated the CO from 12 consecutive beats. This was performed three times and the

average of these were used. CO measurements were evaluated against metrics measured
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by thermodilution. The Doppler ultrasound approach was shown to be highly correlated

with thermodilution, and the authors concluded that trained and experienced technicians

could accurately determine CO using the technology [62].

2.6.2 The Ultrasonic Cardiac Output Monitor 1A

Despite the long-established benefits of non-invasive Doppler ultrasound, its use for bed-

side monitoring has yet to become commonplace. A more recent realisation of this tech-

nology has been designed by a company based in Sydney, Australia. This device, the

USCOM, has been designed to retain the strong advantages touted by those earlier im-

plementations. The USCOM is a stand-alone system, which is both portable and, with

respect to typical ultrasound machines, highly affordable. The device requires no addi-

tional hardware to function and can derive an array of haemodynamic metrics on-board.

The USCOM is displayed in Figure 2.5.

Figure 2.5: USCOM 1A

The device was made available in 2006, and most variants operate using a 12mm 2.2

MHz CW half-moon transducer. The system claims to employ a unique divergent beam,

whose broad characteristics makes it easier to operate, and less user-dependent than its

predecessors [76]. The probe’s small size allows it to be comfortably positioned in either

the suprasternal notch, where it can measure blood flow traversing the aortic valve, or

at the parasternal window to measure blood flowing through the pulmonary valve. Rob



28 CHAPTER 2. BACKGROUND

Table 2.3: Overview of haemodynamic metrics measured by the USCOM 1A

Metric Description

CO Cardiac Output
CI Cardiac Index

Vpk Peak Velocity of flow
VTI Velocity Time Integral
HR Heart Rate
MD Minute Distance
ET% Ejection Time Percent
SV Stroke Volume
SVI Stroke Volume Index
SVV Stroke Volume Variability
SVR Systemic Vascular Resistance
SVRI Systemic Vascular Resistance Index
Pmn Mean Pressure Gradient
FT Flow Time
FTc Flow Time Corrected
SW Stroke Work

CPO Cardiac Power

BSA1 Body Surface Area

OTD2 Outflow Tract Diameter
1 – Calculated using user input patient height and weight.
2 – Calculated using user input patient height.

Phillips, the founder of USCOM, demonstrated the feasibility of measuring CO in this

manner from the pulmonary valve prior to USCOMs establishment [77].

Using the maximum velocity envelope, CO and a host of additional haemodynamic

metrics are calculated in real-time. These metrics are presented in Table 2.3. This is

made possible by automatically extracting the MFE using a combination of the signal-

noise slope intersection method (discussed in Section 3.1.2), power spectrum smoothing,

envelope forcing and artefact removal [78].

Despite the straight-forward manner in which measurements can be collected using this

device, concerns have been raised regarding its ease of use and the accuracy of acquired

measurements. These considerations contribute to the motivation leading to the work in

this thesis, and will be discussed in the following section.
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2.7 USCOM Performance and Limitations

The USCOM is a self-contained CW Doppler ultrasound device, capable of providing a

swathe of haemodynamic variables through non-invasive scans, which when performed

by an experienced operator, can be time-efficient and accurate. In the given work, the

USCOM is used to collect blood flow measurements through the aortic valve. Machine

learning techniques are later designed that consider scan acquisition from this location.

The USCOM is described in more detail in Section 2.6.2.

This section reviews work concerned with validating this device. These works high-

light scan acquisition difficulties and potential sources of error associated with acquiring

measurements. This provides an understanding of the devices limitations, and gives fur-

ther context to automatic feedback models designed in later chapters. These limitations

have likely contributed to the range in measurement accuracies reported for the USCOM

device. These clinical validation studies will now be discussed.

2.7.1 Clinical Validation of USCOM

Since becoming available, a large pool of publications detailing research using the USCOM

has amassed. Over 460 publications are claimed to prove the device’s accuracy, and

its suitability to be considered as a ‘gold standard’ [79]. However, validation studies

exhibit a large range of reported accuracies. The clinically accepted limits of agreement

for assessing new techniques have been recommended as ± 30% [80,81]. Over the last two

decades, several studies have compared USCOM performance to thermodilution methods,

the variability in these studies is illustrated in Figure 2.6. The studies displayed in this

figure are summarised in Appendix A.

In 44% of the studies displayed in Figure 2.6, a percentage error greater than 30% was

recorded. However, there are a number of variables that can make drawing conclusions

from these observations difficult.

One variability is the valve from which measurements are acquired. These surveys use

measurements from either the aortic valve or the pulmonary valve (PV). In either case,

calculated metrics rely upon estimated CSAs using nomograms. The use of which are

often cited as a potential source of error [19, 82–85]. The employed nomogram provides

an estimate of aortic valve diameter [86], this is then used to calculate CSA. With respect

to measurements of pulmonary blood flow, CSA is estimated using an adapted version of
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(a) (b)

(c)

Figure 2.6: USCOM 1A validation meta-analysis, detailing a) patient numbers, b) bias

including limits of agreement where available, and c) percentage error. Details regarding

individual surveys are provided in Appendix A

the same nomogram, however, no studies are available that consolidate this approach [19].

Although CSA estimation is commonly cited as a potential source of error, replacing these

estimates with measured values has demonstrated only minor improvements [19,83,87].

The parasternal window most appropriate for a given PV measurement varies and is

typically a more difficult location to acquire measurements from [17, 88, 89]. The agree-

ment of metrics using the aortic valve and PV approach has been investigated [90], and

differences of less than 5% were found. Interestingly, this is despite measurements not

being performed simultaneously, and significant changes in heart rate being reported. It

should, however, be noted that measurements from the two locations were performed con-

secutively, with the more challenging PV scans being performed second. This provides the

operator with a baseline value, which could either prolong effort spent aiming the probe, or

reduce efforts as values are similar to those from the suprasternal notch. Repositioning of

patients from supine has been shown to aid PV data collection [91]; it has been suggested
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that this is because when in the supine position, the ultrasound beam is interrupted by

the lung edge [89].

Due to the differences in CSA estimation viability and ease of measurement, it seems

likely that inherent differences in measurement accuracy between the aortic and PV mea-

surements may occur.

In addition to measurement location, different transducer types have been used (2.2

MHz and 3.3 MHz). As detailed in Section 2.4.1, lower frequencies offer more penetra-

tion. Clarification of transducer frequency is not always provided, however, the frequency

used will likely impact the ease of performing measurements depending on the patient’s

physiology. Other factors can influence the ease of interpatient scan acquisition.

It has been shown that decreased accuracy, for adults, is correlated with patients

age [16]. This has been linked to physiological changes and aortic calcification which

can make adequate insonation challenging. A recent study compared USCOM and TTE

measured CO in patients before and after venesection [92]. They found the USCOM

to inconsistently detect resulting changes. Conversely, an earlier study reported much

better results [93]. A younger population in this study has been suggested as a reason

for this disparity [92]. Concerns have also be raised regarding performance in response

to arrhythmia, aortic regurgitation or aortic stenosis [19, 94–96]. However, above these

technical complications, the most commonly cited source of potential error within studies

is operator experience; this is discussed further in the following section.

2.7.2 Operator Experience

Operator experience has been found to be critically linked to the quality of acquired

USCOM measurements [16], with results attained during the ‘learning phase’ of the tech-

nology as being highly user-dependent [84,91,97]. Researchers who were unable to demon-

strate good performance using the USCOM described the aiming procedure as “. . . blindly

directing a Doppler beam at the aortic and pulmonary valves, and optimising flow traces

by minute manipulations. . . ”. They suggest that feedback limited to the Doppler profile,

which does not provide any positive confirmation, could weaken operator confidence [19].

Additionally, forms of feedback, could in principle guide ‘minute manipulations’, and pro-

vide additional positive confirmation. At present, no additional forms of visual feedback

have been described in the literature.
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Different levels of training have been recommended to be considered competent. A

commonly cited requirement is training with 20 examinations [17], however, doubt has

been expressed regarding this [19] and it has been suggested it would be more appropriate

to consider this as the starting point of the learning curve [18]. A more recent study found

novices with experience of over 30 examinations still produced highly variable measure-

ments [98]. This study compared trainee measurements, which were performed on infants,

with those collected by an expert. In addition to age, ethnic physiology has been sug-

gested as a factor which can affect measurement success [16]. These elements, as well as

nuances in how novices have been trained, are likely factors in the observed disparity with

respect to recommended mandatory experience, and potentially the range of validation

performances shown in Figure 2.6.

The reported experience of operators in validation surveys varies, and in some cases is

not explicitly stated. Several studies have reported the USCOM under-reporting CO in

higher flow rate conditions [84, 91, 99]. This may be attributed to the user assuming an

optimal signal is being received based on the measured values appearing good quality or

‘normal’, preventing perseverance to find a stronger signal. This is a subtly perhaps only

a highly experienced user, or additional forms of feedback could overcome.

These difficulties can sometimes contribute to failed scan attempts. The reported

proportion of patients in which operators fail to acquire scans varies from 5% [88] to

20% [100, 101]. There is however no consistent condition that constitutes a failed scan,

for example, Tan et al failed to acquire PV measurements in two patients following 45

minutes of searching [102], whereas Van Den Oeveret al classed four PV measurements

as failed after 10 minutes of examination, stating this was a more realistic time limit for

clinical applications [19].

In addition to the challenges highlighted through the discussed validation surveys,

concerns have also been raised with respect to the contrasting technologies used in these

surveys. Specifically, whether it is correct to treat thermodilution measurements as a

‘gold standard’, from which alternative methods can be evaluated. These concerns, and

the merits of the USCOM device with respect to other technologies, are discussed in the

following section.
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2.7.3 Validation Hurdles and Alternative Technologies

The USCOM is inarguably safer, quicker and cheaper than thermodilution methods, which

were used in the validation surveys displayed in Figure 2.6. Issues raised through these

studies include the accuracy of the USCOM device. However, concerns have also been

raised regarding the accuracy of thermodilution [11, 103, 104]. A recent study compared

variables measured in sheep using PAC thermodilution and the USCOM. The sheep were

implanted with aortic flow probes [105]. Measurements using flow probes are highly accu-

rate [106]. However, they are currently limited to non-human studies due to the required

implantation. This enabled a fairer means of comparing the two methods. This study

found that USCOM outperformed PAC in both accuracy and sensitivity for CO mea-

surements. This is a considerable finding, and if these observations hold true for human

measurements, could alter conclusions formed from previous studies. The experience of

the operator in this study is not defined. However, the study was performed with the

founder and an employee of USCOM, and so their experience was likely considerable.

In addition to these concerns, thermodilution using PACs provide an averaged value

with inherent processing delay. Conversely, USCOM provides live, beat-by-beat measures.

Therefore comparisons made across these methods use metrics derived from different time

periods. This may contribute to some differences observed [107].

A recent study compared the USCOM to two additional non-invasive methods [108].

The methods, in this case, were found to be interchangeable in paediatric critical care. In

areas such as paediatrics, use of PACs are rarely feasible due to catheter size [108], and

there is additional reluctance to incur associated risks, which are associated even in adult

studies. TTE is included in this study, which is a widely used and less invasive method.

However, comparably it is slower and requires a higher level of expertise.

The advantages of USCOM also lend to its use in more remote areas, and in clinical

settings where accurate assessments and treatment responses are needed [108]. Access to

a user-friendly, accurate, fast, non-invasive haemodynamic monitor would result in less

complications, morbidity and mortality [108].



34 CHAPTER 2. BACKGROUND



Chapter 3

Literature Review

This chapter provides a detailed review of the state-of-the-art with respect to signal pro-

cessing, analysis and machine learning techniques relating to Doppler ultrasound haemo-

dynamic measurements. This documents the works and techniques that have guided pro-

cesses in proceeding chapters, as well as the limitations of existing methods.

The content in this chapter goes beyond Doppler ultrasound focused research, and

includes a review of advanced machine learning techniques implemented in further disci-

plines, such as speech recognition and deep learning image recognition. Several leading

and outstanding methods highlighted through this are later adopted for the given work.

Guided by these works, a large range of features are extracted. This is facilitated using

the MFE, which is used to both extract features and enable beat segmentation.

3.1 Maximum Frequency Estimation

Different approaches can be taken to extract information from clinical Doppler ultrasound

measurements. Section 2.3.5 described how the maximum velocity envelope, which is

proportional to the MFE, can be used to calculate CO. Further haemodynamic metrics

can be derived using this envelope, a selection of these are presented in Section 2.6.2.

This section describes the challenges involved with estimating the MFE, and the different

techniques proposed to overcome them.

The maximum velocity envelope can help clinicians evaluate and diagnose medical

conditions, for example, peak systolic velocities are used to assess the degree of a stenosis

35
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[109], and to determine the need for a carotid endarterectomy [110]. Section 3.4 describes

how different features can be calculated from the maximum velocity envelope to facilitate

diagnosis. This information enables Doppler ultrasound to assess cardiac health [111],

which otherwise would necessitate more invasive and slower traditional methods [105,112].

Considering the clinical use of maximum velocity envelopes, accurate and repeatable means

of extracting them are essential.

The maximum velocity envelope is usually estimated from a time-frequency represen-

tation of the signal. This allows the frequency content being measured, and therefore the

velocities, to be visually inspected. This provides a straightforward method of feedback.

An example of this is displayed in Figure 1.1, which displays the MFE and the corre-

sponding spectrogram, whose values were found using the short-time Fourier transform

(STFT).

Blood flow measurements produce Doppler signals with a range of spectral content.

This is both due to the effects of spectral broadening, which can effectively blur Doppler

spectral content (as described in Section 2.4.3), and due to interrogated scatters having a

range of velocities.

This means that visually the true maximum frequency is both hard to distinguish from

a spectrogram and no longer corresponds to the true maximum blood velocity. In addition

to these inherent challenges, erroneous signals such as tissue movement or nearby blood

flows can be inadvertently captured, measurements can have poor SNRs, and external

factors such as acquisition errors or systematic quantification can additionally complicate

envelope estimation [113,114]. These hurdles often contribute to overestimations of blood

velocity [115].

Despite the limitations of visually assessing maximum frequencies, MFEs are manually

traced in conventional Doppler ultrasound devices. These traced envelopes are then passed

to a second computer which calculates haemodynamic properties (e.g., CO) [116]. In

addition to concerns regarding accuracy, this procedure is also subject to both inter-

and intra-observer variation [117] and is very time costly [118]. These factors, as well

as the clinical benefits of averaging measurements [119–121], make automatic methods of

envelope estimation desirable.

The valuable information contained within MFEs, and the challenges involved with

extracting them, have led to an array of MFE estimation methods being proposed. These

techniques will now be described.
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3.1.1 Early Methods

A range of methods have been proposed to estimate maximum frequency points from

Doppler signals. The typical steps involved in this process are displayed in Figure 3.1 [122].

Early attempts were restricted to analogue methods, for example, systems using banks of

narrow-band analogue filters, the outputs of which were then thresholded to give maximum

frequency estimates [54,123].

As technology progressed, digital methods were designed [124, 125]. Approaches in-

cluded the use of Doppler signal histograms [125], however, assumptions regarding power

spectrum density and probability distributions restricted these methods [122]. Further-

more, they were limited in terms of signal-to-noise discrimination.

Prompted by this, D’Alessio proposed a digital threshold crossing method. This

method objectively estimated maximum frequency through quantifying noise threshold

levels from the power spectrum [126].

In this approach, sequences of power spectrum bins are interrogated from upper to

lower frequencies. The maximum frequency is defined as the highest bin at which the

spectral power in successive bins exceeds a set threshold.

The threshold is estimated from the tail-end of the Doppler spectrum. As white noise

exhibits a flat spectrum, this approach gives information on the level of noise throughout

the signal. Shortly following this work a study contrasted the performance of D’Alessio’s

method, with three other methods [122]. One of these methods, the ‘hybrid method’ uses

the integrated power spectrum (IPS).

3.1.2 Integrated Power Spectrum Methods

Mo et al compared the performance of four maximum frequency estimation methods [122]:

D’Alessio’s threshold crossing method, a modified threshold crossing method (MTCM), a

percentile method and a hybrid method. The IPS is used to contrast how each method

operates, and to introduce the hybrid method that uses it directly. The hybrid method

Figure 3.1: Block diagram of general maximum frequency estimation process
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identifies the maximum frequency as a point on the IPS curve where the signal transitions

to noise. The IPS is calculated using equation 3.1,

IPS(f) =

∫ fH

fL

P (f)df (3.1)

where P (f) is the estimated power spectrum [122]. As will be described, a variety of

models that use the IPS have been proposed. When applied to a spectrogram, maximum

frequency values can be estimated for each time point, thus, producing an MFE. An

example of the IPS curve is displayed in Figure 3.2. The IPS methods function based upon

assumptions regarding the shape of this curve. The extent to which an IPS resembles its

characteristic form is determined by SNR levels, and the presence of erroneous signals.

The primary difference between the MTCM and D’Alessio’s method is how the signal

to noise threshold is calculated. In the case of the percentile method, a user-defined

percentage of the IPS curve is used. The percentage used is chosen with respect to SNR.

This introduces a hardcoded (i.e., fixed) value, which does not change in response to

evolving levels of noise [122].

The hybrid method uses a geometric approach. Maximum frequency is identified using

a straight line that intersects the rising IPS and ends at the maximum frequency bin. The

slope of this line determines the intersection point and is calculated using the level of noise

in the signal. This intersection point is defined as the maximum Doppler frequency. They

Figure 3.2: Example IPS curves
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concluded that the MTMC and hybrid models performed the best, and that performance

was dependent upon SNR and the shape of the power spectrum [122].

Moraes et al performed a similar study, comparing three MFE estimation algorithms

[127]. They compared a simple user-defined threshold method, the MTMC method and a

modified version of the geometric method (GM) [128]. As with the hybrid method, GM

uses the IPS and determines maximum frequency using a geometric approach. The maxi-

mum frequency is identified as the point on the IPS which is at a maximum perpendicular

distance from a reference line. This is a straight line plotted from the frequency with peak

spectral power, and the end frequency.

The modified GM (MGM) differs to the original with respect to how coordinates are

determined for the reference line; this removed inaccuracies incurred due to variable signal

gains [127]. Moraes et al found that all three methods performed similarly, and suggested

algorithm choice should be made with respect to their application.

More recently, Kathpalia et al presented a new IPS geometric method. This method

is an adapted version of the signal noise slope intersection method [113]. This modified

signal noise slope intersection (MSNSI) method incorporates steps from GM [128]. In

this method the IPS is divided into three regions; the signal region, the noise region and

the knee region. As with GM and MGM, a reference line is used, lines of best fit are

calculated for the noise and signal regions separately. The gradients of these lines are

then used to model the IPS. This allows the knee region to be inspected, within which the

signal transitions to noise. This relationship is shown in equation 7.1.

M(x) = msx+mn(1–x) (3.2)

Where x is the fractional signal contribution, which ranges from one at the start of

the knee region, to zero at the end of the knee region. If Doppler signals contained no

broadening, the maximum frequency would occur at an x value of zero. A value of 0.1 was

heuristically found to give the most accurate estimations. This allows the MSNSI method

to some extent account for spectral broadening. As x was arbitrarily chosen based on

observations, it follows that it could be tailored for specific scenarios, leading to more

accurate results.

The MSNSI method also provides steps for envelope estimation as a whole. These

additional steps aim to make envelope prediction more robust and accurate and are based
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on heuristic thresholds, interpolation and smoothing. These are in response to the chal-

lenges which can occur during envelope estimation, such as erroneous signals or reductions

in SNR. These can be particularly challenging for the IPS methods, which necessitates a

characteristic IPS curve to produce accurate estimations. At time points where this is not

the case, estimations of maximum frequency can be wildly inaccurate. MSNSI attempts to

overcome this by identifying these regions using a dynamic noise threshold. These regions

can then be removed, and replaced using interpolation. Where a set number of sequential

time points exceed this threshold, the MFE is set to zero. Consequently, noisy signals can

potentially result in MFEs with missing regions.

In practice, the resemblance of an IPS to its characteristic form varies across sequential

time points. This can produce an erratic envelope with high standard deviation (STD).

The MSNSI method employs envelope smoothing to mitigate this.

The methods discussed in this section provide a practical means of estimating MFEs.

However, their operation is based upon heuristic factors, are significantly impacted by

noise and can only provide approximate estimations. A potential approach, which can

theoretically overcome these hurdles, is to use spectral modelling.

3.1.3 Spectrum Modelling Methods

Given enough information about a system, representative models can be designed to

mimic them and subsequently garner more information about the underlying processes.

Vilkomerson et al presented a new method of peak velocity identification using a model

of the Doppler power spectrum [129]. This model represented steady parabolic flow and

assumed uniform insonation. The resulting spectrum featured a plateau at low frequen-

cies, which would then descend to the noise floor as frequency increased. This model

revealed that peak velocity occurred at the midpoint in power on the descending slope of

the Doppler power spectrum. To assess a measured spectrum, the spectrum is scanned

from high to low frequencies. The mid-point is the location that corresponds to half

the power at the end of the plateau region (which is estimated using an iterative pro-

cess). Vilkomerson et al demonstrated high accuracy, and a robustness to SNR using this

method.

This method assumes a uniformly insonated vessel and accurately known angle of

insonation. This limits the practical application of this method, as both insonation angle



3.1. MAXIMUM FREQUENCY ESTIMATION 41

and non-uniform insonation are known primary sources of error for Doppler ultrasound

measurements [117, 130]. This is particularly true for applications where measurements

need to be attained from a range of angles and signal qualities, as required in the presented

work.

3.1.4 Image Processing Methods

Doppler envelopes often need to be traced by a trained technician [131, 132]. This is

performed by outlining the perceived edge on the ultrasound machine using a track-ball.

This process requires a still frame and is often performed from video recordings post-

examination due to time restraints [131]. This process of outlining the MFE using an

image has been replicated using software. As with the IPS methods, this can overcome

subjective and efficiency limitations of the manual tracing approach.

A limited number of image-processing methods have been described. The methods

use a pre-processed image of the spectrogram, and as with the IPS methods must contend

with challenges such as speckle noise, wide SNR variation and aliasing [132]. The described

approaches use a number of common steps, which include capturing and cropping the video

output from an ultrasound machine, converting still images to a binary image, and then

extracting the MFE. An example binary image is included in Figure 3.3.

The first identified example was presented in 2001 [131]. This method used image

sequences recorded onto videotape, with a time width and refresh rate of 2.5 s and 1 s,

respectively. MFE extraction from images requires several steps. These include detecting

the image portion displaying the spectrogram image, and ensuring un-associated image

sections such as axis are not processed. High-frequency noise is filtered out using a Gaus-

sian low pass filter, with empirically chosen parameters. Using a nonlinear Laplace edge

detector, a greyscale image is formed using intensities which correspond to edge strength.

A threshold is then derived using pixels close to zero velocity. Noise in the resulting bi-

nary image (i.e., pixels that should correspond to black, in fact correspond to signal) are

removed, by elimination regions of connected pixels smaller than a set amount. Ideally, fol-

lowing these steps, a black and white image remains in which all white signals correspond

to measured blood velocities.

The MFE is extracted from the binary image using a ‘biggest-gap’ algorithm [131],

whereby each image column is inspected separately. The signal pixel that is adjacent to
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the largest number of consecutive non-signal pixels is recorded as the maximum velocity

point. This process is illustrated in Figure 3.3. The method is made more robust by

applying weights to gap sizes depending upon the velocity region in which they occur.

This addition, however, imposes assumptions regarding the measured velocities. The

resulting MFEs were smoothed using an average filter and compared to manually traced

curves. This evaluation was performed using approximately 11 minutes of data, a bias of

0.4 ms−1 was reported for peak velocities; it is unclear how the method performed across

the whole cardiac cycle.

Several similar approaches have been described. These have been focused on automat-

ically tracing MFEs from the mitral and tricuspid valve [133–135]. High correlations with

hand-traced envelopes have been reported. These were calculated using 167 to 467 beats

across the methods.

Differentiating the signal portion from the greylevel images during diastole is more

challenging, to overcome this the diastolic portion can be effectively set to zero [135].

Evaluations are restricted to systolic flow, and bias with respect to manual tracings of

3.6% to 5.6% were reported [135]. These approaches would be inappropriate in cases where

diastolic MFE information is needed. Furthermore, evaluations have been performed using

limited recordings and for recordings made with optimal conditions.

Newer image-processing methods have been described that form binary images directly

from spectrogram images (as opposed to first applying an edge detector). This is achieved

Figure 3.3: Illustrates MFE extraction from binary image using biggest-gaps method
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by thresholding the spectrogram image. The image quality, and therefore accuracy of

extracted MFEs, are determined by the selection of this threshold. A threshold too high

will remove the wanted signal, and give negative bias. Conversely, a threshold too low will

produce a binary image with excessive noise, from which the MFE cannot be estimated.

A semi-automatic method was described for transthoracic coronary Doppler flow [136].

The threshold, in this case, was found by inspecting the pixel intensities at three regions

within the image. With respect to the inverse cumulative histogram of these pixels, the

intensity at which 25% of intensities were greater was chosen as the threshold value. This

process assumes a given percentage of image pixels correspond to signal, and is thus

dependent upon both device settings and the blood flow being measured. This limitation

was highlighted as the implemented percentage had to be manually changed in 10% of

beats. The maximum frequency for each column is assumed to be the signal-pixel which

occurs before the first non-signal pixel. This would prevent use with CW ultrasound

examinations where signal strength is not constant below the maximum frequency, or

when using PW ultrasound. The image threshold has also been estimated using the Otsu

method [137]. In this case, lots of noise can persist in the binary image, which can be

removed by eliminating clusters smaller than a set size. MFE performances were not

evaluated in this case.

A recent method used an objective thresholding technique. This applies a range of

thresholds to the image, and the number of pixels remaining following each threshold

application is recorded. The chosen threshold is taken as that which corresponds to the

maximum gradient in these recorded data. This is illustrated in Figure 3.4. This method

was again compared with hand traced envelopes and demonstrated good correlation with

calculated metrics.

Figure 3.4: Threshold identification process used by Zolgharni et al



44 CHAPTER 3. LITERATURE REVIEW

The image-processing methods described have shown good correlation with hand traced

envelopes. These evaluations have, however, been limited to the systolic portion of the

signal. Furthermore, the number of beats assessed has been low and restricted to high-

quality measurements. The generalizability of these methods is also questionable as images

are captured from secondary machines, and thus undergo unknown processing. In no

example were the temporal and spectral resolutions of pixels reported, calling into question

how transferable the methods are. This is illustrated by the span of cluster sizes used when

removing noise, which ranges from 50 [137] to 500 [132].

MFEs in the given project are used to both segment data and extract a range of

features across the cardiac cycle. To achieve this, an image-processing method would need

to perform well across diastole and a far wider range of signal qualities and types thus far

tested. Hitherto, evaluations have not included quantitative assessment using data with

known associated maximum velocities.

The discussed MFE estimation methods have been evaluated using a combination of

simulated data, and data measured in-vivo and from phantoms. Evaluations using a

combination of these data types allow for a thorough interrogation of methods.

3.1.5 Phantoms for MFE Method Evaluation

Phantoms provide well defined and reproducible testing characteristics. This enables quan-

titative evaluations of Doppler ultrasound equipment, processing methods and data inter-

pretation. They have been used to calibrate equipment and to negate inaccuracies born

from geometric spectral broadening [130], and have highlighted common limitations of

Doppler ultrasound machines, including significant overestimations of maximum veloci-

ties [138].

These physical models belong to one of two groups: string phantoms and flow phan-

toms. In the former, the interrogated target is a thin loop of material such as nylon, o-ring

rubber or silk [139]. This material is looped over wheels rotating with known and vari-

able velocity. The system is typically submerged in a liquid with similar sound speed to

tissue, and precautions are taken to prevent air being introduced [139]. String phantoms

can be used to assess the accuracy of maximum velocity estimation, however, they do

present some limitations. Notably, in contrast to clinical measurements, at any time there

is only one velocity. This can prevent reliable evaluation of extracted waveform indices,
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particularly when the degree of intrinsic spectral broadening is low [139].

Flow phantoms allow for a more physiologically accurate model, and models have been

designed to generate a wide range of anatomical waveforms [140]. These models typically

use fluids with similar ultrasonic scattering properties to human blood, which is pumped

through vessels embedded in tissue-mimicking material [141]. As with string phantoms,

pumps are chosen to ensure air is not introduced into the system. Flow phantoms can also

be used to assess estimated volume flow rates, and spectral broadening indices. Additional

applications include comparison between operators and for use as a teaching tool [140].

The general designs of a string and flow phantom are illustrated in Figure 3.5.

(a) String Phantom (b) Fluid Phantom

Figure 3.5: Phantoms block-diagrams

Steinman et al designed a flow phantom to investigate sources of error in maximum ve-

locity estimations. They used this system to evaluate their SNSI MFE estimation method

using a wide range of insonation angles and steady flow rates. More recently, a string

phantom was used in the assessment of the MSNSI MFE estimation method, using steady

speeds of 60 and 100 cm/s, and insonation angles of 27◦ and 58◦ [114].

Phantoms serve as a vital tool for evaluating ultrasonic hardware, however, can be

limited with respect to the range of scenarios that can be investigated (e.g., blood profiles,

velocities or insonation angles). When evaluating software, simulations can be used to
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provide further and more variable test data.

3.1.6 Simulations for MFE Method Evaluation

Doppler simulations can be used for extensive testing of processing methods. With respect

to phantoms, they are cheaper, often faster, and provide complete control each parameter.

These features allow quick investigations of different scenarios. In this section, methods

of Doppler ultrasound simulation are discussed.

A real-world Doppler signal is both frequency and amplitude modulated, where fre-

quency is directly related to the velocity of the interrogated blood. Doppler signals exhibit

stochastic characteristics and can include spectral broadening [142]. Their complex nature

makes the process of simulation non-trivial.

The Doppler signal can be considered to be the sum of contributions from numerous

individual scatters, which pass through the sample volume. This makes it a Gaussian

random process [143]. Several models have been derived by representing Doppler signals

as bandlimited Gaussian noise. The random fluctuations that occur in Doppler signals,

and the performances of different spectral estimators have been investigated using this

technique [143,144]. These models used a frequency domain approach, involved the sum-

mation of many sinusoids and required a power spectrum as a major input. This was

either experimentally measured or theoretically derived.

This modelling approach has been used to investigate mean frequency estimators [145],

and a selection of MFE estimators using stationary and nonstationary simulated signals

[122, 128]. Gaussian noise was added to these simulated signals to yield varying SNRs;

allowing the robustness of MFE estimators to be evaluated [122, 128]. As true maximum

velocity is known in these scenarios, bias and STD statistics were calculated to evaluate

the extracted MFEs.

These statistics have been used to evaluate several MFE estimators using emulated

signals [127]. In this case, white noise was sampled and then processed to produce narrow-

band quadrature signals. The effects of spectral broadening were somewhat incorporated

by having the ‘maximum frequency’ components located in the fall-off region.

In addition to these Gaussian noise models, simulations can be achieved using wave

scattering models [146]. Instead of simply replicating the stochastic nature of Doppler

signals, scattering models consider the underlying physical mechanisms. This approach
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can also include information regarding the Doppler instrument, and allow the effect of

varying parameters such as volume size and beam pattern to be included [142]. Bastos

et al presented a scattering model which combined previously described techniques, and

was capable of simulating pulsatile blood flow. Their model considered the signal to be a

summation of contributions from subvolumes of red blood cells [146], introduced spectral

broadening effects through modelling finite sample volumes [142], and included dynamic

velocity profiles using the Womersley model [12,147] The MSNSI method was evaluated in

part using a simple simulated Doppler signal [114]. This simulated a parabolic steady flow

and used a method similar to that presented by Guidi et al [148]. The described simulation

methods, and in particular those that have been used to assess MFE estimators, have

predominantly simulated simple flow conditions, for example, steady flowrates without

spectral broadening. They allow the process to be simplified, however, limit the accuracy

of the resulting data.

Field II is a software that performs numeric ultrasound simulation. The software gen-

erates raw data similar to that measured by an ultrasound machine, which could enable

MFE estimation performance to be rigorously tested on very realistic data. This software,

which was developed by Jensen [149, 150], has been well-validated and used extensively

for ultrasound research. Applications of Field II include investigations of transducer per-

formance [149], image reconstruction techniques [151] and assessment of Doppler flow

algorithms [152]. Jensen et al [153–155] have demonstrated that the simulated data can

be used to accurately obtain velocity estimates.

The software, which uses the spatial impulse response method to allow generation and

analysis of ultrasound fields, is written in C and uses MATLAB as an interface. This

allows a high level of control of the model, including definition of transducer properties

(e.g., geometry, apodisation and impulse response), as well as the positions of interrogated

scatterers, which are described in 3D space using Cartesian coordinates. Distinctions

between different structures such as blood or tissue are possible by assigning different

acoustic values to scatterers.

In pulsatile flow, the velocity profile changes as a function of time. Waveforms from

different arteries can be synthesised using their Fourier components [12]. As with the above

examples, this employs the Womersley model. These time-dependent profiles allow the

position of the modelled scatters to change between ultrasound pulses, and thus simulating

pulsatile flow.



48 CHAPTER 3. LITERATURE REVIEW

3.2 Beat Segmentation

Doppler ultrasound, and the extracted MFE, enables straightforward and efficient exam-

inations. However, to calculate quantitative metrics cardiac timing indices are typically

required. These indices allow information from particular regions of the signal to be

analysed, for example, the systolic portion when calculating stroke volume. This section

discusses means of acquiring such timing information.

Traditionally these timing indices are found manually, which clearly prevents instan-

taneous measurements and is disadvantageous in clinical scenarios [156, 157]. Automatic

means of acquiring these indices have been described. These methods either use additional

hardware, such as an ECG, or function using the shape of the Doppler MFE. Typically,

the former approach is implemented.

Gibbons et al presented a system capable of providing real-time PI measurements.

This was achieved using a three-lead ECG to act as a trigger. The R-wave associated with

the ECG signal is used to provide a gating signal, waveforms during these isolated portions

are then used to calculate PI metrics. This approach was later used for automatic carotid

artery classification [157], where 20 beats were segmented and averaged; this ensemble

average was then used to classify degrees of stenosis. Their method introduced a condition

to decrease false detections based on timing variations in succeeding beats. If, with respect

to the previous beat, the heartbeat varied greater than 110 ms or the R-R interval differed

greater than 33% , the current beat was rejected [157]. A similar condition has been

described, where beats exhibiting a heart rate difference greater than 10% , with respect

to the overall measured heart rate, are rejected [158].

The ECG signal used in this manner ensures the same portion of the cardiac cycle

is always analysed, this approach was used recently to investigate potential means of

cancelling intrinsic spectral broadening via ultrafast Doppler ultrasound imaging [159].

Through introducing an ECG trigger delay, waveforms can be segmented at the start of

systole. This delay is set by the operator [70]. This was demonstrated as a means of

automatically calculating CO [55]. In this example, operator input timing information

and the ECG trigger signal were used to integrate measured velocities during systole,

giving the stroke volume. This time delay is illustrated in Figure 3.6.

ECG signals can provide a robust means of beat segmentation, however, they do

exhibit a number of limitations. Firstly, an ECG requires electrodes to be attached to the



3.2. BEAT SEGMENTATION 49

patient, which introduces an additional level of complexity to the examination process [118,

160]. These additional steps and inherent time requirements are particularly restrictive

in emergency scenarios, such as on-scene or during air rescue [14]. Secondly, the trigger

delay required to capture indices with known locations (such as the start of systole), has

to be adjusted with respect to the measurement location [118].

These limitations have led to beat-segmentation methods that function solely using

the MFE being developed. Inherent to this approach are a number of challenges. These

include a wide variation in MFE shape, slow velocities, artefacts due to turbulence or noise,

MFE offsets due to steady flow components, and significant variations in pulse durations

in certain conditions [118].

Johnston et al described a means of estimating timing indices shortly after the early

ECG methods were described [118]. Their method used the extracted MFE and was able

to detect the start and endpoints of the waveform, which were then used to calculate

PI. The method was reviewed by technicians using approximately 35 minutes of data,

which was recorded from four different arteries. This evaluation found that the method

Figure 3.6: Common features used in beat segmentation for ECG and MFE shape ap-

proaches
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successfully segmented 96% of recordings. Their method processed Doppler audio in 5.12

s segments, from which the MFE is estimated. The five highest peaks with a minimum

separation of 200 ms are identified. The minimum distance between identified peaks is

then used to find additional peaks, by assuming a maximum pulse interval variation of

20%. This process assumes a heart rate of less than 110 bpm. The first and last beats are

rejected if they are incomplete.

The authors partly attribute the high performance of their method to the data used.

This is because processed recordings were acquired by ‘freezing’ the waveform once the

operator identified the optimal probe position, and artefacts and noise were at a minimum.

They found reasons for failure included heart rates below 50 bpm and greater than 110

bpm, arrhythmias and cases of extreme damping [118]. The minimum heart rate con-

dition makes the method more robust but inherently restricts its application. Rejection

of incomplete beats inevitably will result in fewer beats being processed, in modern ap-

plications where memory is less restrictive, a sliding window could be implemented. For

example, the following 5.12 s of processed audio could be selected to include the start of

an incomplete beat in the preceding MFE.

In addition to reducing examination complexity, a shape-based method can be used

in scenarios where an ECG cannot. This is the case for foetal work, where maternal

signals can interfere with an ECG [160] . Thompson et al proposed an autocorrelation

method for identifying the start of systole in sequential beats, using MFEs from the

umbilical artery [160]; this enabled 7-8 cycles to be averaged. Other waveforms, such as

the mean velocity, absolute sum and first moment were considered for extracting timing

indices, however, the MFE was found to be the smoothest and least prone to errors. The

method required an initial start point to be entered by an operator and was too slow to

be implemented for real-time use. A similar method was used to investigate the effect of

physical parameters on extracted MFEs and PI [161]. Modern technology would allow

real-time implementation of this method, however, the necessity for user inputs prevents

it from operating in a fully automatic manner. Tissue Doppler signals offer another means

of creating a gating signal, and this has been demonstrated as a means of synchronising

3D ultrasound imaging of foetal hearts [162].

Autocorrelation has also been used to estimate heart rate, and subsequently define

a minimum distance between peaks in the MFE [132]. This approach is used to first

identify peak systole positions, and assumed a minimum distance of 80% of the estimated
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heart rate. The start and end of systole were then found based on heuristic properties of

the envelope. This is performed by calculating the first derivative of the velocity curve,

and then identifying local maxima and minima in close proximity to the peak of systole.

The distance between peaks and the assumed location of minima are illustrated in Figure

3.6. This approach relies upon the envelope remaining close to its characteristic shape,

and furthermore, the method was only tested on data deemed to be of good quality by a

technician.

The USCOM 1A provides instantaneous haemodynamic measures. The onboard flow

tracking software includes algorithms for the aortic and pulmonary valve, which estimate

the start and end of systole. The methods employed within this software have been

described at a high-level in the corresponding patent [78]. The start of systole for aortic

valve signals is found by first identifying approximate start positions. This is done using a

velocity threshold, and subsequently a gradient threshold for that portion of the envelope.

To make the method more robust, the algorithm ensures the velocity remains above this

set threshold for a given period. The identified approximate location and slope gradient

is then used to extrapolate the rising edge down to zero; this point is used as the valve

opening position. In practice, the USCOM screen is frozen once an optimum trace is found.

The positions are then displayed and can be adjusted by the user. Small adjustments are

occasionally required due to, for example, noise spikes. An example of this is displayed

in Figure 3.7 . In terms of routine examination, these adjustments are not a concern as

they are quick to perform. These limitations, however, could be impactful for research

applications or when instantaneous metrics from poorer quality scans are needed.

A variety of beat segmentation methods have been described, the evaluation of these

methods has however been restricted to optimal recordings and are largely not automatic.

In addition, tests have used limited numbers of beats, and methods have not been di-

rectly compared. Having acquired cardiac timing information, quantitative features can

be derived and used for diagnostic purposes.

3.3 Doppler Ultrasound Diagnosis

The diagnostic potential of ultrasound was fist demonstrated over 70 years ago [48], since

then vast advances in physics and technology have led to ultrasound technologies becom-

ing a core clinical tool [50, 163]. Doppler ultrasound can be used to attain an array of
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haemodynamic metrics, and to diagnose a range of conditions. The technology can be

implemented in a wholly non-invasive manner, which makes it highly desirable for many

applications.

As blood flows throughout the body, its characteristics at any point are governed

by fundamental physical laws. A basic comprehension of this underlying physics gives

a fuller understanding of blood flow measurements performed using Doppler ultrasound,

and subsequently gives a degree of diagnostic ability. Bernoulli’s principle states that

an increase in flow velocity will correspond with a decrease in static pressure [164]. This

relationship was used to develop the Gorlin formula, which can be used to calculate stenotic

orifice area [165]. These concepts were later used to investigate stenotic aortic valves via

non-invasively Doppler ultrasound [166].

The flow rate through a vessel stenosis must equal that through the healthy portion

of the vessel. Considering this, the velocity through this diseased section must increase to

maintain a constant flow rate [12]. Immediately following a stenosis, a region of turbulent

and reverse flow can occur [12]; similar to an eddy one might see following a contraction

in a river. These characteristics are illustrated in Figure 3.8. This figure highlights the

change in vessel area with respect to the healthy region (A1) and the diseased region (A2).

Their relationship with respect to flow rate (Q) and average velocities are given below.

Q = A1v1 = A2v2 (3.3)

Where v1 and v2 are the average velocities within the healthy and stenosed vessel

Figure 3.7: USCOM flow tracking in presence of noise, with beat segmentation requiring

adjustment due to incorrect peak identification and beat segmentation
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regions, respectively.

Figure 3.8: Example flow characteristics of stenosed vessel

Spencer et al analysed increases of measured blood velocity to quantify the severity of

carotid stenosis [167]. This work was followed by several studies that used peak Doppler

frequencies to detect carotid stenosis [168–171]. Peak frequencies attributed to a Doppler

measurement are found using the associated MFE. To obtain accurate values, the in-

sonation angle must be precisely measured and the effects of intrinsic spectral broadening

should be accounted for (these considerations are discussed in Sections 2.4.2 and 2.4.3,

respectively).

These techniques enable Doppler ultrasound to join a group of technologies that can

be used to diagnose heart disease [172,173]. Coronary heart disease (CHD) is responsible

for around one-third of all deaths in people older than 35 years [174] and is expected to

become more common, particularly in developing countries. This reality makes early and

accurate diagnosis highly desirable.

To strengthen and extend the diagnostic capabilities of Doppler ultrasound, a variety

of features that can be extracted from measurements have been derived. There have been

several studies that investigate the use of such features to diagnose stenosis and CHD.

3.4 Diagnostic Features

Doppler heart sounds are collected by placing an ultrasound transducer on a patients chest.

The resulting signals contain contributions from blood flow and valve movements, and can
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be used to diagnose CHD [175]. This process, and the diagnoses of other conditions, can

be strengthened using extracted features.

Early examples mostly used one-dimensional feature vectors, with particular focus

on one aspect of the Doppler signal. These were based on the shape of the Doppler

profile, or the associated spectral broadening [12]. Single-site normalised indices are a

group of features found using the MFE [12], and are popular for applications of CHD

detection. These indices use ratios of heights, corresponding to different characteristics

within the MFE of a single cardiac cycle. As the numerator and denominator in such ratios

both depend on the Doppler insonation angle, inaccuracies associated with incorrectly

identifying this angle can be overcome [12]. Figure 3.9 illustrates quantities commonly

used to extract such features.

Figure 3.9: Doppler profile characteristics commonly used to derive waveform indices and

simple features, where S is the peak systolic frequency, Dmin is the minimum frequency,

Dend is end diastolc frequency, A is area below the envelope, and M is the mean envelope

value.

The pulsatility index (PI) and Pourcelot’s resistance index (RI) are both examples of

simple features derived from the MFE. These are calculated using the peak, mean and

minimum values associated with an individual cardiac cycle [12].

PI =
S −Dmin

M
(3.4)

RI =
S −Dend

S
(3.5)

RI is an indicator of circulatory resistance beyond the measurement point [12], and PI

describes the pulsatility of a waveform and can aid the diagnosis of peripheral vascular



3.5. MACHINE LEARNING WITH DOPPLER ULTRASOUND 55

disease [176]. A variety of similar indices can be extracted to describe changes in wave-

forms. These have been used for studies in areas such as obstetrics [160, 177, 178], and

analysis of supraorbital arteries [179].

However, use of features to assess stenosis, such as PI [180, 181] or Laplace trans-

form coefficients [182, 183], did not achieve widespread use [158]. This is due to them

being affected by distal stenoses, and being inaccurate for lower grade stenosis [184–187].

To overcome these limitations, and to unlock further diagnostic capabilities of Doppler

ultrasound, machine learning techniques have been investigated.

3.5 Machine Learning with Doppler Ultrasound

Human-machine interfaces can both extend diagnostic capabilities of clinical technologies,

and reduce dependencies upon operator expertise and experience. This can be achieved

by providing feedback that aids interpretation of measurements and gives diagnostic indi-

cations [173]. Recent advances have led to solutions which implement machine learning.

This is an interdisciplinary field, which aims to use example data to form predictive algo-

rithms, and via these generate predictions from new data [163,188]. Advances in machine

learning have contributed to advances in computer-aided disease diagnosis, for example in

radiology to detect and classify lesions in the breast and liver [163]. Typically constructing

models to perform such tasks consists of several common steps, namely feature extraction,

feature selection and model training. This fundamental approach has been investigated

for over 20 years [163]. However, for any given task, the extracted features and employed

methods can vary widely.

To build on the information simple features such as waveform indices provide, and

to strengthen predictive capabilities, groups of features can be extracted. Using feature

selection, a subset of these features can then be chosen and used for classification tasks.

3.5.1 Doppler Ultrasound Classification

A variety of model types and classification tasks have been described using Doppler ultra-

sound. Early examples demonstrated promising results using models trained to classify

the extent of atherosclerosis in the carotid artery [124,157,189]. Using a set of 94 features,

derived mostly using the velocity waveform and spectral widths during the cardiac cycle, a
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subset of 2-4 features were selected. These selected features allowed a hierarchy of models

to be built and to classify the degree of stenosis. There are many examples of Doppler ul-

trasound being used to investigate stenosis in the carotid artery, the location of narrowing

is most commonly the carotid bifurcation point. An example of carotid atherosclerosis at

this point is illustrated in Figure 3.10.

Figure 3.10: Example of carotid artery stenosis, caused by atherosclerotic plaque build-up

at carotid bifurcation.

Data from the common femoral artery was used to investigate 20 features for the

assessment of aortoiliac disease [190]. Using 19 features, a similar approach was used to

classify the severity of stenosis in lower limb arteries [158]. Features were extracted from a

spectrogram and were based upon peak systole frequency content, spectral broadening and

normalised amplitudes. Following these early studies, the use of artificial neural networks

(ANN) for classification tasks has become increasingly popular. ANNs consist of multiple

interconnected processing elements, arranged into layers [175]. In this regard, they have

been likened to a brain. These models are able to learn nonlinear relationships, as well as

the linear discriminant [188].

Blood flow within arteries can be regarded as an inherently nonlinear process [175,191,

192]. ANNs may then be considered advantageous, as they are capable of solving nonlinear

tasks and can overcome noise and inaccuracies. These potential benefits with regards to

Doppler ultrasound classification have been investigated. Using MFEs as input data, a

trained ANN was able to accurately distinguish which of three arteries a Doppler signal was

recorded from [175]. Improved detection of abnormal neonatal cerebral haemodynamics
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was demonstrated using compensatory fuzzy neural networks [193]. In this case, features

included two principal components computed from averaged waveforms using principal

component analysis (PCA).

A range of models have been described that aim to classify heart valve Doppler signals

as either diseased or normal. These have largely used a combination of MFE and wavelet

transform based features (such features are described in Section 3.6.1.2), combined with

PCA to give reduce feature sets. A variety of model types have been tested, including the

discrete hidden Markov model [194], Least-squared SVM [173,195], a number of different

forms of neural networks [172,195–197], and neural network ensembles [198]. These models

have all reported high classification accuracies, of typically greater than 96%. However, the

data used within these surveys differ, and the number of observations contained within

each data set is limited, ranging from 105 to 215. Furthermore, accuracies have been

calculated using one round of cross-validation (e.g., using 75%, and 25% of the data for

training and testing respectively [198]), apart from [173] where 3-fold cross-validation was

implemented. Considering these limitations, it is difficult to make concrete conclusions as

to the best performing models and/or feature combinations.

Similarly, in recent years a range of models and feature types have been investigated for

classifying carotid artery atherosclerosis. Feature types explored for heart disease are again

used and a number of model types are evaluated, including artificial immune recognition

systems [199–201], Least-squared SVMs [202] and ANNs [203]. These again exhibited very

high accuracy rates (all bar one achieving 100% classification accuracy). These evaluations

implement 10-fold cross-validation, however, the number of observations is more restricted

ranging from 78 to 114. As with the heart disease models discussed above, it is difficult

to make solid deductions about the best methods used.

These approaches have also been used to perform more informative classifications, us-

ing three to four categories for ophthalmic arterial Doppler measurements [204–206], and

three categories for carotid arterial Doppler measurements [204–208]. These methods all

implemented types of neural networks and demonstrated high classification accuracies. A

comparison between a variety of different classification models, including three different

neural network types, mixture of experts, a modified mixture of experts and SVMs was

evaluated using data from these two locations [205]. Three categories were used for each

data set; normal, stenosis and Behcet disease for OA, and normal, stenosis and occlu-

sion for the carotid data. This analysis found that SVM models resulted in the highest
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accuracies for both data sets [205].

The models discussed in this section have been concerned with sorting observations into

distinct categories. The classifications of stenosis, for example, give limited information

regarding its degree. A range of features have been extracted throughout these works,

but no thorough feature selection or comparison of the features have been performed. No

works have been reported concerning probe position classification.

Labelled data sets can also be used to create regression models, which generate contin-

uous values using a set of observations. This can be useful for predicting subtle changes in

a measurement, which otherwise would not be captured using distinct categories; this is

explored in the given work in Section 7. Regression models can also be used to predict the

probability of a given outcome, for example, the likelihood of an observation belonging to

a certain disease category.

3.5.2 Doppler Ultrasound Regression

Regression analysis is an extremely popular approach for drawing inferences from datasets.

The fundamental concept is to fit a function so that it approximates trends in a given

dataset. The fitted function can then be used with ‘unseen’ data, to produce useful

predictions [209]. Previous works concerned with analysing and processing Doppler ultra-

sound data using regression models are very limited. Several models have been described

that combine Doppler ultrasound based features with other feature types; these will now

be briefly discussed.

Ultrasound is often used to inspect and diagnose tumours. With respect to ovarian

cancer, B-mode and Doppler ultrasound can be used by an experienced sonographer to

differentiate between benign, and malignant tumours [210]. This discrimination is very

important, it can allow optimised and individualised treatment [211], and furthermore,

prevent unnecessary surgeries [71]. Despite experienced sonographers being adept at iden-

tifying malignant tumours, approximately 10% are too challenging to be diagnosed [210].

In cases such as these, and especially in more typical evaluations performed by less experi-

enced sonographers, automatic means of classifying tumours would be advantageous [211].

Doppler ultrasound features have been shown to be useful when performing such a

diagnosis, for example, waveform indices PI and RI [212] are generally lower in malignant

tumours [213]. Using a large dataset from 14,317 examinations, it was shown that scans
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with corresponding RI values below 0.4 corresponded to malignant tumours in 98% of

cases [213]. Despite these findings, a large overlap of PI and RI was demonstrated for

benign and malignant cases [214,215].

Flow velocity features were later shown to play an important role in such diagnoses,

and gave improved results with respect to PI and RI indices [216,217]. Extracted features

included systolic and diastolic velocity measurements, including peak systolic velocity and

time average maximum velocity. Such features provide a basic indication of any potential

dangers, however, give no probability information [218]. Through combining Doppler

features, with physical features such as patients age and further features attained from

the B-mode ultrasound such as tumour diameter, a larger feature set can be formed. A

subset of features that give optimal results can then be selected.

This approach was taken to form a logistic regression model, from which probabil-

ities with respect to a tumour being malignant were predicted [218]. This work found

time average maximum velocities to be a strong feature in this regard. Predictions using

this dataset were later implemented using an artificial neural network, which exhibited

improved results [219]. Similar logistic regression models were generated which included

menopausal status and levels of a circulating antigen CA 125 as input features. With

respect to Doppler ultrasound features, colour score (acquired using a colour Doppler

imaging modality, and which indicates vascularity and blood flow) was found to be a

strong discriminator [71].

These models demonstrated good performances. However, their evaluations used ret-

rospective testing, and cut-off values chosen with respect to the data. This means their

performances were somewhat exaggerated [218]. These logistic regression models were

later compared to one another, and with subjective evaluations from experienced sonogra-

pher (using B-mode and colour Doppler). They found that typically an experienced sono-

grapher was able to confidently and accurately distinguish malignant tumours, whereas,

regression models performed poorly [211]. Similar findings were reported for a more recent

analysis [210]. The poor performances exhibited by the logistic regression models were

attributed to subtle variations in examination method and the definitions used. Further-

more, the design and testing of these models used the same dataset and so performance

was likely emphasized [211]. Given certain features are derived using third party soft-

ware, variations with respect to blood velocity estimation methods (e.g., to extract the

MFE) may attribute to reduced performance. The challenges inherent in this process are
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discussed in Section 3.1.

These works illustrate the potential of generating useful feedback using Doppler ul-

trasound and regression models, however, research in this area is limited. The described

regression and Doppler classification tasks share common, long-established features. Ma-

chine learning as a whole is a drastically evolving discipline, with new features types

and modelling methods continually being developed. More modern machine learning ap-

proaches, such as deep learning techniques and advanced computer vision features, can be

used to guide and progress research into machine learning solutions for Doppler ultrasound.

3.6 Modern Machine Learning Solutions and Features

Research into Doppler ultrasound and machine learning solutions is a relatively niche area.

To broaden avenues of investigation, in terms of predictive models and feature types, works

and successes in other disciplines can be explored. This section reviews state-of-the-art

feature types and classification techniques. These methods are used for tasks that share

similarities to Doppler ultrasound classification, for example, radar micro-Doppler analysis

and speech recognition.

3.6.1 Spectral Analysis and Features

The Fourier transform is a classical method of performing spectral analysis. This tech-

nique, and other Fourier-related transforms, are extremely common in the study of time-

series data. These variants, such as the STFT, are typically more efficient than alternative

methods; lending themselves to real-time applications [220]. The STFT is utilised through-

out this work, for example, when generating spectrograms for MFE estimation or when

extracting audio features (Section 7.3.8).

These transforms are incredibly powerful, however, they do have associated limitations.

In particular, the time-frequency resolution of these transforms are uniform across all

frequencies [221]. This is because frequency resolution is inversely related to the length of

processed data, and subsequently, to time resolution (i.e., improved frequency resolution

is at the detriment of poorer time resolution).
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3.6.1.1 Parametric Spectral Estimation

Modern methods of spectral estimation have been developed in response to the limitations

of classical Fourier based techniques. The most common approaches use autoregressive

(AR), and autoregressive moving average (ARMA) models [222]. These methods have

been implemented for biomedical applications, for example, in spectral analysis of heart

rate variability where AR analysis has been shown to be particularly useful [223].

An AR model predicts future time series values based on past points, the number of

past values used is defined by the models order p. Equation 3.6 defines the AR model.

xn =

p∑
i=1

aix(n–i) + ε(n) (3.6)

Where ai are the AR coefficients, and ε (n) represents the prediction error [223].

The z-transform can be used to facilitate spectral analysis, and solve this equation. The

corresponding transfer function, H(z), can be expressed as,

H(z) =
1

1−
∑p

i=1 aiz
−i (3.7)

Substituting ejωT for z, where ω is frequency and T is sampling period, the frequency

components of the AR model can be expressed as,

P (ω) =
Tσ2

|1 +
∑p

i=1 aie
−jiωT |2

(3.8)

Where σ2 is the variance of driving white noise input [224]. Several methods have been

described to estimate σ2 and the coefficients ai, allowing power spectral density (PSD)

estimations to be obtained. These methods include the covariance method, Burg method,

maximum likelihood and Yule-walker algorithms. The performance of these methods and

the discrete Fourier transform (DFT) have been compared as a means of estimating ultra-

sonic backscatter coefficients [225]. The AR methods performed comparably and displayed

improved performance with respect to the DFT.

AR methods have demonstrated improved spectral resolution compared to the FFT

approaches [226]. Furthermore, AR spectral estimation is more stable [227]. This is of

particular significance for short-time spectral analysis, which is needed to analyse rapid
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changes in blood flow measurements [222]. AR methods have been used in conjunction

with Doppler ultrasound for different applications, including extraction of MFEs [128],

spectral broadening indices [224] and as features for classification [194]. Through visual

inspection of spectrograms, qualitative improvements have been reported using AR meth-

ods compared to FFT methods [224].

AR methods can be combined with a moving average process, to give a modelling

method called ARMA [144]. ARMA models can provide better spectral estimations than

either AR or moving average methods [128], and have been shown to give improved accu-

racy in terms of Doppler envelope estimation [128].

3.6.1.2 The Discrete Wavelet Transform

Different means of analysing spectral content have been developed; one example is the

wavelet transform (WT). This technique was designed as an alternative to the STFT

and is able to overcome the described frequency-time resolution restrictions [221]. The

WT was pioneered in the areas of applied mathematics and signal processing in the early

1980’s [228]. As with procedures such as the STFT, the WT can be considered as a

projection of a signal into a set of basis functions [229]. However, in this case, wavelets,

which are finite wave oscillations with zero-mean, are the basis functions. Through scaling

and shifting the wavelet, the spectral content in a signal can be visualised.

(a) STFT (b) DWT

Figure 3.11: Difference in time-frequency resolution for STFT and DWT spectral analyses

Following this, the discrete wavelet transform (DWT) was formulated [230, 231]. The

DWT is a special case of the WT, which is able to both provide compact representations
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of a signal and be computationally efficient [221]. These attributes have inspired extensive

research into different time-series studies [232].

The DWT allows analysis of temporal and spectral properties of non-stationary signals,

and unlike Fourier analysis, produces a dynamic time-frequency resolution that is optimal

in all frequency ranges [173]. This allows for high-frequency resolution at low frequencies,

and high time resolution at high frequencies as illustrated in Figure 3.11. This process

exhibits similar time-frequency resolution characteristics to the human auditory system

[221], as a result, wavelet techniques have been used to perform speech enhancement [233].

An efficient and popular implementation of DWT is using a filter bank structure [229].

This approach is comparable to multi-rate filterbanks, whereby pairs of filters are used

to iteratively decompose a given signal. This produces a hierarchy of new time series

data [234]. At each level (L), the signal is passed through a lowpass filter and highpass

filter [235] and downsampled by a factor of two. This produces detail coefficients (cDL)

and approximation coefficients (cAL) [229]. In each iteration, the wavelet used is relatively

larger or smaller. Longer wavelets are able to capture slower varying changes, whereas

compressed wavelets can capture abrupt changes. The choice of mother wavelet and scaling

function for this procedure are application dependent [236]. DWT signal decomposition

is illustrated in Figure 3.12.

Figure 3.12: DWT decomposition

This approach has been used in many fields to study time series data, with coeffi-

cients being used for predictive tasks such as forecasting annual sunspot occurrence us-

ing neural networks [234], hydrologic series analysis [237] and classifying signatures from

micro-Doppler radar signals [238].

Medical applications include detection of irregular heartbeats, medical image compres-
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sion and distinguishing features in mammograms to facilitate breast cancer diagnosis [239].

Wavelet analysis has also been suggested as an appropriate means of diagnosing CHD

from heart sounds [239, 240]. Auscultation is the process of listening to sounds of the

body using a stethoscope; when placed on a patient’s chest a clinician can diagnose heart

conditions [240]. In cases of stenosis, characteristics of the sound such as pitch inform the

user. Variations of such largely arises due to turbulent flows, which have been shown to

be a fractal process. Wavelet-based fractal analysis through signal decomposition can be

used to estimate the Hurst exponent, which describes the scaling process. This has been

demonstrated as a means of detecting CHD [239].

DWT decomposition has also been used with Doppler heart sounds for disease diagno-

sis [172,173,195,196,198,204,206] these classification studies have been discussed in Section

3.5.1. The Daubechies wavelet has a fractal structure [206], and has a smoothing char-

acteristic that makes it suitable for analysing variations in arterial Doppler signals [204].

The Daubechies wavelet is the most often used wavelet in cited studies. Daubechies

wavelets of various orders have been implemented, however, a comparison across a selec-

tion of wavelets using classification accuracies of ophthalmic arterial and internal carotid

atrial disease found a Daubechies wavelet of order one (db1) resulted in the highest ac-

curacy [206]. The most commonly cited wavelet for DWT analysis of Doppler signals is

db1.

Different means of dimensionality reduction have been implemented on extracted

wavelet coefficients, including PCA [196]. However, the most common approach is to

calculate statistics from the coefficients, such as absolute mean, maximum value, and

STD metrics. An efficient means of signal compression for this application is Shannon

entropy, which provides a measure of uncertainty of the wavelet coefficients [241]. This

approach has been applied with Doppler heart sounds [173], as well as norm entropy

measurements [172,196,198]. Shannon entropy is calculated using the following equation.

Hx =
∑
i

P (xi)log2(P (xi)) (3.9)

Where P (xi) is the prior probability of all values of x. The number of decomposition

levels varies across these studies, however information of interest is limited to above 40

Hz for Doppler heart sounds [204], which given the data used in these studies typically
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corresponds to a maximum level of 7. In addition to these Doppler heart sound studies,

Dyadic wavelets have been used to diagnose air embolisms [242].

3.6.1.3 Biologically Inspired Spectral Features

Speech recognition is a field in which enthusiastic development has led to impressive ad-

vances, with the technology becoming ubiquitous and installed across platforms as a stan-

dard feature [243]. Applications are widespread, examples include enabling voice control of

mobile phones or audio whilst driving, or for customer communication to reduce costs [243].

Another important implementation is its use to help people with disabilities accomplishing

daily tasks, such as using a computer or even a voice-activated wheelchairs [244].

The development of models to perform these tasks involves extracting useful informa-

tion from the audio signal. Considerations regarding the non-linear way humans perceive

sound has led to certain feature types being developed, and applied to tasks such as

speech recognition. A highly successful approach is mel-frequency cepstral coefficients

(MFCC) [245]. The use of these features has grown in popularity following their develop-

ment in the late 1970’s [246] .

The MFCC provides a robust and dynamic means of audio feature extraction. The

MFCC is computed by first applying the Fourier transform to a windowed portion of

the input signal, the resulting power spectrum is then mapped to the mel-scale. The

relationship between the mel-frequency scale and true frequency scale are given in equation

3.10. The MFCCs are the spectrum amplitudes of the discrete cosine transform (DCT) of

the log of these powers, this is illustrated in Figure 3.13 [247, 248]. This process gives a

linear representation of the signal that reflects audio processing in the human brain [248].

mel(f) = 2595× log10

(
1 +

f

700

)
(3.10)

The success of these features have spurred researchers to use them in both related

and unrelated fields. There are several examples of them being used to interpret emo-

tion from speech [247, 249], an interesting problem which is highly intuitive to humans

but challenging to replicate with automatic recognition models. Features are chosen to

portray emotionally induced changes in speech, which arise in a predictable manner due

to physiological states [247], and include energy, pitch and intensity. Similar applica-
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Figure 3.13: MFCC extraction process

tions of MFCCs and speech include biometric authentication [250], and early detection of

Parkinson’s disease [251].

MFCC features have also been used to analyse audio from music and different acous-

tic environments. The performance of various classification models were investigated for

music, speech and voice analysis [221]. This study compared the accuracy of these models

when trained using different feature types; those included were MFCC, DWT and FFT

based features. This study found MFCC outperformed for each classification model. Its

been shown that combining MFCCs with other feature types can improve classification

performance. A cited limitation of MFCCs is degraded performances in poor SNR condi-

tions, and in response to signals with flat spectrums [252].

Models for medical diagnoses have also been investigated using MFCCs. The stetho-

scope is evocative of clinicians, it can be used quickly and cheaply to examine different

internal organs using passive sound; these sounds allow diagnoses of conditions such as

heart murmurs. However, the success of these examinations are dictated by user training

and aptitude, particularly when faced with infrequent, or rapid quiet sounds [253].

To address these limitations, models have been designed to automate sound diagnoses.

A comparison between models using MFCC and STFT features found MFCC features gave

best performance [253]. Classification of heart defects from heart sounds was similarly

demonstrated using MFCCs and an SVM classifier [254]. As with examples discussed in

Section 3.6.1.2, features from the diastolic and systolic portion of the cardiac cycle were

considered separately.

Auscultation can also be used to diagnose disease states in the lungs. The ability to

automate this using an ANN with combined MFCC and wavelet features was evaluated

[255]. This study again found MFCCs produced the best results, interestingly this result

extended to measurements even in poor SNR conditions.
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A recent study compared the accuracy of SVMs, CNNs and Random forest models

trained to classify heart sounds as normal or abnormal. Their accuracies were evaluated

when trained using MFCCs, and features based on motifs. This study echoed previous

works, finding MFCCs combined with an SVM classifier resulted in the best performance.

MFCCs are clearly powerful tools for analysing heart sounds, however no examples were

found of their application to Doppler heart sounds, or other Doppler ultrasound measure-

ments.

These studies have all been applied to naturally occurring sounds, however, use of

MFCCs are not limited to these cases. Information regarding the heart can also be col-

lected using an ECG. SVM and ANN classifiers have been trained to diagnose cardiac

abnormalities, such as arrhythmia, from ECG signals using MFCC features. [256, 257].

When compared to linear predictive coefficients (LPC) and linear predictive cepstral co-

efficients (LPCC), highest accuracies were achieved using MFCCs [257].

MFCCs have also been used to analyse radar generated micro-Doppler signals [248,

258, 259]. Micro-Doppler signals were discussed in Section 3.6.1.2, interestingly these

surveys again demonstrate good performance of SVMs, with improved accuracies over

other classifiers [258]. The accuracy achieved using LPC, LPCC and MFCC is again

compared, with the latter again corresponding to the best performance.

In addition to MFCCs, another biologically inspired feature type that can be used

for audio classification are gammatone cepstral coefficients (GTCC). Their application to

speech recognition was first introduced as a means of overcoming noisy signals [260]. These

can be extracted using similar steps to MFCCs, and can be considered as a biologically

inspired modification which employs gammatone filters with equivalent rectangular band-

width bands [261]. Gammontone filters are typically applied in the frequency domain,

however, time-domain implementations have also been reported as a means of acquiring

efficient and good performing features [262].

Evaluations of GTCCs for audio classification are less extensive than MFCCs, however,

comparatively these works have all reported increased performances [260–265]. These im-

proved performances can in part be attributed to a superior noise robustness of GTCC

features [265]. The combination of both feature types, as opposed to either being im-

plemented singularly, has also been demonstrated as advantageous [263]. Gammatone

filters simulate the frequency response of the human auditory system [266], and take their

name from the fact that a gamma distribution is used in the derivation of their impulse
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response [261].

The methods described in this section provide a range of tools that can be used to

thoroughly analyse the spectral content of signals. As described in Section 2.7.2, operators

rely heavily upon visual clues contained within the Doppler spectra to perform examina-

tions. To reflect this, further features can be derived from spectral images. As will be

described in the following section, different tools are available for this, and these have been

used to successfully classify audio signals.

3.6.2 Computer Vision

The field of computer vision is centred around enabling computers to see the world.

Progress in this field has led to the technology becoming commonplace, with popular

applications including facial recognition or object detection [267]. Descriptors are used to

extract information from digital images, these can then be combined with algorithms for

analysis or recognition tasks.

Different visual descriptors have been designed. These give information about funda-

mental components within images, such as shape or texture. Such features have been used

in a breadth of fields and classification tasks, with applications from quality evaluation of

strawberries [268] to classification of heart sounds [269].

3.6.2.1 Local Binary Patterns

Local binary patterns (LBP) is a popular visual descriptor for classification tasks. The

descriptor was designed in response to challenges associated with real-world images, which

include non-uniformity due to variable orientation, scale and illumination [270]. LBPs are

now considered to be one of the best performing, and computationally efficient texture

features available [271].

The process of extracting LBP features involves comparing pixels with their neigh-

bours. This is done with groups of pixels using equation 3.11 [270]. Traditionally groups

of nine are used (3 x 3).
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LBPP,R =

P–1∑
p=0

s(gp–gc)2
p (3.11)

where,

s(x) =

1, x ≥ 0

0, x < 0

Where P represents the sampling points, and R the radius used. The grey value of the

centre pixel is given by gc, and the grey value of the neighbouring pixels is given by gp.

In each application of this equation, the focus is on the central pixel. Circling this central

pixel, in either direction, a one or zero is recorded if the neighbouring pixels is greater or

smaller than the central pixel respectively. The gives an eight digit binary number, which

can be converted to decimal. This procedure is applied to regions of the image, known as

cells. In each instance, a histogram can be formed and used as a feature vector. Figure

3.14 illustrates this process using groups of 3 x 3 pixels.

Figure 3.14: Local binary pattern feature extraction

There are many examples of LBP features being combined with SVMs and ANNs for

classification tasks. These works include medical applications, an early use in this regard

was for diagnosis of mammograms [272]. Newer implementations include diagnosis of coro-

nary artery disease using greyscale echocardiograms [273], and more recently classifying
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mitral regurgitation severity using colour Doppler images and SVMs [274]. This used TEE

ultrasound images collected at specific times during the cardiac cycle. These applications

are somewhat intuitive, as the images used depict physical structures, and are diagnosed

visually by clinicians. However, medical applications where this is not the case have been

explored.

Lung sounds can be used to diagnose various conditions, for example, pulmonary dis-

orders [275]. Through transforming these sounds to the frequency-time domain, images

and subsequently LBP features can be formed. This has been demonstrated using STFT

spectrogram images [275] and mel-scale spectrum images [276]. Similarly, images of heart

sounds, generated using the wavelet transform, have been used to classify sounds as be-

longing to specific stages of the cardiac cycle [269]. In this case, a radius of one was used

to generate 59 features, which were utilized to train an SVM classifier.

Computer vision algorithms can be strengthened by combing feature types. There are

many examples of LBP features being combined with other feature types to give improved

performances. This includes the histogram of oriented gradients (HOG), which is a feature

descriptor that exhibits a number of similarities to LBP features. The combination of

LBP and HOG descriptors have demonstrated promising results for tasks such as human

detection [277] and object localisation [278]

3.6.2.2 Histogram of Oriented Gradients

HOG features are a visual descriptor designed for object detection, as with LBP features

they are extracted from greyscale images. The descriptors provide a means of expressing

information in an image in a compressed form. Dalal and Triggs introduced the descriptor

as a means of identifying human detection, and demonstrated improved performances with

respect to existing feature sets for this task [279]. As the name suggests, descriptors are

constructed using gradients within the image. Gradients describe changes in colour, Figure

3.15 illustrates a sudden change from dark to light, this is an example of a strong positive

gradient. Gradients can be found both in the horizontal and vertical direction [280].

Blocks of pixels are analysed at a time. Within a block, the gradients for each pixel are

calculated. These values are then used to calculate an associated magnitude and direction,

producing a vector. This group of vectors can then be represented using a histogram. A

bin width of 20◦ effectively results in nine features, which represent a compressed version
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Figure 3.15: Steps involved in extracting HOG features, where GradientH denotes hori-

zontal gradients, and GradientV denotes vertical gradients.

of that original block.

HOG features have been used for many applications, including widely researched ar-

eas such as facial recognition [281], and for more niche challenges such as bird species

classification [282]. Several works have investigated using HOG features to perform audio

scene classification [283,284]. To achieve this, audio recordings are transformed into time-

frequency representations, from which the descriptors can then be extracted. An example

of HOG features extracted from Doppler audio using this approach is displayed in 3.16.

This process can be combined with LBP features to classify sounds, this has been done to

analyse snoring, which can be used to identify health risks such as apnea [285].

Figure 3.16: Example HOG features extracted from Doppler image
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These computer vision descriptors are able to extract large quantities of information

from images, however, state-of-the-art technologies are increasingly employing deep learn-

ing image recognition techniques. The reasons for this will now be discussed.

3.6.3 Deep Learning Techniques

Classification models are becoming ever more present in modern technology. They have

been trained and evaluated for an enormous array of different tasks, and seemingly across

all conceivable disciplines. A small sample of which has been used to guide techniques and

features used in the presented work; these include familiar tasks like speech recognition

[286], and those which are much obscure, such as monitoring frog communities [287].

There are typically two common challenges encountered by automatic classification

systems. Firstly, the availability of labelled medical data, without which highly accurate

models are impossible to form, and secondly the medical domain knowledge to ascertain

which features should be extracted to represent classes [288]. Furthermore, as diagnostic

classification models become more advanced and use increasing numbers of classes, sim-

ilarity across these categories increase. This prevents features from occupying distinct

regions of feature space [289]. Deep learning solutions can address these weaknesses.

Biomedical solutions are increasingly employing state of the art deep learning tech-

niques for image classification [290]. This increase in usage follows a recent revival of

deep convolution neural networks (DCNN) in the mid-2000’s [291, 292], which has been

described as the ‘deep learning renaissance’ and was fuelled by increased processing power

and labelled data [293]. As discussed in Section 3.3, a variety of supervised learning

approaches, such as SVMs and neural networks, have been used to aid classification of

Doppler ultrasound. Neural networks are a subfield of machine learning, which has evolved

to include deep learning methods. A deep neural network is a neural network with multiple

intermediary layers, linking its input and output [294].

The ImageNet large scale visual recognition challenge is a competition in which the

goal is to best predict content of images using designed algorithms [295]. In 2012, a

DCNN called AlexNet [296] won this competition and demonstrated considerable improve-

ment with respect to to previous winners; sparking substantial interest in DCNNs [297].

AlexNet is a large network, which was trained to classify 1.2 million images into 1000

different classes. The neural network has five convolution layers, a number of max-pooling
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layers, three fully connected layers and a final 1000-way softmax [296]. This results in an

impressive 60 million parameters and 650,000 neurons. The unprecedented success of this

model, and its successors, is in part due to the vast dataset provided by ImageNet. The

architecture of AlexNet is illustrated in Figure 3.17.

Figure 3.17: AlexNet arhitecture

Diagnostic classification models generally use hand-crafted feature extraction methods,

using datasets which are a fraction of the size of that used by AlexNet [288]. A variety

of such methods have been described in the previous sections. The relatively small size of

these datasets limits the success of newly trained DCNN models.

However, by employing a training method called transfer learning, pre trained DCNNs

– like AlexNet – can be repurposed for new classification tasks. This provides an efficient

solution for new classification tasks when using limited data [298]. This process aims to

transfer knowledge, which was garnered through solving an initial problem, to the new

task. This can seem nonsensical in some applications, for example, retraining AlexNet,

which was created using natural images (such as fauna and flora) and objects (such as in-

struments), for the new application of diagnosing grayscale radiographs [290]. All images,

however, share common elements such as edges and blobs [290]. This enables DCNNs to

be retrained and be used for medical applications.

This has been proven to be a successful approach and has been investigated for nu-

merous tasks. The method has been shown to be a universal learning approach, with

high generalisability and robust automatic extraction of useful features. This addresses

the limitations of traditional methods discussed above, providing improved classification

accuracies with reduced training sets, and negating the need to hand-craft features based

on medical knowledge [288].
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DCNNs have been used to diagnose many different conditions, as mentioned this in-

cludes radiographs. AlexNet and a second successful DCNN, GoogLeNet, were used to

classify radiograph images from patients with and without tuberculosis. An ensemble of

these methods achieved an area under the curve (AUC) value of 0.99 [290].

Recent examples of biomedical applications using AlexNet type models include diag-

nosis of lesions in ultrasound images [299], otitis media images (middle ear disease) [288],

alcoholism from brain magnetic resonance images [300], and human recognition using

images of ears [298]. Despite this increased interest, there is still limited examples of

these deep learning techniques being applied to ultrasound images, current examples in-

clude classification of thyroid nodules [301], breast tumours [302], and of cirrhosis of the

liver [303]. These papers did not include Doppler information, this was noted as an asso-

ciated limitation [301]. A recent article, however, used Doppler ultrasound colour images

to build models which help early recognition of tongue cancer [304]. The images were

attained using power Doppler ultrasound.

There were no examples found of Doppler ultrasound spectrograms being classified via

DCNNs. However, this approach has been used for classifying micro-Doppler signals [289].

Micro-Doppler signals describe return radar signals from a target undergoing micro-motion

dynamics, such as vibration. These contain induced Doppler characteristics [305]. These

signals are used in applications such as remote health monitoring, where radar events can

be classified as different activities such as walking, falling or wheelchair use [306]; this can

allow a person’s health to be monitored outside of clinical settings.

The task of classifying such signal has a number of similarities to the work investi-

gated in this project. As with medical Doppler ultrasound, features are extracted from

the spectrogram, such as bandwidth or using envelopes [289]. Recent research exploring

methods of classification found that implementing deep learning methods drastically im-

proved classification accuracy by 17% (increasing from 72% to 89%). In this example, the

comparison method used 127 features with an SVM classifier, whereas the deep learning

approach used greyscale spectrogram images as inputs [306]. This work demonstrated that

the DCNN approach was able to differentiate signatures within spectrograms that were

indistinguishable to the human eye.

An investigation following this used transfer learning to retrain two popular DCNNs

that were created using ImageNet [289]. This investigation demonstrated that transfer

learning is a good solution, particularly when using limited training data. There are
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various related works that have used AlexNet and other deep networks to classify micro-

Doppler signals for remote monitoring [307–309], as well as for military applications such

as classifying unmanned aerial vehicles [310].

Use of DCNNs has clear benefits, including negating the need to identify and suc-

cessfully handcraft features capable of discriminating categories. DCNNs are able to

differentiate classes with increasing similarity and achieve high classification rates with

limited labelled data sets. Implementation of these approaches for classification tasks

using medical Doppler ultrasound is currently a gap in the published literature.

The techniques and literature gaps highlighted through this section, and the preceding

sections in this Chapter, will now be summarised.

3.7 Summary

This chapter reviewed different aspects of Doppler ultrasound related research. Methods

used to analyse and process measurements were discussed, as well as works focused on au-

tomatically classifying Doppler ultrasound measurements. In addition to literature centred

around Doppler ultrasound, important developments in other fields were detailed. This

included a review of different machine learning techniques and feature types that could

be extended to Doppler ultrasound research. The discussed research, the gaps within this

literature, and the thesis contributions related to these gaps will now be summarised.

Different methods of MFE estimation, and their limitations, were reviewed. These

methods predominantly functioned using either IPS or image-processing techniques. The

evaluation of such methods have been restricted to data from high-quality measurements

or basic simulation. Furthermore, image-processing techniques have not been quantita-

tively evaluated, or directly compared to IPS techniques. Chapter 5 proposes a new

image-processing method of MFE estimation, which overcomes image related limitations

of existing methods and is adaptive to different signal qualities. The evaluation of this

method is performed using measurements that contain a wide range of signal quality and

from poorly aimed measurements, providing an assessment more indicative of conditions

encountered in practice. Furthermore, the novel method is compared to two IPS methods

(MSNSI and MGM) and one image-processing method (ZIPM) and is shown to give more

stable performance.

Documented methods of using extracted MFEs to perform beat segmentation were re-
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viewed. Different characteristics restricted these methods, including reliance on additional

hardware, user input, MFE shape assumptions, or a combination of these. The evaluation

of methods were again restricted to small datasets of high-quality measurements and did

not consider the MFE estimation method employed. Chapter 6 presents two novel meth-

ods of beat segmentation, that are fully automatic and require no additional hardware.

They are evaluated using a large measurement dataset that contains a wide range of sig-

nal qualities. Chapter 5 demonstrates that the MFE estimation method can significantly

impact the success of beat segmentation.

Previous works devoted to classifying Doppler ultrasound measurements were reviewed.

These have operated using high-quality measurements averaged over many cardiac cycles.

Machine learning tasks have been limited to classifications with limited categories (a max-

imum of three), and have considered only distinct conditions of disease. To reflect these

gaps, Chapter 7 describes the design of a feedback model that quantifies signal quality

in a continuous fashion, and Chapters 8 and 9 present classification models the predict

probe position (using up to five classification categories) and reject poor quality data,

respectively. These applications are novel, and resulting feedback models operate using a

wide range of signal qualities and do not necessitate measurement averaging across many

beats.

The previous Doppler specific classification works are not extensive, and therefore,

consider only a limited range of different feature types. Various feature types previously

un-documented for Doppler analysis, which are valuable in other fields, were described.

These features are extracted in the given work and analysed in terms of their value for

analysing Doppler ultrasound measurements; all extracted features are described in Chap-

ter 7. In addition to these features, state-of-the-art machine learning techniques were

described. These deep learning image recognition solutions have not been previously ap-

plied to Doppler ultrasound analysis, and research relating to their application for audio

classification is limited. In response to this, Chapter 8 includes AlexNet classification

models. The performance of these are contrasted with more traditional approaches that

use hand-crafted features.

The design and evaluation of signal processing methods and feedback models proposed

in this thesis are facilitated using data collected with the USCOM. The survey methodol-

ogy for collecting this data, and the inherent challenges associated with building feedback

models for Doppler ultrasound, are presented and discussed in the following chapter.



Chapter 4

Survey Data

4.1 Introduction

The primary goal of this thesis is to design automatic intelligent models that generate

feedback reflective of a given measurement. Objectives to realise this goal include the

design of methods for both MFE estimation and beat segmentation. Combined, these

methods enable features and images to be systematically extracted from measurements,

and subsequently, regression and classification feedback models to be designed and tested.

The design and evaluation of the MFE estimation method, beat segmentation method

and feedback models described throughout this thesis are facilitated using measurements

described in this chapter.

In this thesis, automatic feedback models are designed to quantitatively assess the

quality of a measurement or to predict a beneficial probe movement in order to locate the

correct position. This position is referred to as the ideal probe position (IPP). In order

to differentiate between this position and ‘off-angles’ (i.e., incorrect positions), data were

sampled from off-angles and the IPP. As data were collected from the suprasternal notch,

the ultrasound probe is very limited in terms of translational movement. This enables

off-positions to be defined in terms of angle direction with respect to the IPP, Figure

4.5 illustrates the positions sampled to reflect off-angles. These are later used to form

classification models, which are described in Chapter 8.

This chapter details precisely what is meant by the IPP, and how an operator locates

it. This gives a fundamental understanding of how USCOM scans are performed, and

77



78 CHAPTER 4. SURVEY DATA

crucially, how the models proposed in the following chapters complement the scanning

procedure.

A significant challenge of developing feedback models is overcoming inter- and intrap-

atient scan variability. The acceptability of a scan is traditionally judged using character-

istics of the Doppler profile, and can be facilitated using subjective scan scoring systems,

such as the Fremantle criterion [17]. However, the variability in measurements can result

in the Doppler profile, even when measured from the IPP, deviating far from its idealised

form. In practice, this can mean an off-angle measurement from one patient can appear

to be of higher quality than an IPP measurement from a second.

The collected data, which are summarised in Section 4.4, illustrate this variability

and demonstrate how the ease of acquiring measurements can vary significantly from one

patient to the next. These interpatient differences and scan acquisition challenges were

discussed in Section 2.7.

The scan acquisition process and associated difficulties are presented in this chapter.

This gives further context regarding the design and evaluation of data extraction methods

and feedback models. In conclusion, this chapter presents the following information:

• the scanning procedure used by operators to locate the IPP;

• the data collection protocol;

• a summary of the collected data; and

• a discussion highlighting difficulties inherent to processing the data, including intra-

and interpatient variability.

4.2 Scanning Procedure

This section details the correct probe position for collecting data from the suprasternal

notch (i.e., the IPP), and details the scanning procedure to locate this position. This

procedure is that taught by USCOM Ltd., and is used in this work to collect data; this

data is summarised in Section 4.4. In addition, the Fremantle scoring system is described.

This summarises Doppler profile characteristics commonly used to assess the acceptability

of a scan, and to confirm it is from the IPP. As will be discussed, and illustrated in Section

4.4, application of such scoring systems across measurements can be problematic.
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4.2.1 An Ideal Probe Position

This thesis is centred upon aortic valve blood flow measurements recorded using the US-

COM device, and the design of feedback models that reflect the probe position with

respect to the IPP. This section details what is meant by the IPP. These discussions are in

reference to the USCOM device specifically, however, are transferable to similar devices.

Figure 4.1: Illustrates the aortic valve being targeted from the suprasternal, when aligned

this is refferred to as the IPP.

Doppler ultrasound measurements of the aortic valve are acquired using a transducer

placed in the suprasternal notch (the dip at the base of the neck, between the two collar-

bones), the transducer is then manipulated so that the beam becomes aligned with the

aortic valve. At this location, the insonation angle is minimised and the ultrasound beam

becomes parallel to aortic blood flow [311]. As discussed in Section 2.7, USCOM includes

no angle correction, and concerns have been raised regarding successfully aligning the ul-

trasound beam. Once correctly aligned, inaccuracy due to beam angle is at a minimum.

This position is the IPP and is illustrated in Figure 4.1.

The transducer is carefully manipulated in three dimensions. The IPP is identified

through the interpretation of visual and audio feedback provided by the device. This

process will now be described in more detail. This gives context to the feedback models

described in proceeding chapters, which are designed to complement this process.
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4.2.2 Targeting the Aortic Valve

This section will describe how the IPP is located. This procedure is that taught by USCOM

Ltd., and the described details are given with reference to training documents and training

sessions provided by USCOM Ltd [312]. The scanning procedure used to locate the IPP

requires manipulating the transducer so that scanning occurs through three planes: the

sagittal, coronal and transverse planes. These are illustrated in Figure 4.2.

Probe movements are limited to one plane at a time and begin with the sagittal scan.

The probe is slowly adjusted to scan through this arc, during which, the ultrasound beam

will approach or traverse the aortic valve. As the beam nears the valve measured blood

velocities increase. Once the beam passes the valve, blood velocities decrease. Using this

concept, the probe is positioned so that the maximum velocity for the sagittal plane is

being received. This procedure is then repeated for the remaining two planes.

It is recommended that during this process, the maximum velocity is monitored by

watching the spectral feedback displayed on the USCOM, and not the automatically cal-

culated values. This helps the user focus on the profile shape of each cardiac cycle. The

shape of this profile is highly informative and is interpreted during the scan process.

The device uses a broad-beam CW ultrasound transducer, which permits uncon-

strained scanning. However, it also allows erroneous flows to be captured by the device,

which present in the spectral feedback. These could arise, for example, from deeper ves-

sels, as there is no range discrimination for CW ultrasound. Recognising these unwanted

Figure 4.2: Three planes interrogated whilst locating the IPP scan
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flows can aid users in identifying the correct signal.

The ascending aorta, for example, results in a profile similar to the aortic valve. The

user therefore must be capable of recognising the difference between these two profiles.

The ascending aorta has a systolic region that is narrower and shorter with respect to the

aortic valve, which contains greater blood velocities [311]. These regions are triangular,

an example of this is provided in Figure 4.3.

(a) Ascending Aorta. (b) Aortic Valve.

Figure 4.3: Example of ascending aorta and aortic valve profiles, as displayed on the

USCOM, with triangular shapes highlighted using red dotted line.

Once the aortic valve is identified, the probe position can be subtly tweaked to hone in

on the IPP. The ideal profile, as described by USCOM Ltd. [312], should have a triangular

systolic portion with a full systolic width. The sides should begin at the base and be

defined and continuous. The peak of the triangle should be clearly defined.

In practice, subtle transducer movements can cause a received reading to abruptly

change. Furthermore, small variations in received measurements can be hard to distin-

guish; particularly for inexperienced users as reported in the literature (Section 2.7). Due

to this, it can be hard for a practitioner to be confident that the IPP has been located.

Researchers have implemented offline scoring systems, such as the Fremantle criteria, to

validate analysed data.
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4.2.3 The Fremantle Criteria

Different criteria have been reported for scoring the quality of scans obtained using the

USCOM device, these have been developed by medical researchers [17,313]. These are used

to score scans post examination and are based upon the subjective assessment of features

present in the Doppler profile. The most commonly used scoring system is the Fremantle

criteria [17]. This was presented as a means of assessing the acceptability of obtained

measurements and was used to evaluate the proficiency of trainee users. In this example,

scans were scored by a more experienced user, however, the criteria are often implemented

by more novice users to confirm measurements are of adequate quality. There are potential

limitations with respect to such scoring systems, these are discussed in reference to the

collected data in Section 4.4.2.

The Fremantle criterion was designed to assess whether an acquired USCOM scan is

acceptable or not. Using the criterion listed in Table 4.1, a scan score of up to six can be

attributed to a still Doppler spectrum image [17].

Table 4.1: Fremantle criterion to assess USCOM scan image quality

Feature Description1 Score1

Well-defined image base2 1

Well-defined image peak2 1

Well-defined commencement of flow or heart sound2 1

Appropriate scale used on screen3 1

Minimal acoustic interference4 1

Total 6

1 – Applied to frozen USCOM scan image; these are 7.5 s long.

2 – Occurs in at least three cardiac cycles.

3 – To maximise frequency region of interest.

4 – Making discrimination between Doppler frequency content and background noise difficult.

Scoring systems such as this give some indication as to the quality of a given scan,

however, they cannot indicate how far a given measurement is from the IPP, or whether a

poor quality scan is due to the inherent haemodynamics being interrogated. Considering

these limitations, it is possible such criterion could give false complacency that a given

scan is adequate, or conversely, result in scans being disregarded despite them correctly



4.3. SURVEY METHODOLOGY 83

portraying the true blood flow. These limitations are explored further using the data

collected in the presented work.

4.3 Survey Methodology

The methods used to collect data will now be described. Data included both recordings

from the IPP and recordings from off-angles. This enables different feedback models to be

trained and data extraction methods to be thoroughly evaluated (e.g., methods of MFE

estimation).

The survey included 22 healthy adult volunteers. A minimum of two measurement sets

were performed on each participant (a single measurement set is displayed in Table 4.2),

and a variety of different data were collected. The proper ethical permission was attained

from the School of Engineering Ethics Committee (Cardiff University) and signed consent

was obtained from each volunteer. The survey information and consent form provided to

participants are included in Appendix C and Appendix D, respectively.

Table 4.2: Example probe positions and recording times for a single measurement set

Probe Position Recording Duration (s) Label1

IPP 15 G

Patients Left 20 L

IPP 15 G

Patients Right 20 R

IPP 15 G

Patients Head 20 H

IPP 15 G

Patients Feet 20 F

IPP 15 G

1 – Labels used in classification tasks, where G denotes the IPP, L denotes patients left, R denotes

patients right, H denotes patients head and F denotes patients feet. All off-angles combined are

later referred to as O for practicality in classification algorithms.

Data were collected whilst the probe was held in a number of defined positions. The

primary data type collected during this process was the positive Doppler audio signal

(one continuous recording per measurement set). This was performed by sampling the
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analogue Doppler audio signal using a laptop, limited streaming capabilities of the USCOM

restricted this to positive flow. This was recorded using a 44.1 kHz sample rate, and 16-bit

bit depth. In addition to this, video and ambient audio data were also recorded. These

were included to further assist in labelling the continuous recordings, and as a reference

to confirm probe angles and measurement timings. The hardware used is summarised in

Figure 4.4.

The probe positions sampled during a measurement set are listed in Table 4.2. This

illustrates that the off-angle positions were not arbitrary, rather they were defined relative

to the IPP. These positions are illustrated in Figure 4.5. When sampling these positions,

the operator kept both probe pressure and translational position constant.

As detailed by Table 4.2, the measurement protocol was: 1) Locate the IPP, 2) sample

15 s at IPP, 3) deviate from IPP, so that probe is angled more towards patients left, 4)

sample 20 s at this position, 5) Locate the IPP, 6) sample 15 s at IPP, and so on until

each of the five positions have been interrogated. The procedure outlined in Section 4.2.2

was used to locate the IPP.

The sampled off-angles allow feedback models to tackle simplistic classification scenar-

ios, such as IPP or off-angle, and more informative tasks such as where the probe is with

respect to the IPP; these classification tasks are explored in Chapter 8.

It can be seen from Table 4.2, prior to each off-angle position the IPP is first sampled.

This ensures the off-angles remain relative to IPP. To reflect the more frequent recordings

at the IPP, the relative recording times were marginally shorter. Acquiring data in this

manner is a laborious task, to ease this process, recordings were performed in a continuous

Figure 4.4: Hardware layout and data recorded during survey
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(a) Left-Right probe angles (b) Head-Foot probe angles

Figure 4.5: Off-angle probe positions with respect to IPP, as used for data collection

manner. This is instead of, for example, obtaining measurements from one location and

then starting a new measurement, which would be significantly slower.

The video recordings of both the USCOM display and probe position enabled ‘sense-

checks’ to be made with respect to the data (e.g., confirming probe position or the quality

of recordings on the Doppler device). Finally, ambient audio was also recorded, providing

an additional record of instructions given or dictated during the survey.

In total, data were collected from 22 participants using the outlined procedure. This

data is summarised in the following section.

4.4 Survey Summary

This section presents a summary of participant information and the data collected from the

outlined survey. The inter- and interpatient variability contained in these measurements

are discussed. This gives context to the development and evaluation of feedback models in

proceeding chapters, and highlights challenges involved with forming generalised models.

The difficulty of obtaining measurements from individuals is also investigated. This is

performed through comparing times taken to locate the IPP. This data is employed in

Chapter 7 to investigate correlations between model performance and scan difficulty.
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4.4.1 Participant and Measurement Summary

This section provides a summary of the participants details, and Doppler data collected

during the survey. Data was collected by the author (from 12 different participants),

and by an expert sonographer (from 10 different participants). Prior to the author’s

collection of data, steps were taken to ensure that they were sufficiently competent and

had acquired the recommended level of experience. A hands-on training session given by

a representative of USCOM was attended, as well as a training session with clinicians

developing their skills using the device at Heath hospital (Cardiff, UK), and multiple

one-on-one sessions with an expert user. In addition to these training sessions, given

the portability of the USCOM device, scans were performed outside of lab conditions for

additional experience. This resulted in experience of scanning over 25 different individuals,

and many more independent scans (locating the IPP from scratch).

This constituted to more experience than the commonly cited requirement of 20 scans

prior to being considered competent [17]. Furthermore, collected data was not restricted

to any examination time limits, as can be the case in clinical practice or as imposed in

some validation surveys [19]. This meant the examination process could be performed

very methodically, ensuring the best scan possible was acquired. The nature of the survey

methodology further strengthens this, as the IPP is re-located many times when perform-

ing multiple measurement sets (a single set is displayed in Table 4.2). This inherently

provides a sense-check of data across the repeat measurements, and any large discrepan-

cies in IPP scan quality can be identified and removed. The details regarding participants

are provided in Table 4.3.

Table 4.3: Survey participant details

Male Female Total

Number of Subjects 12 10 22

Age (years)1 34.6 ± 10 30.5 ± 11.2 32.7 ± 10.8

Height (cm)1 178.3 ± 7.2 166.5 ± 6.3 172.9 ± 9.0

Weight (kg)1 93.7 ± 21.7 64.3 ± 5.5 80.4 ± 22

Body Surface Area (m2)1 2.1 ± 0.2 1.7 ± 0.1 1.9 ± 0.3

1 – Presented details are mean values with STD.



4.4. SURVEY SUMMARY 87

The primary data recorded during the survey was the positive flow Doppler audio

signal. In total, almost 6 hours worth of data was collected. The parameters of these

recordings are detailed in Table 4.4. This includes the corresponding duration for record-

ings obtained from the IPP, off-angles and whole recordings. This illustrates that the IPP

and off-angle measurements exhibited very similar estimated SNR values.

Table 4.4: Details of audio data recorded from all participants

Parameter Probe Position1

G O All

Position Independent Parameters

Data Type Positive Flow Doppler Audio

Sample Frequency (kHz) 44.1

Bit-depth 16

Position Specific Measures

Duration2 (s) 2,580 6,222 20,705

SNR3 (dB) 16.4 ± 5.8 16.2 ± 6 13.9 ± 7.2

1 – Where G denotes the IPP, O the off-angles, and All denotes the complete recording (i.e., G, O and

searching periods).

2 – Total length of time sampled from each position.

3 – Approximated using equation 5.2, this technique and its limitations are discussed in Section 5.5.2.

The audio summarised in Table 4.4 is used to extract a swathe of different features,

these are described in Chapter 7, and subsequently used to form feedback models. The

extraction of these features necessitate timing indices associated with individual cardiac

cycles. These are obtained by combining a novel MFE estimation method (described in

Chapter 5) and beat segmentation methods (described in Chapter 6). The continuous

recordings inevitably contain a large range of signal qualities, and erroneous contributions

(e.g., noise as the probe is lifted, or flash artefacts due to sudden movements [12]), in

this respect they reflect realistic conditions that software implemented in practice would

encounter. Such portions can lead to poorly segmented data, which are not representative

of true cardiac cycles. To ensure feedback models were not trained using such data, images

of cardiac cycles (described in Section 8.4.3) were generated and used to visually identify

observations corresponding to poorly segmented beats (referred to as fail beats). These
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were then removed prior to training and evaluating models. The number of observations

and associated fail beats for each probe position analysed is summarised in Table 4.5.

Table 4.5: Cardiac cycles captured

G L R F H

Total1 3,047 1,781 1,828 1,828 1,882

Fail2 60 172 104 110 121

Fail Rate (%) 1.9 9.7 5.7 6.0 6.4

Resulting Dataset 2,868 1,609 1,724 1,718 1,761

1 – Total number of cardiac cycles segmented.

2 – Cardiac cycles removed from the extracted dataset due to incorrect beat segmentation.

4.4.2 Participant Variability

The ease of performing Doppler ultrasound measurements varies across the population,

and can be dictated by factors such as age and body composition [16]. In addition to

this, the appearance of measurements can vary substantially across similar individuals,

factors that influence this can include a person’s health, for example, dehydration leads

to reduced CO and increased systemic vascular resistance [314]. Considering the above, it

follows that the appearance of Doppler spectra, even at the IPP, can vary significantly.

The interpatient variability present in the collected data (i.e., the variation from one

patient to the next) is illustrated in Figure 4.6. This figure displays cropped images of the

USCOM display, which is the primary feedback used by an operator. The cropped images

were selected from different participants to illustrate the variation in Doppler spectrum

at the IPP.

These demonstrate that the IPP Doppler profile can vary considerably across patients.

These differences include systolic waveform shape, particularly during the cessation of

flow. For example, Figure 4.6f exhibits a ‘stepped’ slope, which is in contrast to the sharp

and more continuous slope belonging to Figure 4.6c. This sharp slope is a feature used to

identify the IPP (Section 4.2.1) and is included within the Fremantle criteria.

The diastolic region of the waveforms also exhibit notable differences, for example,

Figure 4.6a contains little signal during diastole, whereas Figure 4.6c and Figure 4.6d

contain comparatively larger amounts.
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(a) P4 (b) P5 (c) P6

(d) P8 (e) P9 (f) P10

Figure 4.6: Interpatient variability captured by USCOM display at IPP, collected by an

expert sonographer across different participants, where ‘P’ followed by a number indicates

an individual participant.

Given the large differences that can present in people’s physique and health, the pres-

ence of interpatient variation is fairly intuitive. However, it was found that substantial

variation could also occur in repeat measurements of the IPP for individual participants.

As with Figure 4.6, this was inspected using the captured USCOM display. This found

that the greatest variation occurred across sets of measurements, although variation was

also present within single measurement sets.

Changes in body position have an impact on measured haemodynamic variables, for

example, leg raises have been shown to induce changes in CO, cardiac index and stroke

volume [315]. Similarly, changes in heart rate alone can cause variations [316]. Despite

all measurements being taken from participants in the supine position, subtle changes in

body position or heart rate may account for some intrapatient variability [317]. Figure 4.7

illustrates the intrapatient variability associated with measurements from the IPP (i.e.,

the variation in measurements from individual patients).

Figure 4.7 illustrates the variation in IPP appearance for individual participants. It can

be seen that during the first set of measurements the stepped flow cessation for participant
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(a) P6, Set 1. (b) P8, Set 1 (c) P9, Set 1 (d) P10, Set 1

(e) P6, Set 2. (f) P8, Set 2 (g) P9, Set 2 (h) P10, Set 2

Figure 4.7: Intrapatient variability across measurement sets, captured by USCOM display

at IPP and collected from participants by an expert sonographer.

10 was less prevalent, however, overall, the signal was far less distinct. Furthermore, it can

be seen that the diastolic signal belonging to patient 6 was far more defined during the

first set of measurements. This signal contribution is likely erroneous (i.e., not associated

with the target blood flow) and arose due to a nearby blood flow signal.

Another factor that can vary, in both an inter- and intrapatient manner, is the signal

to noise level. This is illustrated by scans belonging to P8, which contain a higher level of

background noise in Figure 4.7b when compared to Figure 4.7f. A potential cause of this is

a discontinuity in the amount of ultrasonic gel used. Insufficient amounts of gel can result

in a poorer coupling and increased noise, particularly in the presence of body hair which

can trap bubbles of air that reflect and absorb ultrasound [318]. During a measurement

scan, the applied gel can be spread out, and require reapplication. There are, however, a

number of potential sources of noise [57].

Background noise and erroneous signals can obscure the shape of the Doppler signal,

and affect processing stages (e.g., envelope estimation). Erroneous signals can occur both

when locating and measuring the IPP. As detailed in Table 4.5, this can lead to fail beats.

With respect to real-time feedback models, methods that automatically recognise and
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(a) Noise and spectral

spikes.

(b) Heart valve clicks.

(c) Spectral spikes. (d) Patient vocalisation be-

tween beats four and five.

Figure 4.8: Examples of erroneous signals encountered whilst recording the IPP

disregard poor data are desirable, Chapter 9 investigates this. The images presented in

Figures 4.8 and 4.9 illustrate a variety of erroneous signals and features which can impede

post-processing steps.

In Section 4.2.3, it was proposed that criteria used to confirm high-quality USCOM

scans may not always be beneficial. Figures 4.6 and 4.7 include a number of IPP examples

that would be capped due to certain aspects, such as peak definition in Figure 4.7d. To

further illustrate the limitations of applying such criteria to confirm the acquisition of IPP

measurements, Figure 4.10 presents data from off-angle and IPP positions. The differences

in scan appearance can be very subtle, making aiming the USCOM challenging [19]. Figure

4.10 demonstrates this, and the difficulty of differentiating such positions using a fixed

scoring system. The presented examples clearly show that an off-axis measurement from

one participant can be scored more highly than an IPP measurement from a second.

Furthermore, for individual patients, the score given to an off-axis position may not always

be higher than that for the IPP position.

The figures presented in this section give some indication as to the variation in scan
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(a) Rhythmic diastolic noise. (b) Diastolic noise.

(c) Faint signal. (d) Abnormal profile.

Figure 4.9: Examples of challenging signals encountered whilst locating the IPP

appearances that clinicians can be exposed to. In practice, the Doppler waveforms corre-

sponding to the IPP may differ even further from an idealised waveform. This deviation

could be particularly large in clinical measurements from unhealthy patients.

It is intuitive from these observations that sonographers will find some patients harder

to obtain measurements from. Considering this, the difficulties of performing individual

measurement provides an additional metric upon which trained models in proceeding

chapters can be evaluated.
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(a) P4 (b) P5 (c) P6

(d) P7 (e) P9 (f) P10

Figure 4.10: Beat examples from off-angles and IPP with similar quality, red borders

indicate beats from off-angles, and green borders indicate beats from the ideal probe

position.

4.4.3 Participant Difficulty

The ease of acquiring measurements from individual participants has been compared using

the times taken to locate the IPP. This provides a quantitative value of scan difficulty for

specific measurements and individuals. This provides an additional metric to assess the

performance of feedback models. As detailed in Section 4.3, a minimum of two measure-

ments sets were performed on each individual (of which each contains 5 samples of the

IPP). The times taken to locate the ideal positions for these two measurement sets are

presented in Figure 4.11. This analysis has been limited to the expert measurements, as

author collected data acquisition was done in a very slow careful manner, to reflect more
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limited experience.

(a) Set 1. (b) Set 2.

Figure 4.11: Times taken to locate IPP by expert sonographer, for all associated partici-

pants, and for measurement sets 1 and 2.

It can be seen from Figure 4.11 and Table 4.6, that the IPP is more rapidly located

following the first measurement in each measurement set. Interestingly, the average time

taken for the second measurement set (Figure 4.11b) is slightly higher for measurements

two to five, despite the first measurement of this set being lower. The scanning process

can cause slight discomfort for participants due to the pressure of the probe and the need

to remain still, slight shifting in body positions during the second set of measurements

may attribute to some of these increased scan times. If these measurements are treated

as anomalies, the times taken for measurements two to five for both sets are very similar.

As discussed in Section 2.7, differences in a persons age and physique can lead to

scan acquisition being more difficult. This could be, for example, due to the IPP being

hard to locate or the associated Doppler profile shape being far from the idealised form. A

variety of different profile features and artefacts that can occur in USCOM scans have been

described [89]. These include characteristics that are not common to all measurements,

such as spikes due to valves opening and closing, or faint diastolic signal contributions from

ventricles filling. These variations can contribute to Doppler profiles differing significantly

across patients, and the IPP being harder to locate and recognise. These aspects can

also impede MFE estimation, for example, erroneous blood flows can mask true maximum

frequency points and valve clicks can result in sharp peaks being incorrectly captured in

the MFE. The following section summarises these difficulties, as well as the content in the

preceding sections of this chapter.
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Table 4.6: Average times taken for expert sonographer to locate IPP

Average Times Taken to Locate IPP (s)

Participant Measurement 1 - 51 Measurement 2 - 5

Set 1 Set 2 Set 1 Set 2

1 120 36 44 25
2 43 20 13 15
3 40 28 27 15
4 32 14 14 11
5 30 37 14 27
6 30 70 20 65
7 27 26 15 10
8 42 42 28 35
9 79 60 42 31
10 29 27 13 12

1 - Average times following the initial location of the IPP, to illustrates times taken once operator has

become accustomed to the new participant.

4.5 Summary

This chapter detailed precisely how aortic blood flow measurements are acquired using the

USCOM device. The correct probe position for this was described (i.e., the IPP), and the

procedure performed by an operator to locate this position was outlined. A selection of

profile characteristics were described, which can be used to subjectively assess an acquired

scan and help identify the IPP.

The methodology used to collect data for this work was then presented. As described,

this involved sampling five distinct probe positions. Using this methodology, data was

collected from 22 participants. This data is used for work in proceeding chapters. This

includes the design and evaluation of a novel MFE estimation method (Chapter 5), novel

methods of beat segmentation (Chapter 6), feedback models and an analysis of valuable

features for building these types of models (Chapters 7 and 8).

The collected data were summarised, and various intrinsic difficulties associated with

subsequent processing were illustrated. These include intra and interpatient variation

and artefacts such as valve clicks. These difficulties can impede MFE estimation, which

is further exacerbated by low-quality scans. In the given work, data is analysed from

dynamic probe movements and positions. This makes consistent extraction of stable MFEs
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challenging. The following chapter presents a novel method of MFE estimation, designed

to give stable envelopes across a wide range of signal qualities.



Chapter 5

Envelope Estimation

5.1 Introduction

Doppler ultrasound provides an accurate and noninvasive means of haemodynamic mon-

itoring. These measurements contain a wealth of information and accommodate wide

diagnostic capabilities [12]; a commonly extracted parameter is the maximum velocity

envelope. This can be used to extract a host of different metrics, and can enable valuable

clinical diagnosis, for example, the identification and assessment of stenosis [110], or de-

termining the need for a carotid endarterectomy [110]. The maximum velocity envelope

is proportional to the corresponding maximum frequencies in the Doppler signal (i.e., the

MFE); this is detailed in Section 3.1.

Obtaining clinically useful information from an MFE necessitates a skilled operator.

This is both for acquiring measurements, and for tracing or interpreting envelopes. How-

ever, time restraints of this manual process can render Doppler ultrasound monitoring

impractical and prevent real-time applications. Furthermore, the process of obtaining

measurements is subject to inter- and intraobserver variations [117]. These time restraints,

as well as clinical benefits of averaging measurements [119–121] make automatic envelope

estimation and beat segmentation methods highly desirable. In the context of this thesis,

such methods are required to process large datasets, extract features and enable real-time

feedback systems.

Automatic methods, for this purpose, must be capable of extracting stable envelopes

over extended durations, despite periods of low SNR, variable envelope shapes, and erro-

97
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neous signals (such as tissue movement). Additional external factors, such as acquisition

errors and systematic quantification can further hinder MFE extraction [113]. The ability

to do this is limited using existing methods of MFE estimation. This chapter presents a

novel MFE estimation method, which has been designed to give stable waveforms for both

beat segmentation and feature extraction.

The proposed MFE estimation method, the Otsu morphological method (OMM), is

based on image-processing techniques. However, it uses Doppler spectrogram images gen-

erated directly from the Doppler audio signal, rather than images displayed on the ultra-

sound machine. This enables processed images to be explicitly defined within the OMM

method, thus ensuring image consistency and removing uncertainty regarding their de-

sign. The novelty of the proposed method is twofold. First, its ability to define and vary

Doppler spectrogram image parameters enable identification of effective threshold values,

as explained in detail in Section 5.2.3. Second, OMM operates dynamically with respect

to SNR by applying morphological operations in a hierarchical manner. As a result, the

OMM method can extract highly stable envelopes from a wide range of signal qualities.

The accuracy of the proposed MFE estimation method is compared to three other

methods: two IPS methods (MSNSI and MGM), and one image-processing method (ZIPM).

These were discussed in Section 3.1. This is facilitated using in-vivo, simulated and phan-

tom data. Through the addition of noise to these data sets, the MFE estimation methods

are evaluated across a range of SNR values. The OMM method is shown to be the most

stable in noisy measurements. Furthermore, when combined with an automatic beat

segmentation method, MFEs estimated using OMM resulted in 8.2% more beats being

correctly segmented than the next best performing method.

To conclude, the main contributions included in this chapter are:

• a method for extracting stable MFEs from low quality Doppler audio signals (Section

5.2); and

• a comparison between the performance of the proposed MFE estimation method with

the MSNSI, MGM and ZIPM methods. Comparisons are performed using simulated

pulsatile Doppler data, phantom data and over 2 hours of in-vivo data (Section 5.3).
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5.2 Proposed MFE Estimation Method

This section describes the OMM method, which consists of three main parts: signal prepa-

ration, binary image generation, and hierarchical morphological filtering (Figure 5.1 illus-

trates this). The proposed method uses the Otsu algorithm [319] to generate binary

images, followed by morphological filtering. OMM uses directional Doppler audio signals,

Section 2.5 discussed how these signals are generated in an ultrasound device.

Figure 5.1: Main stages within OMM MFE estimation method

5.2.1 Signal Preparation

The Doppler audio signal is first processed to remove unwanted signals and make the

following operations more time-efficient.

A high-pass filter (or ‘wall-thump filter’) is used to remove extrinsic low-frequency

components arising, for example, from vessel walls [320]. A typical cut-off frequency of

200 Hz is used [321–323], which preserves the frequencies of interest. A low-pass filter

is applied to remove high frequencies greater than those of interest. A cut-off frequency

of 8 kHz is used for recorded data in the presented work. The filtered audio is finally

downsampled to 16 kHz (allowing the full frequency range of the filtered audio to be

analysed), which removes noise and speeds up the remaining operations. If replicated, the

above procedures must be implemented with consideration of the velocities being measured

and the hardware used.

5.2.2 Image Generation and Enhancement

The proposed method uses a spectrogram image generated using the Doppler audio signal.

This image is also later used for feature extraction (described in Section 7.3), and is

referred to as the OMM image. Generating this allows all associated parameter values to
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be explicitly defined, giving full control over the characteristics of the processed images.

Such an approach contrasts favourably with capturing an image from a machine, where

the image generation process and parameter values used are unknown.

The spectrogram is calculated using the STFT of the recorded Doppler audio signal.

A 10 ms Hamming window (W = 10 ms) is used, with 50% overlap. Using zero padding, a

512-point FFT is calculated. The chosen values ensure that changes in blood velocity are

captured [12] and facilitate the application of fine morphological operations to the binary

image in the following stage. This process produces image pixels with 5 ms and 31.5 Hz

time and frequency resolution , respectively. Further processing of spectrogram images

are affected by this time-frequency pixel resolution; to reflect this, this resolution should

be replicated when implementing the proposed method.

The resulting matrix of STFT values is converted into decibels with a dynamic range

of 60 dB, set with respect to the maximum value in the matrix. This wide range ensures

the signal, which can change in intensity, is captured each time.

The matrix is converted into a grayscale image. To aid envelope estimation, high-

frequency noise can now be removed using a Gaussian filter [324]. This has been imple-

mented using a 5 x 5 Gaussian kernel in line with previous research [135,325]. Whilst the

previous works do not disclose pixel resolution, in this article a 5 x 5 Gaussian kernel is

equivalent to 25 ms by 158 Hz. With respect to these previous works, a smaller STD of 1

has been used to preserve more rapid fluctuations in blood flow. Figure 5.3a and Figure

5.3b provides an example of the spectrogram and final image.

5.2.3 Dynamic Threshold Identification

In this stage, the greyscale image is converted to a binary image by applying a threshold.

The purpose of this operation is to separate signal from noise, with the aim of setting

all image pixels corresponding to noise to the value of zero and setting all image pixels

corresponding to signal to the value of one.

A suitable threshold is identified using the Otsu method [319], which assumes a his-

togram with bimodal distribution (i.e., signal and noise), and calculates the value which

best divides these distributions. This process identifies an optimal threshold using a se-

quential search, during which the success of each threshold is quantified using Otsu’s ob-

jective criterion (η). The threshold with the maximum η value is selected. This maximum
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η value is referred to as the effectiveness metric (EM).

However, the transition point between signal and noise can be masked in low SNR

conditions. To detect this point effectively, a range of images is generated for a variety of

window lengths (W ). In each case, a threshold and corresponding EM value is calculated

using the Otsu method. The values of EM indicate how well an image has been separated

into two classes. The W that is most effective at separating the signal from the noise is

determined by both SNR and Doppler profile.

Consequently, the best threshold is identified as that which corresponds to the largest

EM value. This threshold is then applied to the image generated using the standard

W = 10 ms. This gives a well thresholded binary image with the specific time and

frequency resolution defined in the previous section. This binary image is cropped to

remove frequency bins below 200 Hz in response to the high-pass filter described in Section

5.2.1.

In the presented work, 10 window lengths varying linearly from W = 1 ms to W =

0.1 s were used. This range was chosen empirically, as the best window was found to very

rarely exceed it. EM is calculated using the following equation:

EMi =
max(σ2Bi)

σ2T i

(5.1)

where i varies between 1 and 10 and corresponds to index of window length, σ2B and

σ2T are the between-class and total variance within the image [319].

Figure 5.2: Dynamic threshold selection, using variable window lengths (Wi).
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5.2.4 Hierarchical Morphological Filtering

The binary image can now be processed and used to estimate the MFE. An example of

the binary image at this stage is displayed in Figure 5.3c. This example illustrates how in

low SNR conditions, the threshold is unable to fully isolate the signal. Noise, which has

been incorrectly identified as signal, will be referred to as noise. In higher SNR conditions,

the threshold is better able to isolate the signal producing images more similar to those

displayed in Figure 5.3d to 5.3f. To account for the variability in SNR, morphological

operations are applied in a hierarchical manner. This prevents images with high SNRs

being subject to unnecessary processing. This algorithm is illustrated using pseudocode

in Figure 5.4.

(a) Spectrogram (b) Greyscale Image (c) Binary Image

(d) Level One Output (e) Level Two Output (f) Cleaned Output

Figure 5.3: Image stages within OMM, using a simulated common carotid Doppler signal

with estimated SNR of -3 dB. Equivalent row velocity is displayed for images 5.3b to 5.3f.

Extracted OMM envelope and reference true velocity is displayed in 5.3f. Pixels have a

time and frequency resolution of 5 ms and 31 Hz, respectively.
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Figure 5.4: Pseudocode of the proposed algorithm for hierarchical morphological filtering

to extract MFE from binary image.

The binary image is passed to level 1 and possibly level 2 of the algorithm if more than

one object is present in the image, i.e., the SNR of the image is low. Objects are defined as

clusters of multiple pixels with non-zero values (white pixels) connected either vertically,

horizontally or diagonally. Lower SNRs result in more objects and so corresponding binary

images undergo further processing. Figure 5.4 illustrates that a number of operations are

repeated. These will now be briefly discussed.

Initially, the number of objects is reduced to prevent unnecessary further processing.

This is done by setting pixels contained in the lowest frequency row to 1. This is done on

line [01] and repeated if necessary on lines [07] and [15]. This is effective at retaining

small low-frequency objects, which otherwise would be removed in proceeding steps, for

example, within the diastolic portion of Figure 5.6a. This condition, however, does assume

that flow is present in the first frequency bin.

Next, the signal regions are strengthened using a flood-fill operation. Objects at-

tributed to noise tend to be smaller, and less homogeneous than those reflective of signal.

However, the signal portions can contain ‘holes’ (as illustrated in Figure 5.3c). This op-

eration ‘fills’ these holes, and is performed on lines [03] and if necessary on line [08] and

on line [12].

After strengthening the signal, any object with an area smaller than 300 pixels is

considered to be noise and is removed in level 1 (line [04]), as illustrated in Figure 5.3d. If

the image is passed to level 2, the operation is repeated on line [09]. Remaining noise at

this stage is often contained in larger objects due to the lower SNR of the images reaching

this level, and so an area of 500 is used in level 2 (comparison between Figure 5.3d and

Figure 5.3e illustrates this). The final area used in the cleaning stage is 100 on line [16].
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This assumes little noise and removes small isolated objects, which appeared as a result

of opening operations. The choices of these area sizes were guided by previous works and

determined through empirical investigation, previous works have used clusters ranging

from 50 [137] to 500 [132], however, the pixel resolutions in these cases are not explicitly

defined.

Additionally, in level 1 and in the cleaning stage, opening operations are used to break

small horizontal and vertical connections respectively. This is done prior to the removal

of objects, on lines [13], [14] and [06]. This isolates weakly connected objects or small

protrusions (as illustrated in Figure 5.3e), reduces noise and smoothes the image prior to

envelope estimation.

The resulting image can now be used to extract the MFE. The MFE is found for each

time point separately, using the column of pixels associated with that time point. The

maximum frequency within each column is taken as the white pixel (pixel representative

of signal) which is next to the largest number of consecutive black pixels. This is similar

to the biggest-gap method, which includes weightings applied to each group of noise pixels

based on frequency [135]. The envelope is then smoothed using a 10-point moving average

filter. The unsmoothed envelope is also retained for further steps described in Section 6.2.

The extracted OMM envelope and reference true velocity is displayed in Figure 5.3f.

In cases where both forward and reverse flow is of interest, the steps described to

extract the MFE are repeated for the positive and negative Doppler shifts respectively.

This gives an MFE for forward and reverse flow, and an overall MFE can then be found

by taking the absolute maximum of each MFE at each time point.

5.3 Evaluation Methods

The performance of the OMM method has been quantitatively assessed using simulation

data, phantom data and in-vivo data. The performance of OMM is compared to that of

three other MFE estimation methods. The MFE methods chosen to provide comparison

are two IPS methods and one image-processing method.

The IPS methods chosen to offer comparison are the MSNSI and MGM methods.

MSNSI has been selected as it is focused on envelope estimation as opposed to maximum

frequency estimation at specific time points and was shown to perform well [114]. MGM is

an older IPS method [127], which has been shown to be reasonably stable in varying SNR.
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This is used to provide a further comparison with IPS methods. The image-processing

method chosen to offer comparison is ZIPM [132]. ZIPM was selected due to it being a

recent method, which demonstrated good correlation with expert tracings. Furthermore,

ZIPM is designed for fully automatic tracing (as OMM is), and specifically for aortic

Doppler measurements similar to those used in this thesis.

The performance of IPS methods has typically been validated using a combination of

simulated data, phantom data, and in-vivo data. Popular simulation approaches model

simple constant flow conditions using Gaussian processes to represent Doppler signals

[143–145]. For this study, pulsatile flow has been simulated. In the case of phantom

and simulated data, the true maximum velocity is known. This allows MFE estimation

methods to be quantitatively assessed using statistical measurements; bias and STD are

commonly used [113,114,127,128,326,327] and have been implemented in this study. Cor-

relation statistics have also been calculated for these data sets; they provide a measure

of the similarity between the extracted MFEs and the true envelope shape. This is in-

cluded as good correlation is essential for reliable beat segmentation and provides further

evaluation with regards to the stability of extracted envelopes.

Image-processing methods have been previously assessed using in-vivo data and thus

have not included evaluation with respect to different levels of SNR. Instead, such assess-

ments are based on comparisons made with expertly traced envelopes. Here, we assess an

image-processing method using simulated and phantom images; this allows for a quantita-

tive evaluation. The addition of Gaussian noise to signals enable different SNR values to

be investigated. This technique has been used with the phantom and simulated datasets,

allowing the performance of each MFE estimation method to be assessed with respect to

diminishing signal quality.

In-vivo data has been used in the current study to investigate the ability of each MFE

estimation method to produce MFEs suitable for beat segmentation. MFEs are extracted

and processed using an automatic beat segmentation method that functions solely using

the MFE, this is described in Section 6.2. The percentage of beats correctly segmented for

each of these traces is then analysed. This data has been processed in 4-second segments.

All processing has been performed using MATLAB R2018a (The Mathworks, Inc.,

Natick, MA, USA).
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5.3.1 OMM Method Implementation

The OMM method has been implemented as described in Section 5.2. Threshold and

associated EMs have been calculated using the image-processing toolbox in Matlab.

With respect to simulated data, the positive and negative flow envelopes are calculated

separately. These two envelopes are then used to generate the final MFE. At each time

point, the positive and negative maximum frequencies are compared, and the maximum

absolute frequency is used for the final MFE.

5.3.2 IPS Method Implementation

The performance of the MGM [127] and MSNSI [114] methods has been assessed and

compared to that of the OMM method. These have been implemented as described in

their publications. Their basic function has been summarised in Section 3.1.2

5.3.3 ZIPM Implementation

The ZIPM method uses images acquired from an ultrasound machine by a frame grabber.

In the presented study, the images used were generated using an approach similar to that

for the OMM image, as described in Section 5.2. The method differed from OMM by

using a dynamic range of 20 dB for the phantom and simulation data, and 40 dB for the

in-vivo data.

It was found that varying the dynamic range in this way was necessary to achieve

acceptable results across the datasets. These dynamic ranges were chosen by testing

values from 15 to 60 dB, and then selecting the best value in terms of STD and bias for

the simulation and phantom data (with no added noise), and visually inspecting envelopes

produced for in-vivo data. The images were then resized to be more representative of those

described in the article [132].

In cases where both positive and negative flow is of interest, the approach implemented

by OMM is used (Section 5.3.1). An example of an image generated using this approach

is displayed in Figure 5.5.



5.3. EVALUATION METHODS 107

Figure 5.5: Image with dynamic range of 20 dB, generated for ZIPM implementation using

Phantom data.

5.3.4 Simulation Data

The performance of MFE estimation methods has previously been investigated using sim-

ulated data [114, 127, 128, 143, 327] and [145]. The advantage of using simulations is that

the true maximum frequency associated with the modelled scatterers is known. These

models have predominantly simulated simple flow conditions, representing steady flow.

Such models allow the process to be simplified; however, they limit how realistic resulting

data is, for example, they do not take into account ultrasound device parameters such as

sample volume and do not represent realistic pulsatile blood flows. The simulated data

used within this study represents pulsatile flow and is generated using Field II software,

which performs numerical ultrasound simulation and is described in Section 3.1.6.

Field II produces raw data similar to that measured by an ultrasound machine, allowing

MFE estimation performance to be rigorously tested on very realistic data. The software

was used to simulate pulsed-wave ultrasound interrogating pulsatile flow using insonation

angles of 30◦ and 60◦. In pulsatile flow, the velocity profile changes as a function of time.

To reflect this, the Womersley model [147] is used to generate realistic flow profiles.

The contributions from all scatterers traversing the sample volume allow the Doppler

spectrum to be formed. A range-gate was used to simulate a sample volume positioned at

the centre of the lumen and spans its width. An online example was used as a reference

to generate a model using a linear array transducer [328]. The settings used to generate

the model are displayed in Table 5.1. These were used to generate simulated data for
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one complete cardiac cycle, for both femoral and common carotid artery blood flow. An

example of simulated data for the femoral artery is presented in Figure 5.6a.

Bias and STD statistics are calculated for the simulated data. These statistics are

used to contrast the performance of the tested MFE estimation methods and are calcu-

lated using the estimation error at each time point within the MFE [114]. The correlation

coefficient of an estimated envelope and the true velocity envelope can also be calculated,

providing a numerical measure of the similarity between the two waveforms. These statis-

tics are calculated for the simulated femoral artery data.

In addition to the above performance metrics, waveform indices can be calculated

from extracted envelopes and compared to their true values. These indices use minimum

and end-diastolic velocity values. Due to the end-diastolic value for the femoral artery

being very close to 0 and some MFE methods tending towards 0 in poor noise conditions,

simulated data of the carotid artery is used to compare the estimation of these indices.

Table 5.1: Parameters used within Field II to simulate flow

Parameter Value Parameter Value

Scatterer Settings

Heart Rate 90 bpm1 Peak Velocity 1 m/s1

80 bpm2 1.2 m/s2

Lumen Radius 4 mm X-range 40 mm

Lumen Centre Depth 40 mm Y-range 8.8 mm

Number of Scatterers 67,851 Z-range 8.8 mm

Insonation Angle 30◦, 60◦

Linear Array Transducer Settings

Pulse Repetition Frequency 8 kHz Kerf 0.05 mm

Centre Frequency 2 MHz Element Pitch 0.44 mm

Sampling Frequency 100 MHz Speed of Sound 1540 m/s

Cycles in Emitted Pulse 10 Excitation Pulse Sinusoid

Element Elevation Height 5 mm No. Elements 64

Element Lateral Width 0.39 mm Focus vector [0 0 40] mm

1 – Settings for femoral artery.

2 – Settings for carotid artery.
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5.3.5 Phantom Data

Phantom data was collected using a Gammex optimiser 1425A (Gammex Inc., USA). This

is a self-contained system fluid phantom, which is capable of generating steady laminar

flow rates from 1.7 to 12.5 ml/s. Such systems are described in Section 3.1.5

The 1425A is designed for testing aspects of ultrasound device performance, including

the accuracy of measured flow rates. The system uses structures which are ultrasonically

similar to human tissue ensuring a realistic platform for research. The embedded vessel

can be scanned using an insonation angle of 50◦, and has an inner diameter of 4 mm. Data

was collected from the phantom using a Toshiba TUS-A500 diagnostic ultrasound system.

A 3 MHz probe was used to measure steady flow across the embedded vessel through

pulsed-wave ultrasound. An audio output on the machine was employed to record the

directional Doppler audio on a laptop, using 44.1 kHz sample rate, and 16-bit depth.

Typical peak blood velocities within the ascending aorta are of the order of 0.7 m/s,

but varies between patients [329]. To reflect typical values, data was measured using

flowrates of 0.4, 0.8 and 1 m/s; 10 seconds of data was recorded for each flow rate. As

with the simulation data, bias and STD statistics were calculated; these were calculated

using 1 s segments of data and then averaged. An example of data measured using the

Phantom is displayed in Figure 5.6b.

5.3.6 In-Vivo Data

The MFE estimation methods were further evaluated using in-vivo data, an example of

in-vivo data is displayed in Figure 5.9. Data was collected by the author from 11 healthy

adult volunteers using the USCOM device. This data and the device are described in

Sections 2.6.2 and 4, respectively.

The data consists of 229 recordings, totalling over 2 hours of audio. Using equation

5.2, the in-vivo SNR ranges from approximately 10 dB to 30 dB. The true MFEs under

these conditions are unknown, meaning performance cannot be investigated using STD,

bias or correlation statistics. Instead, in-vivo data has been used to evaluate how well

each MFE method produces envelopes suitable for accurate beat segmentation. This is

of particular interest for the given work, as cardiac timing indices are required to extract

features.

This analysis is done by comparing the percentage of total beats segmented, and the
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number of corresponding true positives, false positives and false negatives. These data

contain scans exhibiting a range of quality allowing a more realistic investigation of per-

formance with respect to real-world measurements.

The method of beat segmentation used for this is described within Chapter 6, and is

referred to as the slope-gradient method. This chapter describes two beat segmentation

methods, however, the second method requires additional inputs other than the MFE,

namely an example cardiac cycle MFE and the OMM image. The slope-gradient method

is based upon the method used in the USCOM device [78], and requires only the MFE to

function. For these reasons, it is used within this chapter to compare the MFE estimation

methods. This method identifies the starting positions of cardiac cycles by first identifying

the peak systole locations. The gradient of the MFE prior to these peaks are used to

estimate the starting points.

5.3.7 Evaluation of Performance in Varying SNR

The performance of estimated envelopes has been assessed in response to varying SNR.

This has been achieved by adding noise to the simulated and phantom datasets. SNR is

estimated from the spectrogram using the following relationship [114]:

SNR(dB) = 10log10

(
P̂S − P̂N

P̂N

)
(5.2)

where P̂s is the mean power contained in the entire spectrogram, and P̂N is the mean

power of a region of the spectrogram which contains only noise. This region is identified

as a range of bins which exceed the estimated MFE [114]. In the case of phantom and

simulated data the true MFE is known, this enables all bins reflective of noise to be used

when calculating P̂N .

5.4 Results

The performance of the four MFE estimation methods has been systematically evalu-

ated using the datasets described in Section 5.3. The results from this analysis are now

presented.
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5.4.1 Simulation Results

The performance of the MFE estimation methods has been assessed using the simulated

pulsatile flow data. An example of this data is displayed in Figure 5.6a.

(a) Simulated Femoral Data (b) Phantom Data

Figure 5.6: Simulated and phantom data with OMM, MSNSI and true MFEs. Where a)

is femoral data with an SNR of 10 dB and insonation angle 60◦, displayed with 60 dB

dynamic range, and b) phantom data with 0.4 m/s flow rate, displayed using a dynamic

range of 40 dB.

Statistics for the simulated data have been acquired at SNR values from -6 dB to 26

dB in steps of 1 dB; this was repeated three times and averaged. The calculated bias and

STD of normalised maximum velocity for each method is displayed in Figure 5.7. These

have been calculated using absolute envelope values, which prevents bias tending towards

zero when an MFE estimation method tends towards zero in low SNR.

At SNRs greater than approximately 5 dB, ZIPM achieved the lowest bias. At SNRs

below this, OMM achieved the lowest bias values. OMM achieved the most consistent STD

values across the SNR range and the lowest values below 10 dB. Above 10 dB, MSNSI

achieved the lowest STD values of approximately 2%.

The correlation coefficient between each method and the true envelope across the

investigated range of SNR values, for insonation angles of 30◦ and 60◦ are displayed in

Figures 5.7e and 5.7f, respectively. This illustrates how similar the extracted envelope is
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(a) Bias, 30◦ (b) Bias, 60◦

(c) STD, 30◦ (d) STD, 60◦

(e) Correlation, 30◦ (f) Correlation, 60◦

Figure 5.7: Bias, STD and correlation statistics for simulated femoral artery data using

insonation angles of 30◦ and 60◦ across a range of SNR values.
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to the true velocity envelope and the effect SNR and insonation angle has on this quality.

Figures 5.7e and 5.7f demonstrates that overall OMM produces an MFE very similar

to the true MFE and remains stable for signals with low SNR values. For both cases

of insonation angle, OMM achieved a correlation of greater than 95% at -6 dB. These

results are consistent with visual inspections of the extracted MFEs, which demonstrate

the OMM envelopes remaining highly stable and consistent across the SNR range, with

the envelopes produced by the remaining methods becoming increasingly erratic at SNRs

decreasing below approximately 6 dB. This is particularly true for the IPS methods in the

(a) 30◦ (b) 60◦

(c) 30◦ (d) 60◦

Figure 5.8: PI and RI statistics for simulated carotid artery data using insonation angles

of 30◦ and 60◦ across a range of SNR values.
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60◦ simulation data.

PI and RI indices were calculated for the simulated carotid artery data using equations

3.4 and 3.5. PI describes the degree of damping at different arterial sites, and RI is an

indicator of circulatory resistance beyond the measurement point [12]. These features are

discussed in Section 3.4, and are based on height ratios of characteristics in the MFE. This

means they are less prone to certain errors such as incorrect insonation angle measurement

[12]. The calculated RI and PI indices are displayed in Figure 5.8.

OMM achieved the best overall RI percentage error. Above approximately 5 dB, ZIPM

and OMM achieved similar results. At high SNRs, ZIPM achieved the lowest PI error of

–3.7%, with OMM and MSNSI achieving similar absolute errors for the 30◦ data (OMM

with -6.5%, and MSNSI with 6.3%). Increasing the insonation angle to 60◦ resulted in

OMM decreasing to -10%, and MSNSI increasing to 18% at high SNRs. ZIPM was less

effected, reducing to -4.3%.

5.4.2 Phantom Results

The calculated bias and STD statistics are displayed in Table 5.2 for the velocities and

SNR ranges investigated using the phantom data. The OMM method consistently resulted

in the lowest STD, illustrating the stability of extracted MFEs using this method. No

methods consistently performed best with respect to bias measurements. However, with

respect to data with SNRs below 10 dB, OMM on average displayed the best performance.

Comparing OMMs bias and STD with those from the best performing alternative method

at each SNR below 10 dB, on average OMM achieves a bias and STD 0.7% and 3.3%

lower, respectively. An example of the recorded sample data and associated OMM and

MSNSI MFEs are illustrated in Figure 5.6b.

5.4.3 In-Vivo Data Results

The ability of the MFE estimation methods to perform under challenging conditions is

evaluated further using in-vivo data. In addition to a variable SNR, in-vivo data includes

erroneous contributions from, for example, tissue movement or other blood flows. The

results presented here are for measurements of the aortic valve, in which a number of

different features can be present [330]. Resulting envelopes, even in succeeding beats, can

display high variability in size and shape.
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Table 5.2: Bias and STD statistics for different envelope estimation methods, using phan-

tom data

SNR (dB)
Bias (%) STD (%)

O
M

M

M
S

N
S

I

M
G

M

Z
IP

M

O
M

M

M
S

N
S

I

M
G

M

Z
IP

M

Constant Flow Velocity of 0.4 m/s

0 -0.7 3.5 3.7 28.0 0.5 5.0 9.8 8.9
3 0.1 2.0 1.2 28.3 0.4 3.2 4.7 8.3
5 -0.3 1.4 0.5 31.3 0.3 2.1 3.1 8.2
10 0.6 0.9 0.1 2.8 0.3 1.4 1.8 1.3
14 1.3 0.9 0.2 2.2 0.3 1.1 1.7 0.8

Constant Flow Velocity of 0.8 m/s

0 0.3 3.3 1.1 17.1 0.6 4.9 8.0 10.4
3 0.8 2.5 -0.1 14.7 0.5 4.7 4.8 9.4
5 1.2 1.3 -0.4 21 0.6 4.0 3.1 7.4
10 1.7 1.0 -0.3 4.9 0.5 2.4 2.3 2.2
13 2.2 1.1 -0.3 3.3 0.5 1.9 2.3 0.9

Constant Flow Velocity of 1 m/s

0 -0.8 2.5 -0.7 8.5 1.0 5.4 7.4 11.1
3 0.1 1.2 -1.8 14.3 0.8 3.7 4.1 8.2
5 0.4 0.8 -1.8 18.4 0.6 2.9 3.3 6.6
10 1.3 0.5 -1.8 4.6 0.5 1.7 2.7 1.7
14 1.4 0.3 -1.7 3.2 0.4 1.2 2.4 0.8

The results using in-vivo data are presented in Table 5.3. They demonstrate that, over-

all, the OMM method resulted in the lowest percentage error in terms of the total number

of beats segmented; producing only 0.4% more beats than the true number of beats. The

true number of beats was found by converting each recording into a spectrogram and

counting the total number of whole beats present; data in which the total number of beats

was hard to distinguish were removed. A whole beat is identified using the start or end of

the preceding or proceeding beats, respectively. This allowed the number of beats within

each recording to be compared to the number of beats extracted using each MFE method.

The number of beats extracted for each MFE estimation method was then summed for all

recordings giving a total number of overestimated and underestimated beats; the results
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are given in Table 5.3. These values demonstrate that despite the OMM method per-

centage error being positive, this method resulted in the least number of overestimations.

The OMM method also resulted in the least number of underestimations missing 0.8% of

beats, compared to 5.8% missed by the next best-performing method, MSNSI.

Table 5.3: Number of Beats Segmented Using Each MFE Method

OMM MSNSI MGM ZIPM

Beats Segmented 7,908 7,613 7,677 7,491

Percentage Error1 (%) 0.4 -3.4 -2.5 -4.9

Total Overestimations2 100 181 322 117

Total Underestimations3 69 445 522 503

1 – Percentage error of number of beats segmented with respect to true number.

2 – Summation of overestimated number of beats segmented from each recording.

3 – Summation of underestimated number of beats segmented from each recording.

The overestimation results in Table 5.3 illustrate that beat segmentation can result in

beats incorrectly being segmented from the data; this is in response to erroneous signals

or noise. The accuracies associated with performing beat segmentation using each of the

MFE methods were further investigated using a sample of the in-vivo data.

A sample size of approximately 12% was used. The sample was attained by using the

first four seconds of each of the 229 recordings. The extracted envelope and associated

beat timing indices were generated for each audio sample and for each MFE method. Fig.

5.9 provides an example of this for the OMM and MGM envelope. This data allowed the

number of false positives (a beat incorrectly segmented, or detected in the audio sample

where there was no actual beat), false negatives (a beat present in the audio sample but

not detected) and true positives (a beat existing in an audio sample was correctly detected)

to be found . In Figure 5.9, the OMM MFE resulted in four true positives, and the MGM

MFE resulted in two false positives, one true positive and one false negative. The false

positives occur due to the start of systole being incorrectly estimated for the second beat.

This is due to there being multiple narrow peaks in the systolic portion of this beat. The

false negative occurred due to the final systolic peak not being preserved and therefore

identified in the LPF MFE, resulting in the end of the fourth beat not being found. The

results from the sample analysis are shown in Table 5.4.
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Table 5.4: Beat segmentation performance using each method on sample of in-vivo data

OMM MSNSI MGM ZIPM

True Positives1 (%) 99.6 98.4 93.8 98.7

False Positives1 (%) 0.4 1.6 6.2 1.3

False Negatives2 (%) 2.2 10.4 35.4 10.4

Beats Segmented2 (%) 97.8 89.6 64.6 89.6

1 – Percentage of associated beats with respect to number of segmented beats.

2 – Percentage of associated beats with respect to true number of beats.

Table 5.4 illustrates that OMM resulted in the highest percentage of beats being cor-

rectly segmented, with OMM achieving 97.8% , followed by MSNSI and ZIPM which both

achieved 89.6%. Use of the OMM method also resulted in the lowest percentage of false

negatives and false positives, which is in line with the overestimations and underestima-

tions in beat numbers given in Table 5.3.

To evaluate the applicability of the proposed MFE and beat segmentation method

for real-time applications, the time taken to run both algorithms for the in-vivo data

was recorded. This was done using an Acer G9-592, with an i5-6300HQ CPU 2.3 GHz

processor and 8 GB ram. The total processing time was 967 seconds, which corresponds

to 0.12 s per beat; accommodating a hypothetical maximum heart rate of up to 490 bpm

(a) OMM (b) MGM

Figure 5.9: Example of in-vivo data containing four whole beats with OMM and MGM

MFEs and associated segmented beats, where the green dash indicates the start or ends of

identified beats. In this case, OMM segmented four true positives, and MGM segmented

two false positives, one true positive and one false negative. Using the OMM MFE, SNR

was measured to be 15 dB.
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for real-time applications.

Finally, a series of paired t-tests were performed on the results presented in Table 5.3 to

confirm the differences in performance. The beat segmentation performance of the OMM

method was compared to the remaining three MFE estimation methods independently.

The resulting p-values for this analysis are very small (3×10−5, 1×10−3 and 4×10−14 for

the MSNSI, MGM and ZIPM methods respectively), confirming the observed difference

in performances was not random.

5.5 Discussion

A series of metrics and scenarios have been analysed to provide an in-depth comparison

of the investigated MFE estimation methods. Metrics include STD, correlation and wave-

form indices. These were used to analyse the ability of the proposed method to extract

representative Doppler profiles, from which shape information can be found or further

beat segmentation performed.

The implementation of the methods remained constant for each data set, apart from

in the case of ZIPM, where this was not possible. This approach simulates real-world, au-

tomatic application where true maximum velocities are unknown, or for research scenarios

where datasets exhibit high variability (e.g., SNR and flow rates) and thus it is impractical

to adjust the implementation of the methods. In certain other applications, for example,

where maximum velocities of interest are more restricted, the methods could be tuned

to give better performance (e.g., restricting image size for image-processing methods, or

adjusting cut-off frequencies to improve the performance of IPS methods), however, this

was beyond the scope of the presented work.

5.5.1 Envelope extraction using the Doppler Audio Signal

In the OMM method, the Doppler audio is used to form a spectrogram and from that an

image. Thus the parameters used for generation of the spectrogram images are explicitly

defined, as discussed in Section 5.3. As described, the applied morphological operations

are designed with respect to the resulting pixel resolution of these images. In contrast, the

values of the parameters used to generate the images collected from an ultrasound machine

are not known, and are device and user-specific. Variations and limitations between ma-
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chines in this regard include screen refresh rates, spectrogram parameters, contrast, pixel

resolution, zoom and image thresholding. The variations are in part due to the processing

required to provide spectrograms as a form of visual feedback. In contrast, Doppler audio

tends to naturally occur within a person’s hearing range, allowing sonographers to use

the audio feedback to guide the probe position during measurements. This means that

audio requires less processing prior to being used as a form of feedback in comparison

to spectrogram images. The process of sampling audio is relatively straightforward and

can be performed using basic hardware (e.g., a laptop). Considering this, implementing

an image-processing MFE approach using the Doppler audio signal presents a number of

advantages.

For this work, no specific standards with respect to streaming audio from commercial

ultrasound machines could be found. The maximum Doppler frequencies, sample rate of

any captured audio and the number of channels should, therefore, be considered prior to

applying the proposed method. Fortunately, in many applications, Doppler signals are

limited to relatively low frequencies and do not require high streaming standards.

5.5.2 Envelope Estimation with Decreasing SNR

The performance of each MFE estimation method was evaluated across a range of SNR

values using both simulated and flow phantom data. In each case, SNR was estimated using

equation 5.2, which provides a consistent means of comparing each method. This approach

has been used in previous studies as it allows the noise to be quantified in real-world

measurements [114], however, can give negative estimates in low SNR conditions. This is

illustrated in Figure 5.3, in which the Doppler profile is visually discernible at an SNR of

-3dB. Evaluations have included such low SNRs to demonstrate the stability of the OMM

method, and its potential to be used in automatic research or monitoring scenarios where

noise conditions can vary. In terms of bias, no MFE method consistently outperformed

across the two data sets. Nonetheless, OMM typically achieved the lowest bias at lower

SNRs (e.g., below 5 dB). It can be seen that unlike the other MFE methods, OMM exhibits

decreasing bias with decreased SNR. This is due to the automatic thresholding used by

OMM, which does not take into account spectral broadening. As more noise is introduced,

the lower level spectral broadening is masked and the estimated maximum frequency is

closer to the true value.
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The OMM method produced very stable results across the SNR range with respect

to the simulation correlation statistics and STD statistics for both the simulated and

phantom data (Figure 5.7 and Table 5.2 respectively). This is particularly evident in the

correlation data, where the OMM method achieves a correlation greater than 95% at -6

dB for both insonation angles.

The IPS methods typically exhibited more erratic behaviour than the image-processing

methods. This is due to the fact that IPS methods require the IPS to exhibit its charac-

teristic shape in order to accurately estimate maximum frequency points. This condition

is met less consistently (for example, the IPS knee becomes less defined, and the transition

from signal to noise more gradual) as SNR deteriorates and the measurements exhibit sig-

nal loss and increased variance. The MSNSI method compensates for this by employing

only time points with adequate signal strength and then using interpolation and smooth-

ing. If a portion greater than 0.1 s with poor signal strength is identified, that region is set

to zero. This is useful in measurements where flow discontinuities occur, in such cases the

IPS curve would divert far from its characteristic shape and result in very poor maximum

frequency estimations. The OMM method does not include any equivalent conditions,

however, given that a global threshold is used to generate the binary images, small dis-

continuities do not result in incorrectly identified signal contributions. In such cases, the

MFE is set to the minimum frequency bin in which flow signal can be detected. If no flow

were present at all in a section of processed audio, the OMM method would be unable to

detect this, and the resulting MFE would be erratic. The in-vivo data includes a large

variety of waveforms and signal qualities, however, specific analysis of how each method

performs in response to flow discontinuities was not performed and was beyond the scope

of this investigation.

At a certain point, the MSNSI power threshold condition becomes detrimental as more

of the envelope is set to zero. This begins to have an effect at SNRs below 10dB, this

can be seen in Figure 5.6a, where regions of slow diastolic flow with lower spectral power

have been set to 0. As SNR reduces further, the stable performance of MSNSI begins

to become more erratic. Overall, the MSNSI method performed better despite MGM

producing lower bias values than MSNSI at very high SNRs. This was found to be due

to the MGM method performing very poorly during the weaker, diastolic portion of the

signal.

The ZIPM method produced stable results at SNRs greater than 5 dB but deteriorated
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quickly at lower SNRs. As described in Section 5.3.3, a dynamic range is chosen for

the images processed using this method. This dynamic range dictates how successful

proceeding thresholding is; as this is fixed, at a certain SNR the signal can no longer be

easily distinguished, and the method’s performance quickly deteriorates. The dynamic

range chosen to display the ZIPM images was chosen based on its performance with

respect to the calculated statistics. Choosing the best dynamic range can be challenging

when implementing ZIPM for new data. This was found to be the case using the in-

vivo data, in which a dynamic range much larger than that used for the simulated and

phantom data was required for good performance, and which is discussed further in Section

5.5.5. The dynamic range used for the ZIPM images meant only the strongest portion

of the signal was visible (which occurs at the maximum velocity). Consequently, this

meant the addition of noise had no effect on the binary image across a large range of the

SNRs used. Additionally, the diastolic portion of the simulated femoral data could not

be captured. The combination of this factor and slight overestimations with respect to

maximum velocity during the systolic portion resulted in very low bias values, but less

accurate STD and correlation values. ZIPM was able to produce good RI and PI results,

this is partly due to the simulated carotid artery being more consistent. These results are

discussed further in Section 5.5.4.

5.5.3 Envelope Estimation with Increasing Insonation Angle

The inherent properties of Doppler ultrasound systems give rise to a phenomenon known

as intrinsic spectral broadening, which manifests as a blurring of the Doppler spectrum. A

moving target, when measured using Doppler ultrasound, results in spectral content with a

range of frequency shifts (and not one singular value). Blood contains many moving targets

that contribute to the measured Doppler signal and result in a smearing of the frequency

spectrum [12]. The presence of spectral broadening is attributed to two contributions

referred to as local geometric broadening and transit-time broadening [59]. The degree of

this effect increases with the insonation angle.

Simulated data was generated for insonation angles of 30◦, and 60◦. This allowed the

effect of spectral broadening with respect to MFE estimation performance to be inves-

tigated. The bias, STD and correlation statistics show that typically the 60◦ simulated

data resulted in deteriorated performance for all MFE methods. In the case of ZIPM, the
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increased insonation angle resulted in a lower bias. This was due to the combination of

increased overestimation during systole, and underestimation during diastole as discussed

in Section 5.5.2. The ZIPM envelope deviates further from the true envelope within the

60◦ data, which is illustrated from the STD results.

As discussed in Section 5.5.2, OMM exhibits increased bias at higher SNRs due to

spectral broadening. This is more evident in the 60◦ data as higher insonation angles

result in increased levels of spectral broadening. Use of metrics derived from MFEs, such

as peak systole, should keep such effects in consideration.

The OMM method was able to generate highly correlated envelopes at low SNR values

for both insonation angles. This means that despite spectral broadening, accurate MFE

shape can still be extracted allowing successful beat segmentation or accurate waveform

features to be obtained. This is illustrated by the RI and PI statistics, which remain

on average below 10% for the OMM method, for both angles and low SNRs. OMM

and MSNSI resulted in similar absolute PI error at high SNRs for 30◦. Increasing the

insonation angle resulted in an absolute error increase of 47% and 185% for OMM and

MSNSI, respectively. OMM achieved a PI error of -10% for the 60◦ data, illustrating its

potential use for such applications.

5.5.4 PI and RI Estimation

Features can be extracted from MFEs to provide additional means of analysing blood flow.

The ability to extract two popular waveform indices, PI and RI, were investigated using

each MFE estimation method. These results, shown in Figure 5.8, illustrate that typically

PI error was greater than RI error. Through inspecting the corresponding MFEs, it was

found that performance was similar to that exhibited in the simulated femoral data. The

OMM and MSNSI methods both produced envelopes with low bias. As bias is estimated

from each time point, this corresponded to overall good estimates of the envelope mean.

However, it was found that MSNSI overestimated peak systole, and increasingly so with

SNRs below approximately 5 dB. This results in an overestimation of PI and RI values.

Conversely, any inaccuracies in MFE estimation are more consistent across the whole MFE

for image-processing methods. This results in more accurate PI and RI estimation. MGM

performed similarly to MSNSI, however, underestimated peak systole resulting in negative

PI and RI error.
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Considering equations 3.4 and 3.5 and the more consistent M values, inaccurate S val-

ues are more detrimental for PI estimates. Furthermore, as discussed in Section 5.5.2, the

MSNSI method results in more erratic behaviour at lower SNRs and includes a condition

that can set portions of the MFE to 0. This increases the likelihood of Dmin being smaller

than Dend, and will further detrimentally affect estimates of PI.

It can be seen from Fig 5.8, that ZIPM begins to deteriorate below approximately 5

dB; this is consistent with the bias and STD results in Section 5.4.1. As indicated by

the correlation statistics in this Section, the ZIPM MFE rapidly deviates from the true

MFE shape. This results in Dend increasing relative to S, and estimates of RI decreasing.

The whole MFE increases, and although becomes far from the true MFE, does not result

in huge RI and PI errors. Comparatively, the MSNSI envelopes resulted in worse PI

and RI errors at low SNR, despite them overall being closer in shape to the true MFE.

These observations highlight the need to consider different metrics when assessing MFE

performance.

5.5.5 Beat Segmentation Performance

The ability to segment beats is essential for automatically extracting and monitoring beat

specific measurements, like those discussed in the previous section. It allows for measure-

ment averaging, preventing the practice of calculating values from representative beats,

a process which may be a significant factor in test-retest variability [331]. Robust aver-

aging has been shown to be clinically advantageous in certain applications, for example,

resynchronising pacemakers [119–121]. Furthermore, it makes analysis of larger datasets

more feasible, which would be clinically desirable [332], and could enable research ventures

that were previously deemed too time-consuming. In the context of this thesis, good beat

segmentation performance is critical. This is to ensure as much information as possible

is extracted from Doppler ultrasound datasets, and that it is extracted in a consistent

manner. Furthermore, practical solutions investigated in this work for aiding Doppler ul-

trasound analysis are not helpful unless they can be applied in real-time applications; and

thus implemented methods must be reliable in response to a wide array of signal quality

and characteristics.

The ability to perform successful beat segmentation was investigated using a large

dataset of in-vivo measurements. These measurements inevitably contain more artefacts
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than the simulated and phantom data. The measured signals include contributions from

tissue movements and erroneous blood flow signals from nearby vessels. Other signals,

such as valve clicks, can be present as well as variations in noise due to differences in

transducer and tissue coupling and signals due to the transducer moving.

The results demonstrate that combining OMM with the described beat segmentation

method can result in a high percentage of beats being correctly segmented, with the OMM

method segmenting 8.2% more beats correctly than the next best performing method,

MSNSI. Crucially, the sample test indicated that very few false positives were identified

using OMM. This is a significant result of this research, as this characteristic is vital

for applications which use processed beats to identify abnormalities in measurements,

identify certain traits or perform classification tasks (such as classifying heart disease

[195]). The difference in performance with respect to true positive and true negatives

could be of particular significance when monitoring patients with challenging recordings

such as weak CO. The design and testing of the beat segmentation method has been

limited to Doppler measurements from the aortic valve. This included data with a wide

range of Doppler profiles, including ones far from their characteristic shape (e.g., high-

end diastolic velocities). Considering this, the method is expected to also perform well

using Doppler measurements from other locations (for example, from the carotid artery),

however, this has not been confirmed.

In real-world applications, an automatic method needs to operate at sufficient speeds

to extract the envelope, perform beat segmentation and extract information. The pro-

posed method was found to take on average 0.12 s to extract a segmented beat MFE,

providing the remaining 0.15 s to extract additional information for a heart rate of 220

bpm. This illustrates that the proposed method could be implemented in real-world ap-

plications. Furthermore, the method requires only the MFE to function. This means no

additional hardware is required and thus can remain low cost, fast and highly portable.

Combining OMM and the proposed beat segmentation software allows real-time, contin-

uous monitoring of a person’s blood flow with live cardiac cycle analysis.

It was found that despite the good performance exhibited by ZIPM with respect to

the simulation and phantom data, a much higher dynamic range was required to generate

the images used in the in-vivo data. The low dynamic range used for the simulated

and phantom data allowed the signal to be clearly defined (as shown in Figure 5.5),

however, the in-vivo data contains erroneous signals and variable SNR, preventing such
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a low dynamic range from being used. The need to select an appropriate dynamic range

value for particular datasets stopped the ZIPM method from being truly automatic within

this study.

5.6 Conclusion

A new MFE estimation method (OMM) has been presented. OMM is fully automatic,

can be implemented in a real-time manner and only requires the Doppler audio signal as

an input. The performance of OMM has been systematically evaluated for a wide range

of signal qualities using simulated data, phantom data and in-vivo data. The performance

has been compared with three other state of the art MFE estimation methods.

It was demonstrated that the proposed OMM method reliably produced envelopes

suitable for further beat segmentation. Across a wide SNR range, the OMM method

consistently produced the most stable envelopes with good correlation to the true shape.

This was further demonstrated using in-vivo data, where it resulted in 8.2% more beats

being correctly segmented in comparison to the next best performing method. This is

a significant characteristic of the method and demonstrates its potential application for

monitoring in clinical scenarios, and automatic processing of large datasets for research

purposes.

In the context of this thesis, OMM is used to generate stable envelopes and enable

reliable beat segmentation. The method is also combined with MSNSI and MGM to

extract a range of MFE based features for machine learning applications, as described in

Section 7.3.
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Chapter 6

Beat Segmentation

6.1 Introduction

The timing indices of cardiac cycles allow clinically valuable blood flow measurements, or

features, to be extracted from Doppler ultrasound measurements. Using these indices to

split ultrasound data into individual beats is referred to as beat segmentation. In clinical

scenarios, automatic methods can enable real-time haemodynamic measurements and beat

averaging, in research applications automatic methods allow large and otherwise overly

impractical datasets to be processed.

The work in this thesis necessitated a robust method of beat segmentation for both

offline dataset processing and real-time software implementation. In order to preserve

desirable characteristics of Doppler ultrasound technology, specifically its affordability

and ease of use, this method needs to function without any additional hardware (e.g.,

ECG). In addition to this requirement, the employed method needs to function well when

applied to dynamic MFEs (which occur when the probe is scanning through planes in

order to locate the IPP), and MFEs that are far from their characteristic form (as the

method needs to function when the operator has not yet located the IPP). This is in

contrast to more straightforward and restricted scenarios, such as using data limited to

good quality measurements from the IPP. As discussed in Section 3.2, previous methods

have been evaluated for these more simplified conditions and necessitate some user input

preventing them from being truly automatic, such as entering the first timing index for

an MFE containing multiple beats [160].
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The research described in this document led to two methods of beat segmentation

being developed. The first, the slope-gradient method, is based upon the method used

within the USCOM device. Description of this method has been limited to high-level

details [78], meaning it could not be replicated identically. The primary concepts were

adopted, as well as conditions implemented in previous works. The resulting method uses

the slope of systole to identify the starting points of cardiac cycles and requires no input

other than the MFE.

In addition to this, a correlation method was later developed. This method uses a

heart rate estimate and an ideal MFE profile (MFEIPP ) to identify cardiac cycles. The

MFEIPP , and correlation measurements, were initially used to quantify the similarity

between obtained MFEs and MFEs from the IPP. This characteristic is used as a feature

for pattern recognition models (described in Section 7.3.3), and was found to be the number

one ranked feature for the beat rejection classification model, which is used to remove poor

data for real-time applications (Chapter 9).

The two methods are compared using a sample of data containing 1,324 beats, with

varying quality and MFE shape. The two methods were both shown to perform very well,

however, the correlation method gave marginally improved results and correctly segmented

99.2% of beats compared to 97.2%. Considering this, and that the correlation method is

already used to extract correlation features, this method has been adopted for the feature

and image extraction procedures described in Chapters 7 and 8.

Despite the correlation method being adopted as the chosen method of beat segmen-

tation, steps from the slope-gradient method are used to identify the end of systole. This

is required to extract certain features and is described in Section 7.3.1. Considering the

good performance of both methods and their differences with respect to required inputs,

computational cost and complexity, they have both been described in the given work.

The remainder of this chapter contains four sections. The immediate two describe the

slope-gradient and correlation methods respectively, this is followed by a section detailing

the evaluation methods used, and a final section presents and discusses the results.

6.2 Slope-Gradient Method

The slope-gradient method requires only the MFE as an input. The two main steps

involved are the identification of peak systole positions, and subsequently, identification of
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the systole start positions. The method shares common techniques to that employed by

USCOM [78]; specifically using a low-pass filtered MFE to find temporal indices, and using

the rising slope of systole to estimate the start of systole. However, the original method

could not be implemented as the relevant document was limited to high-level details [78].

The proposed approach allows the start of systole to be identified, even for MFEs

which exhibit unusual behaviour either side of peak systole. This overcomes limitations

of assuming that a minima occurs prior to the start of systole [132].

6.2.1 Peak Systole Identification

Peak systole positions are first approximated using the unsmoothed MFE (described in

Section 5.2.4). The mean of this envelope is first set to zero, and then it is low-pass

filtered (LPF), which removes frequencies above 3.7 Hz, and results in a signal that is

more sinusoidal in appearance. This assumes a heart rate of less than 220 bpm, which is

well within the normal range for adolescents and adults [333].

The approximate peak systole positions are then found by identifying peaks in the

filtered MFE. A ‘minimum peak distance’ condition is used to make this more reliable

(i.e., time between consecutive peaks). A minimum peak distance of 0.8/fHR is used,

where fHR is the estimated heart rate frequency. This condition assumes the heart rate

reduces no more than 20% within the processed envelope, and is a percentage employed

by previous methods [118,132].

The heart rate frequency is estimated from the PSD of the sinusoidal signal, calculated

using the Welch method. The frequency corresponding to the maximum value in the PSD

is taken as fHR. Final peak systole positions are taken as the peaks in the (smoothed)

MFE closest in time to the approximate positions. Figure 6.1 illustrates how peaks found

in the LPF MFE are used to identify peak systole in the MFE.

6.2.2 Start of Systole Identification

The next step is to estimate the start of systole. Low-frequency content in the Doppler

audio signal can obscure the transition between diastolic and systolic blood flow (Figure

6.2) and thus prevent the start of systole positions from being easily identified.

To overcome this, the rising slope of systole is used. This occurs immediately prior to

peak systole. The gradient of this slope is used to plot a line that intersects 0 Hz. This
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Figure 6.1: Peak systole identification using approximate peaks found from the LPF MFE,

illustrated for scenario where MFE contains numerous peaks, for example due to low SNR

conditions.

Figure 6.2: Method of estimating start of systole, illustrated for scenario where start of

systole and peak systole are obscured, for example due to low SNR conditions.

point is taken as the approximate start of systole. Two points are selected on the rising

slope to calculate the gradient and to plot the intersection line. These points correspond

to 50%, and 80% of peak systole (the locations of which were found in Section 6.2.1).

These percentages were empirically chosen as this region of the envelope typically exhibits

a strong signal. Figure 6.2 illustrates how this approach can be implemented in scenarios

where peak systole is not clearly defined, for example in poor SNR conditions.

6.3 Correlation Method

The correlation method extracts timing indices by analysing the MFE shape and spectral

content at low frequencies. The techniques employed were initially designed to quantify the

similarity of a beats MFE with respect to an ideal beats MFE. These features are described
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Figure 6.3: MFEIPP used to obtain correlation measures

within Section 7.3.3. Compared to the slope-gradient method, fewer empirically derived

variables are required. However, this method does require a reference MFE (MFEIPP ),

this was formed using the expertly collected data at the IPP. The corresponding beats

were normalised and averaged to give the MFEIPP , this is displayed within Figure 6.3.

Previous methods of beat segmentation have included correlation approaches. In these

examples, autocorrelation has been used to acquire timing indices. This technique has been

used to find approximate peak systole positions [132]; assumptions regarding the envelope

shape were then used to identify the start of systole. The start of systole positions have

also been found directly using autocorrelation [118]. Identifying the start of systole in this

manner is very useful, however, necessitated the first cardiac cycle starting position to be

manually entered. The presented correlation method identifies the starts of systole and is

fully automatic.

Using the same approach as described in Section 6.2.1, the associated heart rate (HB)

is estimated for the processed MFE. This is used to resize the relative length of the

MFEIPP , for example, if HB is 60 bpm and the MFE is 4 s long (as used in the given

work), the resized MFEIPP will be 0.25 × MFE duration (i.e., MFEIPP will have an

effective length of 1 s). Cross-correlation is then used to identify the starts of systole

within the MFE. An example of this is given in Figure 6.4.

Once these systole positions are found, the correlation between individual beats and

the MFEIPP are calculated (Corr). If all of these correlations are greater than 0.7, the

process is complete. Typically, this means at least four beats require a correlation greater

than this value, which was found to be empirically indicative of well-segmented beats.
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(a) MFE (b) MFEIPP and MFE cross-correlation

Figure 6.4: Identification of start of systole using cross-correlation

If this is not the case, a series of additional HB values (HB check) are used to re-

size the MFEIPP and the process is repeated. HB check is defined using the values

in HB Buffer (as shown in Figure 6.5), where HB Buffer is a circular buffer con-

taining up to 10 previous HB estimates. HB check contains five values linearly spaced

from 0.8× Average(HB Buffer) to 1.2× Average(HB Buffer). This is illustrated at

a high-level in Figure 6.5.

Figure 6.5: High-level block-diagram detailing correlation method of beat segmentation

In each iteration, the mean Corr value is recorded. In addition to this, an image

correlation is measured. This uses the lowest 10 rows within the OMM image, which

corresponds to low frequencies and captures strong signals such as valves closures, and
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is denoted by LF . An ideal LF (LFIPP ) was used to attain an additional correlation

metric, this was made by averaging images corresponding to the MFEs used to form

the MFEIPP ; the LFIPP and an example LF are displayed in Figure 6.6. These image

correlations (ImCor) are included within the feature matrix described in Section 7.3. This

additional correlation metric was found to be particularly useful in cases where the MFE

shape was far from the MFEIPP . In such cases, Corr values can be less informative than

the ImCor, as these low-frequency components can be clearly defined even when the MFE

is not; this is illustrated in Figures 6.8d and 6.9a.

(a) LFIPP (b) LF

Figure 6.6: Example of low-frequency content in LFIPP and an interrogated cardiac cycle

cardiac cycle.

Once these additional HB values have been processed, the timing indices that corre-

spond to the best Cor and ImCor metrics are used. Figures detailing lower-level details

regarding this algorithm are provided in Appendix B.

6.4 Evaluation

The performance of both beat segmentation methods were compared using a sample of

the recorded data. This sample was created by first constructing a new dataset which

contained the first 4 s from each probe position, and searching period (e.g., time between

sampling off-angle and IPP) during a measurement set. This produced a dataset with

wide variations in MFE shape and quality, including dynamic periods and measurements

from each probe position. This also ensured that the sample was not dominated by

measurements from individual participants or by data corresponding to searching periods.
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Approximately 25 minutes worth of data was then randomly sampled from this new dataset

and used to compare the beat segmentation methods. This is illustrated in Figure 6.7.

Figure 6.7: Data used to evaluate beat segmentation methods, sampled to ensure balanced

and varied data.

For each 4 s data portion, the associated spectrogram, MFE and beat timing indices

were saved as an image. This enabled the true number of whole beats to be visually counted

for each data portion, as well as the corresponding true positives, false positives and false

negatives with respect to the extracted timing indices. To reflect the beat segmentation

methods, which are designed to only segment complete cardiac cycles, only complete beats

are counted. Cases where beat timing indices where visually ambiguous were not included.

6.5 Results and Discussion

Using the generated spectrogram images the true number of beats present within the

sampled data was counted; this found there to be 1,324 beats. The performance metrics

for each beat segmentation method is displayed in Table 6.1. This illustrates that both

methods performed well, and were able to segment the vast majority of beats. However, the

correlation method marginally outperformed the slope-gradient method for each metric.

The data sample used to assess both beat segmentation methods included a wide array

of signal qualities and Doppler profile shapes. This provided a thorough comparison of

their performances for the given application in this work, which is to operate reliably

across different participants and when the probe position is far from the IPP. Figure 6.8

illustrates both methods performing well, despite challenging and dynamic MFEs.

Figure 6.8 illustrates a variety of envelope shapes, from which both beat segmentation

methods successfully extracted timing indices. These include profiles more indicative of

good measurements (Figure 6.8a), and dynamic profiles which are encountered when the
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Table 6.1: Beat segmentation performance for gradient and correlation methods

Gradient Method (%) Correlation Method (%)

True Positives1 97.5 99.2

False Positives1 2.5 0.8

False Negatives2 4.7 2.0

Beats Segmented2 95.3 98.0

1 – Percentage of associated beats with respect to number of segmented beats.

2 – Percentage of associated beats with respect to true number of beats.

probe is being moved (Figure 6.8b). Figure 6.8c displays a very erratic and noisy profile,

and finally Figure 6.8a displays an example where very little flow is captured, potentially

due to only a section of the aortic arch being insonified.

Figure 6.9 provides two examples where the correlation method outperformed the

(a) (b)

(c) (d)

Figure 6.8: Pairs of correct beat segmentation timing indices, for correlation method (top

images) and slope-gradient method (bottom images), where white dashed lines indicate

start of cardiac cycles, and blue lines indicate end of cardiac cycles.
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slope-gradient method. In these cases the slope-gradient method failed to identify the

peaks of the missed beats (first beat in Figure 6.9a, and the first two beats in Figure

6.9b). A high diastolic region with many small peaks prior to the first beat in Figure 6.9a

likely contributed to this. Within Figure 6.9b the first two beats are smaller than the

remaining three and contain two prominent erroneous peaks, which again will have made

peak identification challenging. Such cases where sequential beat profiles differ greatly and

profiles exhibit high diastolic regions can lead to reductions in slope-gradient performance

with respect to the correlation method.

(a) (b)

Figure 6.9: Examples where correlation method (top images) performed better than the

slope-gradient method (bottom images), where white dashed lines indicate start of cardiac

cycles, and blue lines indicate end of cardiac cycles.

Considering the improved performance of the correlation method, and that these pro-

cesses enable useful features to be extracted, this method has been adopted for the re-

maining work as the chosen means of beat segmentation.
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Continuous Feedback

7.1 Introduction

The deterioration of outcomes in medicine and an increasing abundance of clinical data

is fuelling and enabling medical applications of artificial intelligence (AI). It is envisioned

that almost all clinicians, of all types, will one-day rely upon AI [334]. Within this chap-

ter, pattern recognition methods are used to design a mathematical model that provides

continuous and automatic feedback reflective of probe position.

The merits and limitations of Doppler ultrasound have been discussed in depth within

Section 2.6. The dependency of measurements with respect to operator competence

was highlighted as a major hurdle. This is for both acquiring accurate and consistent

performance, and is presented as a potential reason for the technology not being more

widespread. This is because a highly skilled user is mandatory for both data acquisition

and measurement interpretation [335]. Previous works have investigated machine learning

solutions to aid measurement interpretation (e.g., automatic disease diagnoses), these were

discussed in Section 3.5. However, automatic systems that assist data acquisition have

not been documented.

Human-machine interfaces that enable less experienced operators to collect blood flow

data could be hugely impactful. These systems could ease measurement acquisition in

clinical settings, allowing more haemodynamic monitoring and management to occur, and

would also enable the use of the technology in more rural and developing countries [208].

A sobering example of how such outcomes could be beneficial is the ongoing covid-19
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pandemic, in which septic shock presents in serious cases and necessitates management

[336].

Data acquisition using Doppler ultrasound requires delicate manipulations of probe

angle and pressure. These manipulations can cause subtle changes in the obtained mea-

surements. An inherent difficulty is interpreting these changes, and responding appro-

priately. To mitigate this difficulty, an SVM regression model that provides continuous

feedback has been designed. This feedback increases and decreases throughout a scan to

reflect beneficial and detrimental probe movements, respectively. In this regard, the feed-

back is similar to scan image scores, which are derived offline and were described within

Section 4.2.3. No examples of methods that automatically or quantitatively score Doppler

scans were found within the literature. With respect to the subjective offline methods,

the generated feedback is based on a far larger array of features and is continuous.

The resulting model uses a selection of different features. These include features previ-

ously employed for Doppler ultrasound classification tasks, features used in other related

disciplines, and novel features. In total, a large feature matrix consisting of 963 different

features and 16,553 observations was formed. These are described in-depth in Section 7.3.

A thorough hybrid filter-wrapper feature selection method is used to identify the most

successful features. Novel features, and those which have not previously been documented

with respect to Doppler ultrasound, are shown to give good performance. Specifically,

MFCC features, which are commonly used in audio classification, are highly ranked.

In conclusion, the main contributions contained in this chapter include:

• The design of a large feature matrix that includes classic Dopper ultrasound fea-

tures, novel features and features that have not previously been applied to Doppler

ultrasound.

• The design and implementation of a thorough feature selection method, which iden-

tifies promising extracted features.

• The development and evaluation of a regression SVM model, designed to quantify

scan quality in an automatic and continuous fashion.
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7.2 Chapter Contents and Structure

This chapter describes the construction and evaluation of a regression feedback model.

There are many techniques and modelling approaches that can be used to build feedback

models, however, their construction typically consists of four common steps [205]:

1. Signal Preparation

2. Feature Extraction

3. Feature Selection

4. Model Training

An overview of these steps, with respect to the given work, is displayed in Figure 7.1.

This illustrates how different methods designed through the thesis are combined to realise

the above steps, and includes footnotes detailing where they are presented. The processes

and methods described in this chapter are also used in the proceeding chapters to train

classification models.

The methods used to realise steps one to four are described within this chapter. Follow-

ing this, the corresponding results are presented and discussed. To enable easy navigation

of this information, the structure of this chapter with respect to these steps will now be

briefly presented.

Figure 7.1: Overview of steps used to construct regression model, where methods used in

1 are described in Section 4, 2 in Section 5.2, 3 in Section 6, 4 in Section 7.3, 5 in Section

7.6 and 6 in Section 7.7.1.
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7.2.1 Signal Preparation and Feature Extraction Steps

The first step is realised using the MFE estimation and beat segmentation methods de-

scribed in Chapters 5 and 6. These methods are used to attain timing indices, which allow

features to be extracted from individual cardiac cycles.

A large array of features are extracted in this work. These are used to train models

in this chapter, and the following two chapters. These procedures result in a variety of

beneficial features being identified. These include novel and established features, and is

a significant contribution of this work. The features extracted and associated naming

conventions are described in Section 7.3.

7.2.2 Feature Selection Step

All models are trained using a subset of the best performing features for that given task.

Feature selection is performed using a hybrid method and is detailed in Section 7.6. This

process uses labelled data with both filter and wrapper feature selection methods.

In proceeding chapters, discrete known targets are used to label the data. However,

for continuous feedback, the choice of labels is less obvious. The labels used, and the

justification for this choice are detailed in Section 7.4.

7.2.3 Model Training Steps

Following feature selection, models can be trained and evaluated. The evaluation meth-

ods are described in Section 7.7, this includes a method of cross-validation which is also

employed in the proceeding two chapters.

Section 7.7 details the metrics used to assess trained continuous feedback models, these

results are presented and discussed in Sections 7.8 and 7.9, respectively. These sections

also cover the features identified as being the most useful for the continuous feedback task.

All extracted features will now be discussed.

7.3 Extracted Features

The features extracted in this work belong to those previously documented for Doppler

ultrasound analysis or classification, as well as those which have either not been applied to
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Doppler ultrasound previously or have been developed as a part of this work. This section

will detail these features, and give context as to why they have been included.

Features have been organised into different types, and where necessary, groups and

subgroups. A breakdown of the feature categories used are displayed in Figure 7.2. In

many cases, features could be considered as belonging to multiple categories, for example,

spectral analysis of envelopes could be considered as belonging to the Waveform (W) or

Spectral types. These feature categories largely serve to assist in the organisation and

referencing of features.

Features are extracted in a beat-by-beat fashion, however, in some cases the data

used is limited to the systolic portion (SYS) of the cardiac cycle (CC). This is to reflect

scanning techniques employed when locating the IPP, which focus upon visual and audio

feedback within the systolic portion, and previous works which have demonstrated feature

extraction from specific regions of the cardiac cycle to be beneficial [337]. Cardiac cycles

are segmented using the correlation method described in Section 6.3, and end of systole is

identified by applying the slope-gradient method to the falling slope of systole.

The categories displayed in Figure 7.2, as well as the data length (SYS or CC ) and input

data, such as audio (A), envelope (E) or image (I), are used to give each feature a unique

name. These are constructed using the format ‘category DataLength InputData Fea-

tureCode’ where the category is the lowest level category for a given feature (i.e., this

will always be AF for the Audio features, but can be one of eight subgroups for spectral

features). The FeatureCode provides specific details regarding the feature, these details

are given in the following sections.

An example feature name is ‘W CC E NE1 1’, this corresponds to a feature which is of

the waveform type (W), extracted from the whole cardiac cycle (CC) and using an envelope

(E). As will be described in Section 7.3.3, ‘NE’ indicates a novel envelope feature, and the

remaining numbers ‘1 1’ link to a statistic. These naming approaches make listing and

inspecting feature sets more manageable.

The extracted features will now be detailed. Due to the large range of features ex-

tracted, these are primarily limited to high-level details. Appendices F to K include further

technical details and methods used to extract features where necessary. The principal con-

cepts of previously documented features and examples of their use are described within

Section 3.5.
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Figure 7.2: Overview of feature types, groups and subgroups used to categorise features

7.3.1 Haemodynamic Metrics and Envelope Statistics

These features consist of basic haemodynamic measurements and envelope statistics.

These are derived using the MFE, and associated timing information.

Basic flow measurements such as peak velocity and time-averaged maximum velocity

have been used in several Doppler classification tasks, and have been shown to be more

discriminatory than other conventional features [216,217].

Furthermore, when locating the IPP haemodynamic metrics such as peak velocity and

CO can help guide data acquisition (Section 4.2.2). CO is derived using stroke volume,

which is dependent upon the CSA of the interrogated lumen. This area is estimated using

a nomogram, which predicts the outflow tract diameter using the patients height [86].

Related haemodynamic metrics and their uses are discussed in Section 2.3.

Considering the above, the features listed in Table 7.1 have been included in this study.

As detailed, the majority of features have been derived using the OMM and MSNSI MFE.

Chapter 5 illustrated that MFE estimation methods can function very differently depend-

ing upon the analysed data. Different methods are employed during feature selection,

providing an investigation into their differences and respective value for pattern recogni-

tion. Specific details regarding how each feature is calculated are provided in Appendix
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Table 7.1: Haemodynamic features extracted

Statistic Number Feature Name1

1 Heart Rate

2 Ejection Time Percentage

3 Flow Time

4 Velocity Time Integral (VTI)

5 Peak Systolic Velocity (PK)

6 VTI/PK

7 CO

8 CO Forced2

1 - Statistics 2 to 8 have been calculate using the OMM and MSNSI MFEs.

2 - Using MFE forced to have triangular systolic region, as detailed in [78].

F.

In total 15 haemodynamic metrics are extracted. These features have been categorised

as belonging to the Waveform type, and use envelopes as their data input. Feature names

reflect this by beginning with either ‘W CC E ’ or ‘W SYS E ’ depending on whether the whole

envelope or the systolic portion of the envelope is used. Following this is ‘EnvelopeName -

H StatisticNumber’, where envelope name is either OMM or MSNSI, ‘H’ indicates a

haemodynamic statistic and the statistic number is that listed in Table 7.1. Peak systole

velocity estimated using the OMM MFE, for example, is named W CC E OMM H5.

The haemodynamic features are all derived using information from the MFE. In ad-

dition to these physical quantities, basic statistics can be derived from the MFEs. These

include metrics such as STD or gradients. A number of simple statistics have been derived

using the OMM and MSNSI MFEs. These are listed in Table 7.2.

This produces 10 envelope statistics (giving a total of 25 features when combined

with the haemodynamic features), the naming reference for these are W DataLength -

E DataType S Statistic Number, where DataType is either OMM or MSNSI, and the

relative statistic number is listed in Table 7.2.
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Table 7.2: Envelope statistics

Feature Name1 Statistic number

STD2 1

Rising Slope Gradient (RSG) 2

Falling Slope Gradient (FSG) 3

Ratio of RSG and FSG 4

1 - Where RSG denotes rising slope gradient, and FSG denotes falling slope gradient.

2 - Calculated for whole CC and systolic portion.

7.3.2 Traditional Features

Doppler ultrasound was developed as a diagnostic tool over 50 years ago, and revealed a

new means of measuring vital haemodynamic metrics. Efforts to unlock further diagnostic

capabilities of the technology led to a variety of features being developed. The applications

investigated for these are discussed further in Section 3.4. This section presents a selection

of these features that have included in the given work, and are referred to as Traditional

Features (TF). These are largely simplistic one-dimensional features, which are derived

from velocity waveforms and Doppler spectral content.

Many of these were developed to describe the shape of waveforms associated with

different vessels. Predominately, they are based on height ratios between different parts of

the MFE [176,338]. In addition to the heights of certain characteristics, time relationships

related to them have also been used to derive features. Incorporation of time information

allows accelerations or decelerations to be quantified [339], as well as features such as

systolic decay time index, which is derived using only time information [160].

In addition to shape and the temporal information provided by the MFE, information

extracted from the power spectrum may be of diagnostic importance [12]. In particular,

it was found that diseased vessels exhibited a degree of spectral broadening [12]. This

phenomenon is discussed in Section 2.4.3. In response, a number of indices which attempt

to quantify spectral broadening have been described.

The applications and limitations of these traditional features are discussed further in

Section 3.4. The estimation of such features is straight-forward, and they have been shown

to exhibit diagnostic potential, for these reasons they have been included in the presented
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work. These have been calculated using the OMM MFE, and are summarised in Table

7.3.

Table 7.3: Traditional features

TF number Feature Name

1 Systolic Decay Time Index

2 Pulsatility Index

3 Pourcelots Resistance Index

4 Constant Flow Ratio

5 Height-Width Index

6 Relative Flow Index

7 Early Diastolic Notch Pulsatility Index

8 Acceleration

9 Deceleration

10 Curve Broadening Index

11 Trans-systolic Times

12 - 31 Spectral Broadening Index

The features listed in Table 7.3 are based upon waveform indices, timing information

and spectral content. The most commonly used TF features are waveform indices (such

as PI). To reflect this, TF features have been categorised as belonging to the Waveform

type (and subgroup Classic Waveform), and are referred to as W CC E TF followed by the

relevant TF number listed in Table 7.3.

The spectral broadening associated with a Doppler signal is related to both the in-

sonation angle and interrogated blood velocities. When locating the IPP, an operator

will move the ultrasound beam through different scanning planes. In the given work CW

ultrasound is used, this means that aiming the probe inevitably results in different blood

flows with individual insonation angles and blood velocities being captured. Therefore,

the scanning process will likely give rise to a range of spectral broadening magnitudes.

With respect to the aortic valve, once the IPP is located the ultrasound beam should be

close to parallel with the direction of blood flow. Off-angles may capture flow from the

aorta, but at an increased insonation angle and, therefore, with increased levels of spectral

broadening. Considering these observations, metrics which quantify spectral broadening
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could be valuable for the given work. This quantity is not straightforward to measure,

which is highlighted by the large number of documented SBI features listed in Table 7.3,

the associated equations for all features in this table are provided in Appendix F.

The effect of spectral broadening with respect to MFE estimation was discussed in

Chapter 5. This work explored various means of MFE estimation, with varying perfor-

mances with respect to this phenomenon. These observed differences led to several novel

envelope features being explored, which aim to exploit these differences.

7.3.3 Novel Envelope Features

In addition to the traditional waveform indices described, a selection of novel envelope

(NE) features have also been extracted. Hitherto, documented envelope features have

been limited to those derived using one form of MFE estimation method. Furthermore,

envelope extraction is often performed using secondary software or hardware, in which

methods are either not disclosed or are unknown [193,340–342] . As discussed in Chapter

5, various methods of MFE extraction have been developed and analysed, including the

novel OMM method. The results presented in Chapter 5 illustrate how different MFE

methods excel in different respects, for example, the OMM method was shown to be

particularly adept at extracting stable envelopes in very noisy signals, whereas the MSNSI

method produced MFEs with very low bias at high SNRs.

A variety of novel features were extracted from the Doppler signal. These attempt

to capitalise upon the discussed differences, and provide further information for feedback

models. The initial pursuit of these features was to provide further quantification of

spectral broadening (i.e., in addition to the traditional features). This was investigated

by extracting metrics using a combination of envelope types.

These combinations include the MSNSI method and an altered version of MSNSI

that does not take into account spectral broadening (MSNSInoISB). The MSNSI method

attempts to overcome the effects of spectral broadening using equation 7.1, which is used

to estimate the point at which the slope transitions from signal to noise on the IPS.

m(x) = mSx+mN (1− x) (7.1)

Where x is the fractional contribution to the slope, m(x) is the slope at the signal-noise

transition point, mS is the slope of the signal, and mN is the slope of the noise. The value
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of x is set to 0.1 to accommodate for spectral broadening [114], MSNSInoISB is extracted

by setting x to 0. Similarly, the OMM method has no steps which directly address spectral

broadening. A range of features were extracted using combinations of these MFEs. An

example feature includes the mean difference of the MSNSI and MSNSInoISB, which should

increase in response to higher levels of spectral broadening.

MGM envelopes were also included to capture differences between the IPS methods.

The envelope combinations used are listed in Table 7.4. The statistics extracted using

these combinations are listed in Table 7.5, this includes details about how each feature

is derived with respect to the two envelopes of interest (env1 and env2). In addition to

the MFEs, the median frequency (MF) envelope has also been used to extract further

features. This is calculated using each time point of the power spectral density estimate

formed when extracting the OMM MFE.

Table 7.4: Envelope combinations used to extract novel envelope statistics

Combination Number Envelope 1 Envelope 2

1 OMM MSNSI

2 OMM MF

3 MSNSI MF

4 MSNSI MGM

5 MGM MF

6 MSNSI MSNSInoISB

7 MSNSInoISB MF

81 OMM OMMideal

91 OMM OMMseq

101 OMMseq OMMideal

1 - Limited to correlation statistics.

In total, 81 novel envelope statistics are extracted. These features have been cate-

gorised as belonging to the Waveform type, are all extracted from whole cardiac cycles

and use envelopes as their data input. To reflect this, corresponding feature names be-

gin with ‘W CC E NE’ followed by a reference number. The feature reference number is

‘Statistic Number Combination Number’, as listed in Tables 7.4 and 7.5, respectively.
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Table 7.5: Novel envelope statistics derived using envelope combinations

Statistic Number Name Equation

1 Mean Difference (Meandiff ) Mean(env1 - env2)

2 Mean Ratio (Meanratio) Mean(env1)/Mean(env2)

3 Maximum Difference Max(env1) - Max(env2)

4 Maximum Ratio (Maxratio) Max(env1)/Max(env2)

5 Correlation Corr(env1, env2)

6 STD Ratio (STDratio) std(env1)/std(env2)

71 Normalised STDratio STDratio/max(env1, env2)

81 STD Difference (STDdiff ) std(env1) - std(env2)

91 Normalised STDdiff STDdiff/max(env1, env2)

101 Normalised Meanratio Meanratio/max(env1, env2)

111 Normalised Meandiff Meandiff/max(env1, env2)

121 Normalised Maxratio Maxratio/max(env1, env2)

1 - Limited to combinations related to spectral broadening differences (1 and 6).

7.3.4 Image Features

The Doppler profile and spectrum are the primary sources of feedback that guide operators

during a scan. The features described thus far include those that reflect characteristics

of the Doppler profile, such as acceleration and deceleration during systole (Table 7.3).

This section details features extracted directly from an image of the Doppler spectrum.

These features include ones representative of spectral feedback, as presented in the criteria

described in Section 4.2.3, as well as more general descriptors common to image-processing

tasks.

As with audio classification, image classification is a very broad field with many ap-

plications. Section 3.6.2 presented the highly popular computer vision features LBP and

HOGs. In the presented work, LBP and HOG features have been extracted from OMM

images.

LBP features have been used to perform classifications using spectral images of clinical

audio, including heart and lung sounds [269, 276]. These examples used 8-neighbouring

pixels, and a radius of 1; resulting in 59 LBP features. These parameters have been
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Figure 7.3: Example cardiac cycle image used to extract HOG features

employed for the given work. HOG features have been used in a similar manner with

spectral images for audio classification [283–285]. These works used varying cell sizes (16

× 16 to 32 × 32) and resized spectral images, this allowed features to be independent of

signal length and sample frequency [283]. In the presented work, images were rescaled

to a size of 100 × 100. It was found that images with information limited to the signal

portion gave improved results (i.e., the region reflective of blood velocity). These were

formed by applying a mask to the images that set pixels outside of the envelope to one, an

example image is displayed in Figure 7.3. This was performed using the OMM envelope

and resulted in 324 HOG features. LBP and HOG features are named LBP and HOG

respectively, followed by CC I F and feature number. Further low-level details regarding

the extraction of these features are provided in Appendix G.

Table 7.6: Image statistics

Statistic Number Statistic Name

1 Contrast

2 Correlation

3 Energy

4 Homogeneity

51 Pixel Range

62 Row Pixel Range

72 Column Pixel Range

1 - Applicable to image portions 1 to 3.

2 - Applicable to image portions 4 and 5.
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Table 7.7: Image portions

IP Number Image Portion Criteria Characteristics

1 Whole1 Global aspects such as noise

2 Envelope Boundary (EB) MFE boundary

3 Peak EB MFE peak boundary

4 Peak Systolic peak definition

5 Base Systolic base definition

1 - Statistics extracted for whole cardiac cycle, and systolic portion.

A range of more intuitive statistics can also be extracted from images, for example,

contrast and homogeneity. Table 7.6 details a range of image statistics extracted in the

presented work. These are extracted from both OMM images and secondary images formed

from these.

To reflect the Fremantle criteria described within Section 4.2.3, images include those

cropped from specific regions of the OMM image. For example, one aspect considered by

the Fremantle criteria is the definition of the systolic base, in light of this, statistics have

been extracted from an image restricted to this region. This region, and the others listed

in Table 7.7 were defined using the OMM MFE; these procedures are given in Appendix

H, and correspond to 32 features. Table 7.7 provides details with respect to how each

image portion (IP) reflect aspects of the Fremantle criteria. These novel image statistics

(IMS) have a naming convention IMS DataLength InputData , followed by IP with the

IP number listed in Table 7.7, and S with statistic number listed in Table 7.6.

The identified peak and base regions were also used to extract two SNR features using

the STFT power spectral density estimates. These are listed in Table 7.8.

Table 7.8: Image region SNR features

Feature Name Feature Equation1

IMS CC I SNR BASE 10log10(Psb/Pn)

IMS CC I SNR PEAK 10log10(Psp/Pn)

1 - Where Psb and Psp is the average power contained within the identified base and peak region

respectively, and Pn is the average power in bins greater than the OMM MFE.
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7.3.5 DWT Features

An experienced sonographer relies upon both visual and auditory feedback when perform-

ing examinations (Section 4.2.2). The features described thus far have been predominantly

based on envelopes and visual representations of the Doppler signal. In this regard, they

aim to capture, in part, visual information interpreted by an operator.

The remaining features are largely derived from audio directly via different means

of spectral analysis. As such, they are more comparable to the auditory information

interpreted by an operator during an examination. These features include those previously

used for disease classification of the Doppler signal, as well as features implemented in other

areas involved with audio classification, such as speech recognition.

Different approaches can be taken to analyse the spectral content of audio signals.

Section 3.6.1.2 introduced the DWT technique, and its prior application in classification

tasks, including Doppler ultrasound. This technique enables multi-resolution analysis of

Doppler signals, and subsequently, various statistics to be acquired.

DWT features were extracted from the audio in a manner previously shown to be

useful for Doppler arterial classification tasks [205]. Within this approach, the audio is

segmented into individual cardiac cycles and is then decomposed into seven levels using

a Daubechies one wavelet (db1). This produces seven detail coefficient (DLn) arrays of

varying lengths, where Ln refers to the associated level number. The dimensionality of

each array is reduced by calculating four coefficient statistics (CS): the mean of absolute

values, maximum of absolute values, average power and STD. The extracted DWT audio

features are summarised in Table 7.9.

Table 7.9: DWT features extracted from audio and envelopes

Group Number of Levels Statistic Number Statistic Equation

DWT 1 to 7

1 Mean( |DLn| )

2 Max( |DLn| )

3 Mean(D2
Ln)

4 STD(DLn)

The features detailed in Table 7.9 were extracted using audio from complete cardiac

cycles, as done within previous works. The previous sections described a range of enve-
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lope based features. These have not included spectral analysis of the waveform itself. To

investigate whether such information could be beneficial, the features in Table 7.9 were

also extracted from OMM and MSNSI MFEs. This resulted in a total of 84 features. The

corresponding feature names begin within ‘Group DataLength InputData’, and are then

followed by ‘ DLn StatisticNumber’ for audio and ‘ EnvelopeName DLn StatisticNum-

ber’ for envelopes. The first statistic, for the first level detail coefficients and using the

OMM MFE, is therefore called DWT CC E OMM D1 1.

Figure 7.4: Example of original OMM MFE and audio signals for one cardiac cycle, and

corresponding DWT detail coefficients D1 and D4.

DWT features have been used in countless disciplines for analysis and classification

tasks. With respect to Doppler ultrasound, many of these have amassed substantially more

research. These works can be drawn from to guide the extraction of further promising

DWT related features. ECG analysis is a prime example of this and is an area with similar

characteristics to Doppler ultrasound signals. As with Doppler ultrasound, ECG signals

can be used to facilitate the diagnoses of heart diseases. The associated high mortality

rates of which have driven large amounts of research into methods of classification and
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feature types [343]. These have included features similar to those listed in Table 7.9 [344].

Li and Zhou recently demonstrated improved ECG classification accuracies using

wavelet packet decomposition (WPD) [343]. This technique also decomposes the detail

coefficients, which preserves high-frequency components [343]. Following WPD, Sharron

entropy (SE) values were calculated.

The ECG and MFE signal share a number of similarities, for example, both have

repeating waveforms whose shape and lengths are determined by processes within the

heart. WPD Sharron entropy features were extracted from MFEs and Doppler audio to

assess whether they are useful for the given work.

As with prior analysis of DWT, Doppler ultrasound features [206], it was found that

Daubechies wavelets resulted in the highest classification accuracies for ECG signals [343].

A db1 wavelet has been used in the presented work. The extracted features are summarised

in Table 7.10. These correspond to 80 features in total, whose naming convention is the

same as the above DWT features, however, replaces statistic number with SE followed by

SE number.

A further extension of the DWT is the maximal overlap discreet wavelet transform

(MODWT). As with WPD, features derived using MODWT have been shown to be good

descriptors for ECG signals [345,346]. The MODWT produces wavelet coefficients whose

lengths are the same as those in the original observation. This allows alignment of coeffi-

cients at each level with the original series; therefore providing direct comparisons between

the two [347]. This is particularly useful for analyses of variance, which is inherently more

restricted for DWT values [348]. The redundancy of MODWT coefficient also increases

the effective degrees of freedom, which further strengthens their application to variance

analysis [347]. Capitalising upon these characteristics, multiscale wavelet variances (V )

have previously been used to classify ECG signals [345]. This technique has been included

in the presented study, these features are summarised in Table 7.11. These correspond

Table 7.10: WPD entropy features

Group Level Input Data SE Number

DWT 4 Audio1, Envelopes2 1 to 16

1 - Extracted from systole and complete cardiac cycles.

2 - Extracted using OMM, MSNSI and MF envelopes.
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to 44 features in total, whose naming convention is the same as the above DWT features

(Table 7.9), however, replaces statistic number with V followed by V number. Further

details regarding the extraction of all DWT and related features are included in Appendix

I.

Works investigating ECG classification has demonstrated that combining DWT with

parametric model-based features can result in highly accurate classification models [349].

Such features will now be described.

Table 7.11: MODWT variance features

Group Input Data Data Length V Number1

DWT

Audio Systole 1 to 9

Audio Cardiac Cycle 1 to 11

Envelopes2 Cardiac Cycle 1 to 8

1 - Variable for processed data, as determined by data length.

2 - Extracted using OMM, MSNSI and MF envelopes.

7.3.6 Parametric Model Features

Parametric spectral estimation provides another means of analysing signals. The associ-

ated coefficients of AR models, of order four, have been shown to be valuable features for

describing ECG waveforms [349]; this work classified waveforms associated with singular

cardiac cycles. The AR coefficients of a given signal can be estimated using different ap-

proaches, the Burg method is an efficient example which has previously been implemented

for analysis of Doppler ultrasound [350]. Given the demonstrated success and similarities

between ECG and velocity envelopes used in the given work, the same techniques have

been implemented to acquire AR coefficient features. The extracted features are listed in

Table 7.12. These correspond to a total of 20 features, whose naming convention start with

‘AR DataLength InputData C’ , and‘AR DataLength InputData EnvelopeName C’ for au-

dio and envelopes respectively, and end with AR coefficient number.

AR models have also been used to estimate the power spectral density of Doppler

audio signals [194,207,350], these works used models of order 10. Spectral content derived

using AR models have been implemented in the given work. As performed in previous
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Table 7.12: AR coefficient features

Subgroup Input Data Data Length Coefficient Number

AR
Envelopes1 Cardiac Cycle 1 to 4

Audio Cardiac Cycle and Systole 1 to 4

1 - Extracted using OMM, MSNSI and MF envelopes.

examples [205, 208, 351], the features are reduced using the same statistics applied to the

DWT decompositions.

In addition to these, AR and ARMA power spectral densities and associated statistics

have also been extracted. ARMA values were included to reflect reported advantages of

using such methods, as discussed in Section 3.6.1. The ARMA coefficients are found using

the ARMAsel approach [352], again using a model order of 10.

These features have been derived from complete cardiac cycles, and use the same

naming convention as the above AR coefficients, however, C and coefficient number are

replaced by S and statistic number. The extracted features are summarised in Table 7.13,

and correspond to 32 features.

Using the ARMA model, AR and MA parameter autocorrelations were also calculated,

producing an additional 40 features. The corresponding feature names are the same as

those in Table 7.13, however, S and statistic number are replaced by AC and autocorrelation

number. In total, 92 model based features are extracted, further details regarding the

extraction of these are provided in Appendix J.

Table 7.13: AR PSD features

Subgroup Input Data Statistic Number Statistic Equation

AR, ARMA Audio, Envelopes1

1 Mean( |PSD| )

2 Max( |PSD| )

3 Mean(PSD2)

4 STD(PSD)

1 - Extracted using OMM, MSNSI and MF envelopes.
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7.3.7 MFCC and GTCC Features

MFCC features have become a staple of audio classification and analysis, and provide a

further means of analysing a signals spectral content. The extraction of MFCC and GTCC

features, and their widespread applications were introduced in Section 3.6.1.3.

These features mimic aspects of the human auditory system, and as such are cate-

gorised as belonging to the ‘Biologically Inspired’ group illustrated in Figure 7.2. These

features, particularly MFCCs, have been widely and successfully used in speech recogni-

tion [353]. Spectral analysis of Doppler signals have not previously included features that

specifically consider how humans hear them. Considering the success of such features in

other applications, and the powerful role Doppler audio can play in guiding probe position

for an operator, MFCC and GTCC features have been included in the given work. These

features are summarised in Table 7.14.

Table 7.14 details the extracted features and their reference feature numbers. The

feature numbers 0 to 12 correspond to the associated coefficient number, and feature

number 13 corresponds to log energy. This results in 84 features, the naming convention

of which are ‘Subgroup DataLength InputData FeatureNumber’.

Table 7.14: MFCC and GTCC features

Subgroup Data Length Feature Number1

MFCC
CC 0 to 13

SYS 0 to 13

GTCC2
CC 0 to 13

SYS 0 to 13

1 - 0 to 12 correspond to coefficient number, and 13 corresponds to log energy.

2 - Extracted using both time and frequency domain filtering, using naming convention T followed by

feature number to indicate time, and F followed by feature number to indicate frequency.

7.3.8 Audio Features

This section presents additional features that are extracted from the Doppler audio. These

include established audio descriptors that have been used in several areas of audio analysis,

including phsyco-acoustic analysis, musical instrument classification and speech recogni-
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tion [247,354]. The chosen features are largely described within the ‘Content-based Unified

Interfaces and Descriptors for Audio/music Databases available Online’ project [354,355].

The goal of which was to design extractors capable of unlocking high-level information

from audio signals, from which new applications could arise. The naming convention of

these audio features (AF) are ‘AF DataLength InputData’ followed by the corresponding

statistic number given in Table 7.15.

Table 7.15: Audio features

Statistic Number Description Feature Name1

1 Based upon human hearing, i.e.,

perceptual

Loudness

2

Based upon spectral shape, using STFT1

Spectral Centroid

3 Spectral Decrease

4 Spectral Entropy

5 Spectral Flattness

6 Spectral Flux

7 Spectral Kurtosis

8 Spectral Rolloff Point

9 Spectral Skewness

10 Spectral Slope

11 Spectral Spread

12 Pitch

13 Based upon sinusoidal harmonic

modelling1
Harmonic Ratio

1 - Extraction and features details given in [354].

Features detailed in Table 7.15 have been extracted from systole and complete cardiac

cycles, and correspond 26 features in total. Further details regarding these features are

supplied in Appendix K. Also included within this feature type are three SNR features; two

of which are derived using equation 5.2, and a third novel measure using audio amplitude.

These SNR features are detailed in Table 7.16.
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Table 7.16: AF SNR features

Feature Name Description

AF CC E OMM SNR Spectral SNR, estimated using OMM MFE

AF CC E MSNSI SNR Spectral SNR, estimated using MSNSI MFE

AF CC A SNR RMS audio amplitude SNR1

1 - SNR measure from audio signal, where diastolic and systolic regions are treated as noise and

signal respectively.

7.4 Labelling Data

Labelled datasets form the basis of most predictive models, allowing them to learn patterns

associated with certain outcomes. When exposed to unseen observations, these trained

models can then make predictions. Given a set of features with known origins it is often

straightforward to assign corresponding labels. Models that incorporate information from

Doppler signals have been discussed in Section 3.3, these tend to use two goal categories,

for example, abnormal or normal arterial signals [356], or benign or malignant adnexal

tumours [210]. The ‘ground truth’ in these situations is known, allowing measurements

from each category to be clearly labelled.

This approach is used in Chapter 8, where observations are labelled in terms of probe

position. However, in this chapter the goal is to design a model that provides a continuous

form of feedback. This is to indicate whether probe adjustments are beneficial. Ideally,

measurements that correspond to the probe being at the IPP would consistently share

common traits. In certain conditions this seems likely – for example when measurements

are limited to a single individual – in which small deviations from the IPP can be visually

obvious. However, as discussed in Section 4.4 this is not always the case, and in particular,

differences in Doppler profile appearance across participants can be extensive.

This inter- and intrapatient variability is a challenging aspect surrounding the work

described in this thesis, and is a contributing factor to the labelling approach used. In

this work the regression model has been trained using an ‘ideal response’, this assigns a

value of one to IPP observations and a value of zero to off-angle observations. Several

approaches were considered, these will now be briefly discussed, and the reasoning for

using an ideal response will be presented.
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7.4.1 Scan Quality Labels

Subjective scoring criteria have been developed to assess whether a measured scan using

the USCOM is acceptable or not, this is discussed in Section 4.2.3 . Using these criteria,

points are awarded in reference to characteristics of the Doppler profile, for example, how

well defined the peak of systole is. In turn, these points can be summed to give an overall

score. This scan score provides a subjective assessment of a given measurements quality.

An automatic method of replicating these scores was considered as a means of providing

continuous feedback. It is intuitive that higher scores correspond to better measurements.

However, as illustrated in Section 4.4.2, the off-angle Doppler profiles do not necessarily

score worse than those from the IPP, particularly when measurements across participants

are considered. The viability of this approach was investigated by comparing scored scans

with their corresponding probe positions.

Figure 7.5: GUI used to score beats using Fremantle criteria

To perform this evaluation, the collected Doppler data needed to be scored. Scores were

assigned to spectrogram images of individual beats; these were generated automatically



160 CHAPTER 7. CONTINUOUS FEEDBACK

Table 7.17: Desirable features of dataset labels

Label Characteristic

• Highest values at IPP

• Lowest values at off-angles

• Low variability in IPP scores

• Low variability in off-angle scores

using the beat segmentation software described in Section 6. The Fremantle criteria is the

most commonly applied method, and includes characteristics considered by alternative

methods and used when aiming the USCOM [312, 313]. Considering this, the Fremantle

criteria was used to score a sample of scan images. A random sample of approximately

25% of the collected data was used, which corresponded to 2,379 beats.

The scoring process is laborious, to ease this process a GUI was designed in Matlab.

This is displayed in Figure 7.5. This also allowed the order of the images to be easily

randomised, and for associated scores to be saved. The scans were scored three times,

scans with score ranges greater than two were reinspected and re-scored. These were then

averaged. The use of these scores as labels for the given task was investigated in terms of

intra- and interpatient variability, in both respects the characteristics listed in Table 7.17

are desirable.

The overall distributions of Fremantle scores with respect to probe position are dis-

played within Figure 7.6. It can be seen from this, that measurements associated with

Figure 7.6: Distribution of Fremantle scores for individual probe positions, visualised using

probability density estimate based on normal kernel function.
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the IPP typically achieve a higher Fremantle score. However, there remains significant

overlap with respect to the IPP and the remaining off-angle positions. This is illustrated

further in Table 7.18, which show that the mean intrapatient scores for both the IPP and

off-angles exhibit an STD of 0.9, and have mean values of 4.4 and 3, respectively.

With respect to the ideal response (which is discussed further in Section 7.4.3), the

scores both had a Pearson and Spearman correlation of 0.65. This demonstrates that the

labels diverge significantly from the characteristics listed in Table 7.17. These correlation

statistics are discussed in Section 7.7.1, and are later used to evaluate the final regression

model.

Considering the overlap present in the scores, observations cannot be definitively sep-

arated using them alone. Furthermore, predicted scores will include an error percentage,

giving further ambiguity as to whether a scan is close to the IPP for an individual. As

will be presented in Section 7.8.2, the feedback ultimately generated by the trained model

is more highly correlated to the ideal response than the scores discussed here.

Table 7.18: Fremantle mean and STD statistics

Position Label1 Mean Normalised Mean2 (%) STD

G 4.4 1.0 0.9

Off-angles 3.0 0.4 0.9

1 - Probe position labels as detailed in Section 4.3.

2 - Mean feedback with respect to mean IPP feedback.

The limitations of subjectively scored observations led to alternative labelling methods

being sought. These include labels based on physical haemodynamic values.

7.4.2 Haemodynamic Based Labels

Following data collection, the mean values of certain metrics attributed to IPP observations

can be found. A fundamental metric that can be measured using the USCOM is CO; this

feature is included in the feature extraction process. A highly informative form of feedback

would be the percentage of CO being received (with respect to what is acquired at the

IPP). Using the mean CO value during these IPP measurements, this CO percentage value

can be calculated. This percentage can then be used to construct a labelled data set.
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This approach could provide several advantages. Firstly, it allows quantitative values

to be attributed to observations, as opposed to subjectively scored quantities or discrete

values. These scores are sensitive and provide participant-specific scaling. This could

overcome, in part, the variability in IPP scan quality across participants. Secondly, it

unlocks a portion of the dataset which would be impractical to attain labels for through

subjective scores or when using labels limited to the IPP or other known angles (i.e., the

data captured between defined probe position, such as when the IPP is being located

following an off-angle position, can be used to generate labels).

The viability of such an approach, however, is dependent on how consistently a metric

such as CO can be calculated across the measurements, and how intertwined the metric

and probe position are. The Doppler profile, for example, at an incorrect position may

appear to have a wide systolic portion, with low velocities. Despite this profile clearly

being far from its ideal form, the CO could be similar to the correct value (due to the

increased systolic width). Furthermore, the accuracy of the CO depends on how accurately

the MFE has been extracted, and corresponding timing indices estimated. In practice for

example, representative beats are selected using the devices screen, and in many cases,

metrics calculated from certain beats will be rejected due to inaccuracies in either MFE

or timing indices. Clearly, to both function in a real-time manner or to process large

datasets, manually checking such inaccuracies is impractical.

In addition to these limitations, the haemodynamic values associated with the IPP

can change during a set of measurements. This could be due to, for example, changes in

heart rate or small variations in body position [317]. In the given work, haemodynamic

percentages were not found to be reliable enough to form valid labels.

Figure 7.7: Illustration of how stroke volume or CO alone can be a weak indicator of probe

position
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7.4.3 Ideal Response Labels

Continuous feedback needs to clearly indicate when the probe approaches or leaves the

IPP. A simplistic approach to generate labels to reflect this is to assign IPP measurements

a value of 1, and measurements from off-angles a value of 0. An example of such labels

are illustrated in Figure 7.8.

In contrast to the other approaches, this ensures IPP measurements are given a com-

mon label. This allows the approach to be insensitive to variations in scan quality at the

IPP across participants. Furthermore, it ensures off-angles are consistently reflected by

the labels. This forces the trained model to try and overcome interpatient variability.

With respect to Table 7.17, these labels would fulfil all the desired label characteristics,

and as such are referred to as the ideal response. The labels are therefore binary, where

all off angles are all considered to be “equally bad”, or at an equal distance away from the

IPP. When used to train a regression model, positive movements of the probe are reflected

by an increase in value, indicating the distance between the current position and the IPP

has been reduced. For the given work, this ideal response has been used to form regression

models.

An example of a binary ideal response is given in Figure 7.8;

Figure 7.8: Example of ideal response labels, where green regions correspond to observa-

tions from the IPP.

7.5 Feature Matrix Conditioning

The extracted features are combined to give a feature matrix (FM), where rows correspond

to observations and columns to features. Given the breadth of feature types and the

number of observations, this FM is large containing close to 16 million values. Prior
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to using it for training and evaluating models, the FM is first processed. This ensures

observations with nonsensical data such as infinite or NaN terms are removed. In addition

to this, poor observations are removed. These are identified using beat images, and are

summarised in Section 4.4. These can arise, for example, due to momentary drops in

signal quality or an incorrectly segmented beat.

Finally, the FM is normalised. This standardisation ensures each feature has zero-

mean and unit variance. This is a common step for pattern recognition and is performed

due to many machine learning techniques being sensitive to the scale of features [357].

This process converts each feature to a STD from the mean, removing any previously

associated units. A given feature vector, F , is normalised using equation 7.2.

F ′ =
F − F̄
σ

(7.2)

Where F ′ is the normalised feature, F̄ is the mean feature value and σ is the STD of

F .

7.6 Feature Selection

The design of classification and regression models, particularly in contemporary applica-

tions, are performed using datasets with an abundance of information. Many algorithms

have been developed to identify important features contained within these datasets [358].

The dataset used in the presented work includes numerous and varied features, many of

which have not been previously used to classify Doppler signals. Rather, their inclusion

has been influenced by machine learning and pattern recognition research in other areas.

Considering this, a thorough and effective feature selection method is needed.

The presence of redundant or irrelevant features in a dataset can detrimentally affect

the accuracy of trained models [359]. The process of feature selection extracts a subset

of features from the overall dataset. This reduces the dimensionality of the data and

can have a number of benefits: predictive accuracy can be improved, the amount of data

needed to train a model can be reduced, and execution time can be decreased [360].

Software which use predictive models in a live setting can also benefit computationally,

by reducing the cost of feature extraction and improving the overall throughput [361].

This is of particular importance in the presented work, where a high refresh rate in terms
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of feedback is desirable. In addition to these computational and performance-related

advantages, feature selection can allow the underlying success of a model to be more

comprehensible to humans [360,362]. This is because concepts that employ many features

are hard to understand.

Figure 7.9: Block diagram illustrating Sequential forward feature selection, where i denotes

subset, and N subset size.

The goal of a feature selection algorithm is to create a subset of features, within which

each feature is a good predictor, either by themselves or when combined with another

selected feature. Additionally, a selected feature should not be redundant with respect to

the other selected features [362]. For example, a fully correlated feature could be a good

predictor, however, would be superfluous when combined with its correlated counterpart.

The task of identifying useful features can be challenging. The way a model relates

features to an output are often complex. In such cases, it is near impossible to decrypt the

role of a feature and its contribution to an outcome [361]. There have been many proposed

methods of feature selection, and further developments are on-going and prevalent. Despite

this, research continues to indicate that no single method can be considered universally

superior [363], and selecting a model from this growing pool of algorithms is difficult [364].

Feature selection methods can largely be considered as belonging to one of two groups:

filter methods and wrapper methods [361,365]. Although a third type, embedded methods,

also exists, examples include Lasso [366] or Elastic Net [367].

Filter methods tend to be relatively simple and quick to implement, with searches

typically performed once and features considered separately [361]. This approach is often

effective at capturing large trends, however, features are selected using the methods objec-

tion function, which applies a statistical significance to an inspected feature. This means

the requirements of a model are not considered, and so features that fulfil the selection

criteria do not necessarily improve predictive accuracy [361].

Wrapper methods, instead ‘wrap’ the feature selection process around a selected model.
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An iterative process is performed, during which subsets of features are repeatedly supplied

to the model. The corresponding performances are then used to guide which features are

included in the final selection [361]. The resource demands of using the modelling algo-

rithm result in a more computationally expensive operation, and an end feature subset

which is biased [358]. This can be further exacerbated by the choice of model, for exam-

ple in the case of SVMs and neural networks, which can be inherently computationally

expensive. However, wrapper methods have been empirically proven to identify the best-

performing feature subsets [363,368].

The two groups of feature selection methods clearly have advantages and disadvantages.

An alternative approach is to combine them; forming a hybrid method [364]. Many hybrid

methods have been proposed, these seek to combine the best properties of filter and

wrapper methods. Using a filter method, the feature set dimension space is first reduced

[358]. A wrapper method can then be employed to perform the final feature selection.

Considering the feature space being searched during feature selection has size 2n, where n

is the number of features [369], any reduction in dimensionality can be hugely beneficial

for more expensive methods. This can give results with the high accuracy exhibited by

wrapper methods, with improved efficiency. Furthermore, practically any combination can

be used to design a hybrid method [358]. This approach has been used in the presented

work.

Several filter methods identify features as being redundant in cases where they are

highly correlated. However, unless these features are identical, their inclusion can still

provide useful information [368]. RelieF is a popular filter method [370, 371], which is

considered to be one of the most successful for measuring feature quality [372], and has

demonstrated good performance [363]. This method does not inherently remove corre-

lated features, however, additional steps can be incorporated to remove features deemed

redundant.

This approach was adopted by Bins and Draper, who used a k-means algorithm to

reject features with correlations greater than 0.97 [373]. In this example, redundant fea-

tures were removed following the RelieF filter method. This gave a reduced feature matrix,

from which a final feature subset was selected using a wrapper method: sequential feature

selection [373].

Different variants of sequential feature selection have been proposed, for example,

backward elimination [374], or forward selection [375]. Sequential forward selection begins
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with an empty set, each feature is then tested individually using the objective function, and

the best feature is retained. This process is then repeated to find the next best feature

to accompany the first, and so on [376], this is illustrated in Figure 7.9. In sequential

backward selection, the method begins with a subset containing all features, and removes

each individually, to find the feature which least negatively affects performance. These

methods typically assess feature additions using cross-validation [377]. Studies have shown

that neither methods consistently outperform [369], however, backward elimination is less

feasible with high numbers of features [373].

Figure 7.10: High-level block diagram displaying feature selection methods

In the presented work, a hybrid method has been used that combines the ReliefF

filter method with correlation feature reduction, and sequential forward feature selection.

The ReliefF filter performs feature preselection, retaining 300 features, and features with

correlations greater than 0.97 are removed. A variety of model types and predictive

goals have been investigated within this work. The described hybrid method provided

an accurate means of ranking the extracted features, which was still functional. This is

illustrated in Figure 7.10, as illustrated within this, the model type is selected during this

process. This is performed using Matlab’s Machine learning and Deep learning toolboxes,

which enables a variety of models to be trained and compared. This was performed using

10-fold cross-validation, the models types evaluated are illustrated in Table 7.19. This

table details those investigated for both the regression and classifications tasks (Chapter

8).
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Table 7.19: Regression and classification models investigated

7.7 Evaluation Methods

This section details the metrics and methods used to evaluate the performance of the

trained regression model. This includes cross-validation, which is implemented to give

strict and fair evaluation of performance, by ensuring training and testing datasets do not

share information from the same individual. Finally, a means of feedback averaging is

described.

7.7.1 Regression Models

Previous works involving Doppler ultrasound pattern recognition tasks (discussed in Sec-

tion 7.3) have classified measurements into distinct groups. Conversely, the models ex-

plored within this chapter are regression-based; producing continuous feedback. Consid-

ering this, alternative means of evaluation are required.

The goal of the continuous feedback is analogous in many respects to audio-visual

multimedia quality assessments. These assessments are concerned with measuring the

perceived quality of audio-visual signals, an important factor which can determine many

processes for multimedia networks and applications [378]. Different features are used to

predict perceived quality, in-turn allowing various aspects of multimedia services to be

improved. This presents a similar challenge explored in this work, where an experienced

operator uses a variety of visual cues to identify the IPP.

Typical indices used to assess the performance of these models include the Pearson



7.7. EVALUATION METHODS 169

Linear Correlation Coefficient(PLCC), the Spearman Rank Order Correlation Coefficient

(SROCC), and root mean-square-error (RMSE) [379]. These allow the similarity between

the predicted quality scores and ground-truth to be assessed. These metrics have been

adopted in this work to aid model evaluation.

The PLCC calculates the linear correlation between the predicted feedback and the

ideal response, giving a measure of the trained models accuracy [380]. This is calculated

using the paired ideal response and feedback at each observation, xi and yi respectively,

and uses the mean values of these two data sets, x̄ and ȳ. The PLCC is calculated using

equation 7.3:

PLCC =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(7.3)

The SROCC quantifies the correlation between feedback and ideal response, and as-

sess how well their relationship can be described using a monotonic function [381]. This

indicates the degree to which the feedback and relative magnitudes of the ideal response

agree [380]. This is calculated using the rank of xi and yi, which are denoted by Xi and

Yi respectively, and the ordered arrays of these values, X ′ and Y ′. SROCC is calculated

using equation 7.4.

SROCC =

∑
(Xi −X ′)(Yi − Y ′)√∑

(Xi −X ′)2
√∑

(Yi − Y ′)2
(7.4)

In addition to these metrics, the mean values and STDs of feedback at specific probe

positions are used to further analyse performance.

7.7.2 Cross-validation

In order to perform a fair and representative evaluation of model performances, the way

data is divided and evaluated is paramount. Section 3.5.1 discussed a number of examples

in which model evaluations had been carried out by separating the data into two groups,

one for testing and one for training. In the presented work, a more thorough cross-

validation approach is adopted.

Cross-validation provides a robust means of evaluating classification performance. The

technique is very common and has been implemented for previous Doppler classification
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tasks. These examples mostly have one set of features for a given participant, created

using averaged data. In this case, cross-validation provides a good means of assessing a

model’s generalisability across patients.

The data used in this work has many observations for each participant. This as akin to

many ECG classification tasks [382]. This field is abundant with research into classification

modelling techniques. However, a notable limitation of much of this work is an adopted

intrasubject validation approach [383]. That is to say, the testing and training groups

share observations from the same participants. Given the variability in human physique

and health, individual participants can exhibit highly unique signatures [383]. Training

data sets containing samples of these can, therefore, give heightened measures of a models

generalisability, i.e., this approach is not practical for realistic scenarios [343]. A meta-

analysis comparing inter- and intrasubject model evaluations found substantially higher

accuracies were reported for the intrasubject cases. This is particularly stark in five cases,

where the two approaches were directly compared. Across these examples, the reported

classification accuracy plummeted from an average of 92.2% to 73.5% [382].

The presented work exhibits these challenges, with the high intersubject variability

being illustrated in Section 4.4. Considering this, cross-validation will be performed using

an intersubject cross-validation approach. This is achieved using testing data that corre-

sponds to individual participants. This is then repeated for each participant, these results

are then combined for an overall evaluation.

This provides a very thorough and transparent means of assessing model performance

and generalisability. Figure 7.11 displays a block-diagram illustrating the cross-validation

process. Using this approach, the trained model was evaluated using data from 22 par-

ticipants. This data, and the associated survey methodology, is summarised in Chapter

4. As discussed in Section 4.4.3, scan acquisition difficulty is also investigated using mea-

surements collected by a highly experienced sonographer; the associated measurements for

this analysis are from participants one to ten. In this chapter, this information is used to

assess regression model performance in the context of scan difficulty.

7.7.3 Moving Average Predictions

Previous Doppler classification studies have extracted features from waveforms averaged

across a large number of heartbeats. This can strengthen overall predictions and overcome
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Figure 7.11: Blind testing method to acquire performance statistics for trained models,

where rows (rr) in the FM and the Labels (L) correspond to observations, rin corresponds

to the row index of a given participant, and cc corresponds to columns in the feature matrix

which contain feature vectors.

inaccuracies introduced by unrepresentative beats or momentary noise. These classifica-

tion tasks were concerned with differentiating unchanging distinct states in a participant,

such as a disease. These tasks are also analysed post examination. These aspects al-

low many consecutive beats to be combined to form ensemble averages (e.g., 30 - 40

beats [193]).

In the presented work, feedback needs to be functional for dynamic probe positions

and real-time use. This prevents large numbers of beats being averaged as the inherent

delay would render feedback unusable. In addition to this, real-world applications must

overcome variable heart rates, erroneous signals or noise, and the potential of missed beats.

Methods of prediction strengthening have been investigated in the presented work.

Features are extracted from different data periods, they belong to many different types

(i.e., they are not limited to waveform derived features) and include non-linear relation-

ships. To reflect this, predictions from sequential observations are averaged, as opposed to

averaging features or input data. This is performed using a time window, with a duration

of tav, which identifies a dynamic number observations (i.e., complete cardiac cycles). The

corresponding features (F ) are used to form predictions, which are then averaged. This

process of combining predictions for a given cardiac cycle (n) is displayed in Figure 7.12.

A longer window duration strengthens predictions when the probe is stationary, or

slow-moving. However, this also reduces sensitivity in response to more dynamic move-
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Figure 7.12: Method of combining predictions for regression models using moving time

window

ments. This trade-off therefore needs to be considered when averaging predictions. In

practice, the window length used could be an operator defined setting determined by their

expertise, preference and difficulty of a given examination. In the presented work, a time

window of 4 s has been used for all evaluations. This duration was found to strengthen

predictions, without introducing significant response delay. For a resting heart rate of 70

bpm, this window duration results in four cardiac cycles being averaged. Results which

have been averaged are referred to as moving average (MA) results.

7.8 Results

This section presents the feature subset identified through the feature selection process.

This subset was then used to train a regression model, which was then evaluated using the

procedure outlined in Figure 7.11. The calculated performance metrics will be presented.

7.8.1 Selected Features

The process outlined in Section 7.6 was used to identify a small subset of well-performing

features. Sequential feature selection iteratively assessed increasingly large feature combi-

nations. The loss associated with these enable an ideal subset size to be selected. This is

not necessarily the subset size that gives the lowest loss, for example in cases where a very

minor reduction in loss necessitates a vast increase in feature size. In such a case, real-

time applications could be limited (due to the increased time required to extract features).

Furthermore, reducing feature dimensionality can reduce model training time, a models
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Figure 7.13: Feature subset loss

Table 7.20: Features selected for regression model

complexity and increase its generalisation [364]; given the variability in the training data

this is particularly desirable. The regression loss associated with increasing subset size is

displayed within Figure 7.13.

The calculated losses detailed in Figure 7.13 were used to select a feature subset that

comprised of 39 features. These features are succinctly detailed in Table 7.20, further

details are provided in Appendix M. It can be seen from this that the chosen features pre-

dominately belong to the spectral type, and are extracted from both audio and envelopes.
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The highest-ranked feature is an MFCC feature extracted from the systolic portion of

the audio. This is followed by a DWT decomposition statistic extracted from the OMM

envelope, a related feature is also ranked ninth. This feature type has previously been

extracted from Doppler audio signals. Only four image features were selected, the highest

of which is an LBP feature at rank 18. These image features include two novel features,

which are ranked 21st and 26th. No haemodynamic features were selected.

The features listed in Table 7.20 belong to a variety of different categories. Figure

7.14 displays a Sankey diagram, this provides a digestible breakdown of the various types

of features selected. The feature selection process also identifies the model type which is

used; the model types investigated are listed in Table 7.20. This process identified a coarse

Gaussian SVM as the best performing model, high-level details regarding this model are

included within Appendix L.

Figure 7.14: Sankey diagram of features selected for regression model

7.8.2 Regression Model

An SVM regression model was trained to provide feedback that reflects a given probe

position with respect to the IPP. The trained model realises this by attributing larger

values to observations that more closely resemble the IPP. The performance of this model
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has been assessed using data collected from 22 participants, this data is presented and

discussed in Chapter 4.

Performance is evaluated using correlation statistics. These are calculated with respect

to the ideal response, which has been taken to be a binary signal where values of one

correspond to the IPP. The overall results from this analysis are given in Table 7.21.

Table 7.21: Overall regression model performance

Feedback Pearson Correlation Spearman Correlation RMSE

Raw1 0.82 0.73 0.35

MA 0.86 0.77 0.33

1 - Raw refers to single-beat predictions.

It can be seen from Table 7.21 that the MA results correspond to an increase of 4% for

the Pearson (Corp) and Spearman correlations (Cors); this corresponds to an improvement

of approximately 5% . Similarly, the MA results correspond to a reduction in RMSE of

approximately 6%.

Chapter 4 illustrated that large interpatient differences are present across the mea-

surement sets. This was discussed as an inhibiting factor when trying to form generalised

models. With respect to the regression results, it was found that feedback from different

individuals could exhibit similar correlation statistics, but have significant differences with

respect to feedback magnitude at the IPP or off-angles. Figure 7.15 provides an example of

feedback from the IPP and off-angles, for a single measurement set, from two participants.

This illustrates that feedback in both cases is typically largest at the IPP, however, the

relative magnitude of feedback at the IPP differs, with it being approximately 1.2 and 0.6

for P1 and P10, respectively.

As detailed in Chapter 4, data was sampled from five distinct probe positions during

a measurement set. The variation in feedback, with respect to these positions, have been

investigated further. The mean feedback values for each probe position are detailed in

Table 7.22. This table also includes the mean percentage value of feedback from specific

off-angles with respect to the IPP, illustrating the relative difference in feedback. The

variation in feedback is also considered using STD.

It can be seen from Table 7.22, that some off-angles result in feedback more distinct

from the IPP than others. For example, feedback associated with the positions L and H
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(a) P1 (b) P10

Figure 7.15: Example MA feedback for specific probe positions across measurement sets

from two participants, P1 and P10.

Table 7.22: Regression feedback mean and STD statistics

Position Label1 Mean Normalised Mean2 (%) STD3

G 0.59 1.00 0.13

L 0.05 0.04 0.08

R 0.11 0.19 0.12

F 0.08 0.12 0.08

H 0.15 0.23 0.11

O 0.1 0.15 0.09

1 – Using position labels as defined in Table 4.2, where G denotes IPP, L denotes patients left,

R denotes patients right, H denotes patients head, F denotes patients feet and O denotes all

combined off-angles.

2 – Mean feedback with respect to mean IPP feedback.

3 – Mean participant STD for given position.

achieved normalised mean values of 0.04 and 0.23, respectively.

In practice, an operator will interrogate a large range of probe positions. As discussed

in Chapter 4, this enables them to hone in on the IPP. These searching periods naturally

occured whilst collecting data in this work, as well as transitional periods between IPP

and off-angle measurements (e.g., due to the period taken to slowly tilt the probe or for the

signal to settle in response to noise). The continuous feedback across single measurement
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sets from P1, P10 and P5 are presented within Figure 7.16. These illustrate the type of

feedback that would be generated in practice (as opposed to feedback limited to distinct

positions), and have been annotated to give further context with respect to the scanning

process.

Figure 7.16: Annotated continuous raw feedback for single measurement sets for P1, P10

and P5

Figure 7.16 illustrates that feedback corresponding to measurement sets from different



178 CHAPTER 7. CONTINUOUS FEEDBACK

participants contain common characteristics. These include erratic behaviour prior to

initially locating the IPP, reflecting the scanning process whereby feedback indicative of

approaching and travelling away from the IPP is used to correctly align the ultrasound

beam. The feedback for P1 contains such a section mid-way through the measurement

set. In practice, only recent feedback would be used to guide the probe position.

(a) Approaching IPP (b) Leaving IPP

Figure 7.17: Example of how feedback could be incorporated in real-time software

A more specific feature extraction program (i.e., limited to those features selected for

the regression model, as opposed to all investigated features) was written and combined

with the trained model; this enabled feedback to be generated more efficiently. This served

to demonstrate how this feedback could be presented in practice for real-time applications.

An example of this software is displayed in Figure 7.17. In this realisation, MA feedback

was displayed using an associated colour that transitioned from red to green indicating

‘bad’ and ‘good’, respectively. The highest feedback achieved for a given measurement

set is illustrated using a horizontal dashed line. This is displayed in green if the best

measurement acquired occurred within the previous 15 s (as this is equivalent to the

measurement history saved by the USCOM).

As demonstrated above, in Figure 7.15 and Table 7.22, feedback performance varies

across participants. This is intuitive given the interpatient variability present in mea-

surements. The times taken for the expert to locate the IPP (TIPP ) were detailed in
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Section 4.4.3 (and displayed in Table 4.6), as discussed here, this corresponds to measure-

ments from participants one to ten, and serves to indicate scan acquisition difficulty. The

interpatient feedback variability, in the context of these times, has been investigated.

The MA correlation statistics for participants one to ten are displayed in Figure 7.18.

This includes the performance range for each individual (i.e., the maximum and minimum

statistics across the measurements sets).

The correlation between the performances presented in Figure 7.18 with the TIPP

values have been calculated. This is to assess whether any relationship between scan

difficulty and feedback performance is evident. These correlation values, which are dis-

played in Table 7.23, indicate that no strong correlation exists between TIPP and feedback

(a) Pearson (b) Spearman

Figure 7.18: Mean correlation statistics for data collected by expert from participants P1

to P10.

Table 7.23: Difficulty of IPP location and SVM performance

Times

Correlation1

Pearson Spearman

Corp Cors Corp Cors

TIPP 0.00 -0.24 -0.11 0.11

T22IPP -0.08 -0.20 -0.31 0.01

1 - Pearson and Spearman correlation statistics between regression model correlation statistics (Corp

and Cors) and scan acquisition times.

2 - Average times taken to locate IPP, without time taken to locate first IPP in measurement set.
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(a) Pearson (b) Spearman

Figure 7.19: Comparison between times taken to locate IPP and correlation statistics

performance. To visualise any relationship between feedback performance and TIPP , the

arrays can be normalised and displayed together. This is illustrated in Figure 7.19, and is

consistent with the results in Table 7.23.

7.9 Discussion

The results presented in the previous section, and their implications, will now be discussed.

7.9.1 Selected Features

This chapter detailed an extensive array of features which were then extracted from

Doppler ultrasound measurements. These include both novel and traditional descrip-

tors, Figure 7.14 illustrates that the majority of selected features belong to the spectral

category. This includes MFCC SYS A2, which was ranked as the number one feature.

MFCC and GTCC features were included as they have previously been shown to be

excellent predictors for audio classification tasks, in total six features belonging to these

categories were chosen. These features were predominately calculated using audio limited

to the systolic portion. As detailed in Section 4.2.1, the shape and sound of the systolic

region are primary sources of feedback for operators locating the IPP. Considering this,

it is intuitive that features restricted to this portion may be more informative. Further

investigation into potential features for Doppler analysis could be extended to include
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those derived specifically from the diastolic region. This could be guided by the findings

in the given work, to build on promising features, and reject poorly performing features

which otherwise could result in impractically large feature matrices.

Interestingly no traditional or haemodynamic features were selected for the regression

model. These features are predominately derived using extracted MFEs. However, a

number of novel features derived from envelopes were included in the feature subset; these

account for 36% of selected features. This illustrates that, despite the lack of traditional

features, the information contained in Doppler envelopes can be very beneficial. The

highest-ranking example is DWT CC E OMM D3 4, which is ranked second. This feature is the

STD of DWT decomposed coefficients, another five similar features are included within

the subset. These types of features have previously been extracted from Doppler audio

signals. The selection of these features, and others such as AR CC E MSNSI S2 which is

the maximum AR PSD value of the MSNSI MFE, illustrate that frequency analysis of

envelopes provide informative features. This is consistent with other fields such as ECG

waveform classification, in which DWT decomposition [344], and AR analysis [384] have

been shown to be powerful techniques for feature generation.

In addition to these spectral based envelope features, four novel envelope features

were selected (these were described in Section 7.3.3). These all occur within the top 20

selected features, and as illustrated in Figure 7.13, contribute to the model’s performance.

These are statistics derived using combinations of envelopes, an approach which has not

previously been described; of these selected features the MF envelope is used three times.

This may be due to this envelope being less effected by spectral broadening, giving a more

consistent paired envelope which still varies in response to blood velocity.

Features derived from images were only selected four times, these include two computer

vision features and two novel features. Their inclusion demonstrate that useful information

can be garnered directly from images. The following chapter uses images more successfully

with DCNNs to perform classifications tasks. Section 8.4.3 details how the images used

for this have a large impact with respect to resulting model performances. Considering

these findings, it is likely that the value of features derived from images will be similarly

dictated by the images used. In the context of this work, image features were derived from

the OMM image. Further research into image features for Doppler ultrasound analysis

could be extended to include those extracted from different image types, however, this

could be computationally challenging given the vast array of descriptors attained using
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these methods.

The following chapter includes multiple SVM classification models, and subsequently

more discussion regarding features that have been selected. These discussions are also

relevant to the regression model features and discuss further details surrounding them.

The identification of promising features within this work is a significant contribution that

highlights a variety of features, which could also be very beneficial in other areas of Doppler

ultrasound analysis, such as disease classification.

7.9.2 Regression Model

An SVM regression model was trained to give continuous feedback to reflect ultrasound

probe position. Intra and interpatient variability means the highest achievable subjective

scan quality for a given person can vary widely. Binary labels were used to train models

in an effort to produce feedback consistent across participants (i.e., similar high feedback

values for IPP positions, and lower feedback for off-angle positions). The average Pearson

correlation between generated MA feedback and labels was 0.86, demonstrating that the

generated feedback and ideal response exhibited a strong linear correlation. This indicates

that generated feedback does indeed respond to probe position. Furthermore, it validates

the labelling method with respect to subjective scores, which in their raw form exhibited

lower correlation statics (with respect to the ideal response) and more similar off-angle

values with respect to the IPP position.

However, it was found that interpatient feedback, in terms of mean IPP or off-angle

scores, still exhibited high variability. This is seen from Figure 7.16 and 7.15, where IPP

regions are approximately 1.2 and 0.6 for P1 and P10, respectively. Considering this, the

use of absolute values to determine whether the IPP had been located could be misleading

across different patients.

Nevertheless, in terms of intrapatient application, the continuous feedback provides

a quantitative and historical score of obtained measurements. When locating the IPP,

the experience gained through an examination helps an operator confirm that the IPP has

been located. This in response to the subjective quality of current and previously obtained

scans. Acknowledging improvements of this, and in particular, mentally contrasting them

to earlier obtained measurements can be challenging. The feedback in this respect provides

a constant reference, and sense check with respect to current measurements. This aspect
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was illustrated using example software in Figure 7.17, here a horizontal line indicates the

best score acquired so far within a measurement. In practice, when an operator thinks the

IPP has been located the examination is paused, and typically at least three representative

beats are selected to generate metrics. With respect to the USCOM device, once paused

the operator has access to the previous 15s, from which these beats can be selected. With

respect to previous measurements, the feedback could inform a user whether the best

measurement thus far was being obtained.

Continuous advances in technology mean retaining more than 15 s of data is easily

attainable in modern devices. If a Doppler device retained the data for a whole exami-

nation, for example, the historical feedback could be used to quickly locate the highest

scored scan regions. In Figure 7.16, P1 exhibits a period of almost 2 minutes midway

through the measurement set where the expert sonographer is searching for the IPP. This

illustrates that despite the IPP initially being found in under a minute, the location can

still become ambiguous. This may have been due to, for example, the participant moving

or the coupling between the probe and skin changing due to a reduction in ultrasound gel.

Given longer durations of stored data, in normal examination situations, the scan could be

paused at this point and the previous highly scored regions relocated using the feedback.

In addition to aiding individual operators, continuous feedback could be useful for

trainee sonographers. In this respect, an expert sonographer could perform an initial

examination, which would give a target score for trainee users to aim for. In either case,

such feedback would be most useful in the more challenging scenarios i.e., patients who are

harder to locate the IPP from. In a situation where scan difficulty was strongly linked to

model performance, the value of the feedback would be reduced. No correlation between

the time taken to locate the IPP and model performance was found in the given work,

suggesting this form of feedback is not effected by subjective scan difficulty. The process of

designing clinical software that incorporates feedback models are discussed later in Section

8.7.6.

A challenge in this work was the selection of data labels, as discussed in Section 7.4,

binary labels were used that assign each off-angle an identical value of 0. Furthermore,

off-angles were restricted to four positions. These limitations were necessary to keep the

collection and analysis of data practical. Off-angles were measured with respect to the

IPP, however, the distance of these off-angles from the IPP was not available, rather

they were identified via a subjective reduction in scan quality. Given this approach, and
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the variability in measurements, variations in these distances will occur. A potential

means of overcoming this would be to use position recording gantry or tracking cameras

to accurately record the position of the probe. Labels with respect to probe position could

then be formed. Considering the difference in intra- and interpatient scan variability at

the IPP, coupled with the additional variations at off-angles and hardware required, such

data collection and subsequent processing could be very challenging. Another application

of such gantry or cameras could be constructing a simulation from a single participant,

enabling a virtual 3D model to be built and used by trainee operators (independently of

a participant using the gantry).

7.10 Conclusion

A regression SVM model has been trained using a selection of both previously described

and novel features. This model provides continuous feedback that varies dynamically in

response to the probe position, with larger values indicating a better measurement. With

respect to the ideal response, the generated feedback exhibited a linear correlation of 0.86.

No previous quantitative or automatic means of assessing Doppler ultrasound position

have previously been described.

The selected features include those previously used in other disciplines, such as speech

recognition; specifically, MFCC features were highly ranked. It was found that although

traditional envelope features were not selected, a variety of features based upon the spectral

content of MFEs proved to be valuable descriptors.



Chapter 8

Localisation Feedback

8.1 Introduction

Doppler ultrasound is a non-invasive, cost-effective and efficient means of performing

haemodynamic monitoring. However, the potential of this technology is limited by chal-

lenges inherent to acquiring measurements. Currently, an operator requires a high degree

of experience and skill to consistently and accurately aim the ultrasound probe. These

difficulties are discussed in depth in Section 2.6. This thesis investigates signal processing

and machine learning techniques that could mitigate these constraints, and enable less

experienced users to operate associated devices.

The preceding chapter explored means of aiding data acquisition using regression mod-

els. These models quantified scan quality using continuous feedback, enabling advanta-

geous probe movements to be recognised. This feedback complements current methods

of locating the IPP, whereby an operator sweeps an ultrasound beam through different

planes (described in Section 4.2.2). Variations in scan quality are then used to locate the

IPP. This process mandates a scan history, in which multiple positions are interrogated

before deducing the direction of the IPP, or confirming that it has been located. The con-

tinuous feedback, therefore, cannot explicitly indicate ideal probe movements, or whether

the IPP has been located. Such predictions require discrete localisation feedback. This

would further reduce the level of operator experience needed, and make the technology

more accessible and faster to implement.

This chapter explores means of providing discrete predictions of probe position, which

185
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are not reliant on historical measurements. These predictions go beyond any inference an

operator could make using a single measurement. Classification models are used to cate-

gorise observations in terms of the current probe position, giving immediate information

with respect to adjustments that need to be made; for example, that the probe needs to

be angled to the patients right. This scenario is illustrated in Figure 8.1a.

A variety of different classification tasks have been investigated in this chapter. These

are trained and evaluated using the survey data presented in Chapter 4. These data include

measurements sampled from five different positions; enabling different target classes to be

considered. Models were trained to classify measurements using two classes (IPP or off-

angle), using three classes with labels limited to vertical or horizontal directions (e.g.,

patients left, IPP and patients right), and using all five classes. These classification tasks

are summarised in Table 8.1.

Previous works have documented Doppler ultrasound classifiers; these have typically

been limited to two distinct categories and are discussed in Section 3.5. The increased

number of classes considered in this work, and the high similarity between classes, makes

the given task particularly challenging.

A series of models have been trained and evaluated for each classification scenario,

these include SVM models trained using the features and feature selection procedures

described in Chapter 7. In addition to SVMs, DCNN image recognition models have been

created.

DCNNs are the current state-of-the-art for image recognition. They have been pur-

ported as a means of overcoming increased intraclass similarity, and reduced observa-

tions [289]. In micro-Doppler applications, its been observed that DCNNs are able to

distinguish spectrogram characteristics that are undetectable by humans [306]. Further-

more, DCNN image classification of spectrograms has shown improved performances with

respect to more traditional methods, where handcrafted features are used to train classi-

fiers (e.g., SVMs). For these reasons, AlexNet DCNNs have been included in the presented

work [296].

The results in this chapter found that typically DCNNs outperformed the trained

SVMs, achieving an overall classification accuracy 5% higher for the 5-class task. This

difference is smaller for the less complex 2-class task, where the SVM and AlexNet mod-

els achieved overall accuracies of 88.1% and 89.3%, respectively. To conclude, the main

contributions contained in this chapter are:
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• The identification of promising novel features for Doppler ultrasound classification.

• The design of SVM models for the previously unexplored application of Doppler

ultrasound probe position classification.

• The design of image recognition models for probe position classification, a technique

previously unreported for Doppler ultrasound analysis.

• An evaluation of different Doppler classification tasks, and an evaluation and com-

parison of SVMs and DCNNs for this purpose.

8.2 Classification Categories

In practice, the IPP is located by an operator using their prior experience from an exam-

ination. This equates to a series of subjective evaluations of received measurements. The

previous chapter explored means of quantifying these evaluations, in practice this could

both aid less experienced users and give confidence that a given measurement is the best

achievable.

In this chapter, observations are classed into definitive categories. Instead of con-

tinuous, patient-specific feedback variables, measurements are classified in terms of their

(a) (b)

Figure 8.1: Software designed to display the predicted location of a given measurement.

The examples illustrate an example where a) probe is predicted to be angled towards the

patients left, and b) the probe is predicted to be at the IPP.
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Figure 8.2: Localisation feedback using separate horizontal and vertical axes

location with respect to the IPP. This allows feedback to directly guide the user, as op-

posed to scoring their probe adjustments. This is enabled using data collected from various

probe positions.

Different types of classification task are available given the collected data. Three

different labelling methods are explored in this work; these are summarised in Table 8.1.

The most challenging task is the 5-class scenario. In this case, each sampled probe position

is used as a target category.

With respect to an operator performing a scan, outputs from these trained models

could be used to indicate from which location a measurement is being recorded (with

respect to the IPP), and thus, which direction a user should move the probe in order to

locate the IPP. An example of predictions being used in this manner is displayed in Figure

8.1b. The task can be simplified by reducing the number of categories. The is achieved

by training individual models for the vertical and horizontal axes separately. This would

allow feedback which complements the current scanning procedure used to identify the

IPP, by scanning planes independently. An example of this approach being implemented

in software is illustrated in Figure 8.2.

In addition to these models, an overall model which classifies observations as either

belonging to the IPP or not can be constructed. Although this offers no localisation

feedback, a model of this type could complement the continuous feedback models presented

in Chapter 7. In this respect, a user could be guided towards the IPP, and be alerted that

they have located this position via the 2-class model. These classification tasks are tackled

using DCNNs and SVMs, the following sections will describe these modelling approaches.
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Table 8.1: Localisation classification tasks

Scanning Plane Classification Task Labels1

All 5-class G, L, R, H, F

Vertical 3-class G, L, R

Horizontal 3-class G, H, F

All 2-class G, O

1 – Using position labels as defined in Table 4.2, where G denotes IPP, L denotes patients left,

R denotes patients right, H denotes patients head, F denotes patients feet and O denotes all

combined off-angles.

8.3 Support Vector Machines

The feature and model selection procedures, described in Section 7.6, considered a variety

of different classification algorithms (Table 7.19). Model selection for both regression and

classification tasks have identified SVMs as being the most suitable model type. Many

machine learning concepts are recent innovations, and support vector algorithms are no

exception. Their implementation for a variety of tasks have been discussed in Section 3.5.1,

in which they demonstrate good performance and often outperform other algorithms [205].

The fundamental concepts of these algorithms are presented in this section.

Modern SVM implementation was first proposed by Cortes and Vapnik [385], who

illustrated their potential for optical character recognition. SVMs were designed as a

non-linear solution for classification and regressions tasks, and were developed in response

to deficiencies of prior methods such as ANNs, which depended upon large datasets and

exhibited poor generalizability [386]. ANNs can often lead to complex models resulting

in situations of overfitting, whereby a fitted model can give very low bias with respect to

the training set, but high variability when tested using new observations. Where reduc-

tions in the complexity of a model is required, regularisation of a selected function can be

very helpful. This is the theory of Vapnik-Chervonekis [387], and is a fundamental con-

cept behind SVMs. SVM algorithms draw from three fundamental areas: mathematical

optimisation theory, statistics and computer science [388].

A support vector classifier uses boundaries to identify regions of data belonging to a

given class. Test samples are then classified as belonging to this class if they fall within this
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identified region. These boundaries are created using a core set of points called support

vectors, giving the advantage of training data being largely redundant once a boundary is

formed [388].

Figure 8.3: A 2D boundary separating two classes, in which margins are maximised.

The minimum distance between an observation and the boundary is called the margin,

one choice for a classifier is to use a boundary which gives the largest margin between

two classes, this is referred to as the maximal-margin hyperplane. Figure 8.3 illustrates

this boundary and the associated margins separating two classes, using a feature space

with two features vectors X1 and X2. This approach can be very sensitive to top outliers,

and in many cases hyperplanes are unable to fully separate classes. Soft margins can be

used to allow instances of training noise [389]. Where two classes are not separable, soft

margins allow misclassifications to occur. In such cases, a hyperplane is chosen which

has the least number of points within the margin. Through cross-validation, an ideal soft

margin can be identified. This approach is used in soft margin classifiers, a group to which

SVMs belong.

In some instances, data is not linearly separable. SVMs overcome this hurdle by

embedding the data into a higher-dimensional space, producing a feature space which is

separable and still subject to soft margins [389]. This mapping procedure allows SVMs

to tackle nonlinearities in data, and for a support vector classifier that separates classes

to be found. This is illustrated in Figure 8.4, in which the one-dimensional data has been

squared, allowing a one-dimensional line boundary to isolate the two classes. The process

of identifying support vector classifiers in higher dimensional space is achieved using kernel

functions, of which there are different types.

A popular kernel function, is the polynomial kernel function, this function is displayed

in equation 8.1. Using this, the relationships between pairs of observations can be calcu-
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Figure 8.4: Transformation of data to higher-dimensional space, enabling linear boundary

to separate classes.

lated.

K(x, y) = (x× y + c)d (8.1)

Where x corresponds to observations of one class, and y to observations of a second,

d denotes the degree, and c the coefficient. The example presented in Figure 8.4 used

variables where c = 0.5 and d = 2. Substituting these values into equation 8.1, and

re-arranging allows the corresponding dot product and new coordinates to be found.

K(x, y) = xy + x2y2 + 0.25 (8.2)

= (x, x2, 0.5).(y, y2, 0.5) (8.3)

Where x2 and y2 are the new coordinates for x and y respectively. In practice, the val-

ues of c and d are found using cross-validation. In an example where the degree was set to

three, the transformed data would exhibit three dimensions, and a two-dimensional plane

could be implemented to separate classes. This procedure is inherently computationally

expensive, however, use of kernel functions and the dot product (which is referred to as

‘The Kernel Trick’) allows the relationships to be found without explicitly transforming

the data into a higher-dimensional space [386]. Within this chapter, SVM classifiers are

compared with DCNNs.

8.4 Deep Convolution Neural Networks

In recent years, deep learning image recognition methods using DCNNs have been increas-

ingly implemented in clinical scenarios. Such methods are considered to be the state-of-
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the-art and have a number of purported advantages compared to more traditional clas-

sification methods, which use hand-crafted features. Furthermore, direct comparisons of

DCNNs and SVMs are consistent with these claims [306]. The merits of deep learning

techniques are discussed in Section 3.6.3.

Considering the potential advantages of DCNNs, their application to Doppler ultra-

sound has been investigated in this work. DCNNs have been trained for each classification

task. The choice of model architecture, training strategy and image formation are sum-

marised within this section.

8.4.1 DCNN Architecture

There are a variety of pre-trained DCNN architectures available. In the presented work

two architectures were considered: AlexNet and GoogLeNet. As described in Section

3.6.3, these models have been successfully repurposed for a variety of tasks and have been

directly compared. Using the training approach and image types described in the following

two sections, AlexNet and GoogLeNet performance was investigated using approximately

half of the survey data. This was performed for the 2-class and 5-class classification

scenarios. This process found that AlexNet marginally outperformed GoogLeNet, and

was substantially faster to train, which is particularly significant considering the expensive

cross-validation method and investigation of different image types. Considering these

limitations, AlexNet was chosen as the DCNN architecture for the presented work, and

was trained using transfer learning. The architecture of AlexNet is discussed further in

Section 3.6.3, and displayed in Figure 3.17.

8.4.2 Transfer Learning

A method called transfer learning has been used to train DCNN models in the given work.

This section will briefly introduce transfer learning and describe its implementation.

DCNN models can be trained from scratch or using a method called transfer learning.

This method is a new solution for pattern recognition, in which a pretrained DCNN is

fine-tuned for a new classification task [297]. It is often found that models created using

transfer learning out-perform those that were trained from scratch [290, 297, 390, 391]. In

these examples, the technique was used to classify medical images.

This technique uses a complex and highly accurate model, which has been trained
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using a large collection of natural images, and retrains it for a comparatively simple task

with far fewer categories [300]. This is performed by randomly initialising the weights in

the fully connected layers, these are then relearnt using new images [290]. This concept is

illustrated in Figure 8.5.

Figure 8.5: Training DCNNs through transferring knowledge via transfer learning

In addition to model performance, the process is computationally more efficient, straight-

forward, and requires comparatively fewer images and training epochs to give good perfor-

mance [300]. However, limited training images can result in overfitting. To combat this,

and make models more generalised, image augmentation can be performed, for example,

by randomly rotating or translating images [290].

8.4.3 Images

Audio can be converted into time-frequency images, which can then be classified using

AlexNet. This has been demonstrated for audio classification [392], and similar approaches

have been used for micro-Doppler radar classification [307]. These images can be gener-

ated using different post-processing and spectral estimation methods, for example using

the STFT or the AR method. These methods have been discussed further in Section 3.6.1.

AR methods have previously been shown to be advantageous for Doppler analysis, this

is discussed in Section 3.6.1.1. Associated spectrograms, with respect to Fourier meth-

ods, have been described as qualitatively better [224]. This observation was found to be

subjectively true for the given work, and AR images were investigated.

In the presented work, images were generated for individual cardiac cycles. Different
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Table 8.2: Selection of image types and variants investigated as inputs for DCNN models

Type Description

Image Types

Spectrogram STFT PSD image

Spectrogram with Envelopes STFT PSD image, with MFE envelopes

OMM Image Image generated for OMM MFE extraction

AR Image Autoregressive PSD image

Image Variants

Spectrogram Colour and greyscale

Spectrogram Exponent contrast limiting 1

Spectrogram with Envelopes MFE combinations 2

OMM Image Dynamic range3

AR Order choice4

AR Exponent contrast limiting 1

1 – Compression of dynamic image range, using exponents ranging from 0.1 to 0.5.

2 – OMM and MSNSI MFE combinations, including line colours.

3 – Dynamic ranges from 20 to 60 dB.

4 – Orders from 5 to 80.

methods of images generation were evaluated, these are displayed in Table 8.2. Images

used for transfer learning must be the same size as those used for training the original

model, in the case of AlexNet these images are 227 × 227.

In addition to different methods of generating time-frequency images, different means

of cropping images were investigated. This is with respect to the extent of frequency

content displayed. As with segmenting beats, this was guided using the extracted OMM

MFE. The maximum frequency contained within an image was determined using the peak

MFE value, this is illustrated in Figure 8.6. Cropping images in this fashion ensures more

area is occupied by signal, and preserves associated details when images are resized.

As illustrated in Table 8.2, different parameters can be adjusted when creating these

images, such as dynamic range. In addition to this, overlaying extracted MFE envelopes

were found to improve performance in some instances; this was the case for the STFT

spectrogram images.
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(a) (b)

Figure 8.6: Spectrogram Images with OMM and MSNSI envelopes, cropped using maxi-

mum OMM envelope frequency, where a) corresponds to 1.8 ×max(MFEOMM ) and b)

corresponds to 1.1×max(MFEOMM ).

8.5 Evaluation Methods

In total the results from 10 classification models, using two machine learning approaches,

have been reported within this chapter. Their implementation and the methods used to

contrast their performance will now be described. This has been performed using data

collected from 22 individual participants. These measurements, and the associated survey

methodology, are presented in Chapter 4.

8.5.1 SVM and DCNN Implementation

SVM models have been trained using Matlab 2019b. Model type and feature selection

have been performed as described in Chapter 7.

8.5.2 DCNN Implementation

All models have been constructed using transfer learning within Matlab version R2019a.

Pre-trained DCNNs were accessed using the Deep Learning Toolbox. The early layers of

a pre-trained model, which learn low-level features such as edges or blobs, are extracted.

This leaves three layers, which in the case of AlexNet are configured to 1000 different

categories.

The extracted layers are transferred for the given task, and the final layers are replaced

with a fully connected layer, softmax layer, and classification output layer; these layers are
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displayed in Figure 3.17. The new fully connected layer has the same number of classes

as the number of categories in the given classification task [393]. Transfer learning aims

to maintain the features of the early stages of the transferred layers. This is achieved by

using an initial learning rate which is slow. In order to speed up learning in the final

layers, different learning rate factors are applied [393].

Different applications using transfer learning have been described in Section 3.6.3,

guided by these works a range of models were trained and evaluated, allowing suitable

parameters values to be identified. The parameters used to re-train DCNNs are displayed

in Table 8.3.

Table 8.3: Transfer learning training parameters used to retrain DCNN models

Model Type No. Epochs Mini batch size
Learn Rate

Initial Weight1 Bias1

2-Class 6

256 1e-4 20 203-Class 10

5-Class 10

1 – Applied to fully connected layer.

Images are separated into training and testing sets. Training images are augmented to

increase the generalisability of the model, this has the effect of randomly flipping images,

and sliding them horizontally or vertically by up to 30 pixels.

8.5.3 Data Partitioning and Averaging

Independent participant cross-validation has been used to thoroughly evaluate each model.

This has been described in Section 7.7.2.

In addition to raw predictions (single-beat predictions), predictions using a 4 s time

average window are also presented. This is similar to the method used for the regression

models described in Section 7.7.3, and associated results are also referred to as MA.

However, as this is a classification task, class probabilities (Prob) are combined and then

used to give an average class prediction (ProbAv); this is illustrated in Figure 8.7.
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Figure 8.7: Method of combining predictions for classification models using moving time

window; the example provided is for the 2-class scenario.

8.5.4 Ensemble Models

Multiple models can be combined to give ensemble models. This has previously been

demonstrated using ensemble averages from DCNN networks to classify radiographs [290],

or combining posterior probabilities to create neural network ensembles for diagnosing

Doppler heart sounds [198]. In these cases, the ensemble methods demonstrated improved

performance over singular models. Considering this, ensemble methods have been investi-

gated in the given work as a further means of improving classification performance. This

has been investigated for the 5-class scenario by combining classification probabilities from

different DCNN models, as well as combing SVM and DCNN models.

8.5.5 Confusion Matrix

The performance of classification models are commonly assessed using the confusion ma-

trix, and associated metrics. The confusion matrix provides an intuitive visualisation of

a models behaviour, and is considered to be the best tool for assessing a classifier [394].

The contents of confusion matrices can be used to derive several useful terms, which help

understand and explain classification performance. These metrics are very common to

classification evaluation, have been used in previous Doppler classification works discussed

in Section 3.6.3, and have been adopted for the presented work. Confusion matrices and

associated statistics are used in the presented work to contrast SVM and DCNN classifica-

tion performances. This will be performed for each of the classification tasks (as detailed

in Table 8.1).

The confusion matrix is a table which compares the actual classes of a test set to



198 CHAPTER 8. LOCALISATION FEEDBACK

the predicted ones. Typically, actual classes are detailed in the columns of the table

and predicted labels in the rows. The numbers that occur in the diagonal of this matrix

correspond to correct predictions, and all other values correspond to incorrect predictions.

The predictions from a classification model can be one of four cases: true positives,

false positives, true negatives and false negatives [394]. Given a set of predictions and true

labels, a confusion matrix provides a summary of these. The meaning of each case can

be intuitively understood when considering a binary classification task. These cases are

summarised in Figure 8.8 and Table 8.4, where with respect to a set of predictions, TP

denotes the number of true positives, TN the number of true negatives, FN the number

of false negatives and FP the number of false positives.

Figure 8.8: Contents of a binary confusion matrix

Table 8.4: Prediction cases for binary example, where positive predictions correspond to

1 and negative predictions correspond to 0

Scanning Plane Labels

True Positive Correct prediction of 1

True Negative Correct prediction of 0

False Positive Incorrect prediction of 1

False Negative Incorrect prediction of 0

Sensitivity and specificity are two commonly calculated values and are computed using

the four cases listed in Table 8.4. Sensitivity, which is also referred to as true positive rate

(TPR), describes the percentage of positive cases which are correctly predicted as being

positive. Specificity, which is also referred to as the true negative rate (TNR), describes

the percentage of negative cases correctly classed as being negative. These are calculated

using equations 8.4 and 8.5 respectively.
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TPR = TP/(TP + FN) (8.4)

TNR = TN/(TN + FP ) (8.5)

A classifiers accuracy is defined as its ability to correctly select and reject cases [394];

this is calculated using equation 8.6. This can be performed for individual classes, or for

the confusion matrix as a whole; graphically this is equivalent to the sum of the diagonal

divided by the sum of all predictions.

Accuracy = (TP + TN)/(TP + FP + TN + FN) (8.6)

Figure 8.9: Example of multi-class matrix, with TPR, TNR and overall accuracy calcula-

tions

In multi-class scenarios there are no single values of TPR and TNR for the entire

matrix, instead these are calculated for each class separately; this is illustrated in Figure

8.9. Precision statistics (PPV) can be calculated in the same manner through dividing

TP by the total number of positive predictions (i.e., TP and FP combined).

8.5.6 SVM and DCNN Comparisons

The features employed by the SVM models and images used by AlexNet are generated

concurrently. Images are also used to visually identify incorrectly segmented cardiac cycles.
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These observations are then removed from the data used to train both SVM and AlexNet

models, these are summarised in Table 4.5. This allows the two classification approaches

to be trained and evaluated using corresponding data and subsequently compared. A

high-level representation of this is given in Figure 8.10.

Figure 8.10: Concurrent image and feature extraction for model evaluation and compari-

son.

8.6 Results

This section presents the features identified as being valuable for classifying Doppler ultra-

sound probe position. The performance of corresponding SVM models are then compared

with AlexNet models for each classification task.

8.6.1 SVM features

The procedures outlined in Section 7.6 were used to both identify a suitable model type

and subgroup of features for each classification task. This process identified SVM models

as being the most suitable for each of these tasks. Feature selection produced optimised

subgroups for each classification scenario. This process identified 46, 60, 63 and 68 features

for the 2-class, vertical 3-class, horizontal 3-class and 5-class models, respectively. The

complete features lists are included in Appendix M.

As detailed in Section 7.6, the best performing features are selected using sequential

forward selection. The number of features then included in subsequent models (i.e., feature

subset size) is then determined using cross-validation loss. The minimum number of
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features required to give adequate performance is chosen. This helps prevent overfitting

and reduces computational costs, which is of particular concern in real-time applications.

The loss with respect to feature subgroup size for the 5-class scenario is displayed within

Figure 8.11.

Figure 8.11: Variation in feature subset length with respect to 10-fold cross-validation

classification loss for 5-class scenario

The benefits of including additional features tend to reduce as more features are in-

cluded. It can be seen from Figure 8.11 that the higher-ranked features have the largest

impact in terms of improving accuracy, with improvements becoming significantly smaller

above feature lengths of approximately 20. These higher ranked features are displayed in

Table 8.5, which details the top 20 identified features for each classification task.

A number of common features are selected across the classification tasks, for example,

MFCC SYS A4 occurs in the top five selected features for all models bar the horizontal-plane

3-class model. This may indicate that this feature is useful for discriminating between

vertical classes, but is less valuable for horizontal cases. Several key features identified

across the models are closely related, for example, MFCC and GTCC features. The most

common feature types displayed in Table 8.5 for the 2-class model are AR-based, with

respect to other models, this feature type is only displayed in two other cases; once for the

horizontal model and once for the vertical model. A number of waveform features have

been selected across the models, the most common type of waveform features are novel

envelope features (as described in Section 7.3.3). Notably, the number one ranked feature

for the 3-class horizontal model belongs to this category (W CC E NE9 2). This feature is

also ranked sixth for the vertical-plane model and corresponds to the ratio of the MF
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Table 8.5: Top 20 features identified for each classification task

envelope STD and the MSNSInoISB MFE STD.

In addition to this, the novel envelope features W CC E NE11 1 and W CC E NE11 2 are

also selected for the vertical model; these correspond to the difference in the STD of

the MSNSI and MSNSInoISB MFE, and the normalised difference with respect to the

maximum value in these two envelopes. The number one ranked feature for both the

2-class and 3-class vertical-plane models are statistics derived from DWT decomposed

MFEs. Overall few image-based features were identified in the top 20 features for each

model, however, two LBP features are ranked second and sixth for the 5-class scenario.
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Table 8.6: Summary of feature types selected for each model

Feature Type Contribution (No. \%)

2-class 3-class, V 3-class, H 5-class

Audio Based

GTCC/MFCC 13\28 20\33 19\30 19\28

AR/ARMA 8\17 12\20 12\19 2\3
DWT 5\11 2\3 5\8 14\21

Statistics 6\13 9\15 5\8 13\19

Envelope Based

AR/ARMA 4\9 0\0 3\5 1\1
DWT 3\7 7\12 3\5 1\1
Novel 3\7 3\5 5\8 3\4
Stats 0\0 1\2 0\0 0\0

Classic/Haemo 1\2 4\7 5\8 3\4
Image Based

Computer Vision 1\2 2\3 6\10 7\10

Novel 2\4 0\0 0\0 5\7
Total 46 60 63 68

Table 8.6 provides a breakdown of the number of selected features belonging to different

groups, for each model. It can be seen from this that in each case approximately 70%

of features are derived from the audio directly, 30% of these are either MFCC or GTCC

features. Identical features are often extracted from the audio of a whole cardiac cycle, as

well as from audio limited to the systolic portion. The number of features selected from

each group (where both portions are analysed) is listed in Table 8.7. This table illustrates

that features derived using both data portions are valuable, however, those corresponding

to whole cardiac cycles are selected more often.

The feature types identified through this selection process are displayed within Fig-

ure 8.12. This diagram provides a breakdown of the selected features, with high-level

information displayed on the left-hand side (e.g., data type used to extract features), and

lower-level details on the right (e.g., more specific feature types). It can be seen from
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Table 8.7: Breakdown of data portion used in selected features, where identical features

are extracted from whole cardiac cycles and from systole.

Data Portion Spectral Image Features Audio Features

Cardiac Cycle 43 17 11

Systole 31 5 8

this figure that the majority of selected features are extracted from the audio directly

(as opposed to from an envelope or image). Only one ‘traditional feature’ was selected

(belonging to the ‘Classic Waveform’ category in Figure 8.12. This corresponds to trans-

systolic times and was selected for each classification task. Features derived from images

were the least common, however, those that are selected include novel features derived

Figure 8.12: Sankey diagram displaying high-level details of all features selected for SVM

localisation classification models
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Figure 8.13: AR image type identified as good option for DCNN implementation

from regions of images defined by the MFE. Similarly, a variety of novel envelope features

have been shown to be useful. These are derived using combinations of MFEs extracted

via different methods.

The process of feature selection also identified the most suitable feature-based classi-

fication models. In each case, an SVM with polynomial kernel function was chosen. The

3-class horizontal model used a polynomial order of two, and all others used an order of

three. Low-level details regarding these models are included in Appendix L.

8.6.2 AlexNet Images

Different image types were investigated with respect to AlexNet classification performance.

This was done for the 2-class and 5-class scenarios using a selection of well-performing

image types. With respect to AR images, an order of 40 was found to give the best perfor-

mance. Model performance was compared using cropped (AR40C) and whole (AR40W )

versions of these images, as well as the equivalent versions of OMM images (OMMC and

OMMW ) and spectrogram images with overlain MFEs (Spect MFEC and Spect MFEW ).

The results from these comparisons are detailed in Table 8.8, as illustrated by this, AR40

images corresponded to the highest overall classification accuracies, and OMM images

were found to give the second-best performance.

The performance of models using the AR and OMM images were compared for each

task. It was found that the cropped AR images, whose dynamic ranges are compressed

using an exponent fraction of 0.1, outperformed for each task; an example image is dis-

played in Figure 8.13. The classification results using these images are presented in the

remainder of this chapter.

Having passed an image to a DCNN, the activations of different layers within the net-
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Table 8.8: Overall accuracies of 2-class and 5-class AlexNet models for a selection of

image types. Accuracies have been found using 10-fold cross validation for data from 10

participants.

Classification Task

Image Type 2-class 5-class

AR40C 87 60

AR40W 86 57

AR40L1
C 84 58

AR40L1
W 80 57

OMMC 83 49

OMMW 82 50

Spect MFEC 68 50

Spect MFEW 70 51

1 – Displayed using log-power.

work can be visualised. This can provide an indication as to which features the network

is learning at different points. In shallow layers, this often reveals simple aspects such

as shapes and edges, whilst deeper layers learn more complex aspects. As DCNNs are

largely comparable to a ‘black box’, such visualisations can be useful in indicating image

characteristics that a DCNN is exploiting. Figure 8.14 displays a number of images corre-

sponding to the strongest activations within each of the five convolution layers. These are

presented as greylevel images, where darker regions indicate stronger negative activations,

and lighter regions indicate stronger positive activations (i.e., the portions that are used

most for classification).

It can be seen from Figure 8.14, that as the convolution layers become deeper, the

visualised activations become less recognisable. The images highlight a number of regions

that are monitored by operators when performing scans, for example, cessation and com-

mencement of systolic flow. The first image in Figure 8.14 illustrates a strong negative

activation on the rising slope of the Doppler profile and more positive activations on the

downslope. Conversely, the second strongest activations for the first layer (image two)

exhibits strong positive activations on the rising slope and more negative activations on

the falling slope. Strong positive activations appear in a number of images on the rising
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Figure 8.14: Visualisation of the top five strongest activations for each convolution layer

within AlexNet using AR40 images, where the top row corresponds to the first layer, and

the fifth row corresponds to the final layer.

slope, including images 13, 15, 18, 23 and 24. Images 11 and 25 appear to show positive

activations covering the flow portion as a whole, whereas images nine and 20 appear to be

more focused on the noise region of the image. Images 19 and 22 display strong activations

near the systolic peak, conversely image 21 shows strong negative activations in this region

and strong positive activations near the start and end of the cardiac cycle, where spectral

content from valve clicks can occur.

8.6.3 2-Class Models

The results for the 2-class scenario will now be presented. The confusion matrices for the

raw and MA results are displayed in Figure 8.15, this illustrates that the highest accuracy

corresponds to the latter. These matrices also highlight the imbalance between the G and

O classes (with an approximate ratio of 2:5), this results in trained models exhibiting a



208 CHAPTER 8. LOCALISATION FEEDBACK

natural bias towards O class. Section 9.2 describes the synthetic minority oversampling

technique (SMOTE). This technique can be used to train an SVM model with reduced

bias (SVMsmote). This is achieved by introducing artificial observations corresponding

to the minority class. This was applied to the 2-class SVM training data, using 100%

oversampling; giving a balanced training dataset. The corresponding results are displayed

in Figure 8.15.

(a) SVM raw (b) SVM MA

(c) SVMsmote raw (d) SVMsmote MA

(e) AlexNet raw (f) AlexNet MA

Figure 8.15: Confusion matrices for 2-class classification task using SVM, SVMsmote and

AlexNet models

The confusion matrices displayed in Figure 8.15 have been used to calculate additional

performance metrics. These are summarised in Table 8.9.

As can be seen from Table 8.9, the MA results consistently give a small improvement.

The AlexNet model resulted in the highest overall accuracy of 88.5% for the MA results.

Comparatively, the SVM models resulted in a significantly lower G classification ac-

curacy. This was improved using SMOTE oversampling, which resulted in more balanced

TPR and TNR values for the SVM model. However, improved TPR is at the cost of
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Table 8.9: Performance metrics for 2-class models, for SVM and AlexNet models

Model Type Results TPR (%) TNR (%)
PPV (%)

Accuracy (%)
G O

SVM
Raw 69.6 93.9 82.4 88.2 86.8

MA 71.1 95.2 85.9 88.9 88.1

SVM SMOTE

Raw 82.5 87.2 72.7 92.4 85.9

MA 84 88.6 75.2 93.1 87.3

AlexNet
Raw 71.8 92.5 79.7 88.8 86.4

MA 75.4 95 86.1 90.4 89.3

reduced TNR, and a slight reduction in overall accuracy.

Performance is explored further by considering metrics associated with individual par-

ticipants. The results for the SVMsmote and AlexNet models are displayed in Figure

8.16. In this figure, the complementary TNR percentage, false positive rate (FNR), is in-

cluded. This allows easier comparisons, and is an intuitive value when considering clinical

implications, as discussed in Section 8.7.4.

(a) (b)

Figure 8.16: TPR and FPR percentages for individual participants for the 2-class scenario,

for the a) SVMsmote model and b)AlexNet model
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8.6.4 3-Class Models

The IPP is found by restricting scanning motions to distinct planes, allowing the operator

to systematically hone in on the target signal. To reflect this scanning procedure, two

types of 3-class model have been investigated, one for scanning along the vertical plane

(from patients head to patients feet), and one for scanning along the horizontal plane (from

patients left to patients right), in both cases the IPP is also included to give three distinct

classes. These scanning planes are illustrated in Figure 4.5. The results from these models

will now be presented. The confusion matrices for each SVM and AlexNet 3-class model

are displayed in Figures 8.17 and 8.19, for the vertical and horizontal scanning planes,

respectively.

(a) SVM raw (b) SVM MA

(c) AlexNet raw (d) AlexNet MA

Figure 8.17: SVM and AlexNet confusion matrices for the 3-class, vertical-scanning-plane

classification task

Figure 8.17 demonstrates that overall the SVM and AlexNet models correctly clas-

sify a similar number of observations, with them successfully categorising 4,734 and 4,754

cardiac cycles, respectively. However, despite this overall similarity, the number of cor-

rect classifications for specific classes exhibit large disparities, for example, the SVM MA

correctly classified 171 more F observations than the AlexNet model.

The confusion matrices in Figure 8.19 show that overall the AlexNet model was signif-

icantly more successful than the SVM model, correctly classifying 222 more observations

for the MA results. This difference is mostly due to the AlexNet model being better at
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(a) Vertical scanning plane (b) Horizontal scanning plane

Figure 8.18: Classification accuracies for the 3-class models

(a) SVM raw (b) SVM MA

(c) AlexNet raw (d) AlexNet MA

Figure 8.19: SVM and AlexNet confusion matrices for the 3-class, horizontal-scanning-

plane classification task

classifying G observations. The difference in overall classification accuracies displayed in

Figures 8.17 and 8.19 are displayed in Figure 8.18.

It can be seen from Figure 8.18 that the MA predictions are consistently more accurate.

Furthermore, AlexNet achieved the highest classification accuracies for each 3-class models,

exhibiting an increase of 0.3% and 5% for the vertical and horizontal planes, respectively.

The performance metrics for each set of MA predictions, and each scanning plane are

displayed in Figure 8.20.

It can be seen from Figure 8.20, that overall the two modelling methods give compa-
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(a) Vertical-plane SVM model (b) Vertical-plane AlexNet model

(c) Horizontal-plane SVM model (d) Horizontal-plane AlexNet model

Figure 8.20: Performance metrics for 3-class scenario using SVM and AlexNet MA pre-

dictions, for vertical and horizontal planes.

rable performance metrics for the vertical scanning plane. As indicated by the confusion

matrices, the SVM model, with respect to AlexNet, resulted in TPR values approximately

10% greater for the F class and -6% for the H class. Despite the reduced TPR% for the

F class, AlexNet’s predictions for this category were more precise compared to the SVM.

With respect to the horizontal-plane, overall AlexNet outperformed the SVM model.

In every case, AlexNet achieved higher performance metrics, apart from the PPV and

TNR metrics for the G class, where the SVM gave marginally increased values of 0.3%

and 1.2%, respectively. The best off-angle performance is achieved by the AlexNet model

for classifications of the L class, furthermore, the associated precision of 89% is the highest
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observed for all results presented in Figure 8.20. The average precision and accuracy for

the off-angles of this model were 10% greater than any other 3-class model.

8.6.5 5-Class Models

The most challenging classification task investigated is the 5-class scenario, where each

probe position sampled is included as a target category. This section presents the results

for this task. The confusion matrices for the SVM and AlexNet model are displayed in

Figure 8.21.

(a) SVM raw (b) SVM MA

(c) AlexNet raw (d) AlexNet MA

Figure 8.21: Confusion matrices for the 5-class classification task, for raw and MA predic-

tions using SVM and AlexNet models.

It can be seen from Figures 8.21 that the ability to distinguish specific angles varies,

with both model types performing well for the G category, and worse for the F category.

The SVM model resulted in more correctly classified observations for the vertical classes

H and F .

The 5-class results demonstrate that neither modelling type, AlexNet or SVM, consis-
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Table 8.10: Ensemble methods investigated for 5-class scenario

Model Name Description

AlexNetc+w Combined AlexNet models trained using cropped and whole

images

AlexNetc + SVM Combined AlexNet model, trained using cropped images, and

the SVM model

AlexNetc+w + SVM Combination of AlexNetc+w and SVM model

Figure 8.22: Classification accuracies for SVM, AlexNet and ensemble models, for raw and

MA results.

tently outperforms the other for each category. Ensemble methods have been investigated

as a means of giving an improved and more balanced performance. The results from three

different model combinations are presented, the individual models included in each ensem-

ble are detailed in Table 8.10. The overall accuracies for each of these ensemble models

are displayed in Figure 8.22.

As with the 2-class and 3-class results, Figure 8.22 illustrates that MA results are

consistently more accurate, and AlexNet outperforms the SVM model. Ensemble models

were found to improve overall classification accuracy and typically resulted in improved

performance with respect to different metrics (Figure 8.24). The highest overall classifica-

tion accuracy of 65% was achieved by the AlexNetcw−SVM MA ensemble, the confusion

matrix for these results are displayed in Figure 8.23.
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(a) (b)

Figure 8.23: AlexNetcw − SVM ensemble confusion matrices for the 5-class classification

task for a) raw results and b) 4 s moving-average results

(a) (b)

(c) (d)

Figure 8.24: Performance metrics for 5-class scenario MA predictions using SVM, AlexNet

and ensemble classification models. Displayed metrics are a) TPR, b) TNR, c) PPV and

d) Accuracy.
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8.7 Discussion

The results presented in the previous section, and their implications, will now be discussed.

8.7.1 Class Imbalances

Class imbalances are a common occurrence in classification tasks. In the presented work

class imbalances have been introduced as a result of three factors. Firstly, the data collec-

tion process resulted in more examples of the IPP (i.e., the G class) being collected. As

described in Section 4.3, each angle explored is measured in reference to the IPP position,

meaning with respect to any other position the IPP is sampled five times more often. In

response to this, the time spent at the off angles was marginally longer.

Secondly, the same data has been used for various classification tasks. For example,

in the case of the 2-class scenario, G is actually the minority class as all the off-angle

categories are combined.

Finally, the likelihood of failed beats due to poorly defined cardiac cycles or noise

is not consistent for each category. The IPP is inherently the most likely to result in

high-quality measurements, and therefore reduced failures. Conversely, it was found that

measurements collected whilst the probe was angled towards the patients left (L class)

were more likely to give Doppler profiles leading to incorrectly segmented beats. These

are summarised in Table 4.5.

In cases where these imbalances are substantial, methods of oversampling or undersam-

pling observations can be employed to adjust classification bias. This was performed for

the 2-class scenario, where the imbalance was most significant. In this case, SMOTE over-

sampling was employed for the SVM model, and resulted in a more balanced performance

with respect to TPR and TNR, however, resulted in an overall reduction in classification

accuracy. This tradeoff is discussed further in Section 8.7.4.

8.7.2 SVM Features

Features were selected for each SVM model separately. The selected features were found

to predominately belong to novel groups, meaning they either have not been applied to

Doppler ultrasound previously or have been designed as part of this work.

Those which have previously been documented include features derived using the
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DWT. These are extracted from the Doppler audio and include statistics based upon

wavelet decomposition and entropy. These have been shown to be useful for classifying

heart valve disease from Doppler heart sounds [172]. These features were selected 12 times

across the models, including the second best-ranked feature for the 2-class scenario.

In the presented work, these same techniques were applied to extracted MFEs. These

features were also selected 12 times across the models and were ranked first for the 2-class,

and 3-class vertical models (DWT CC E OMM D5 3 and DWT CC E MSNSI D5 3 respectively). In

both cases, the same statistic is identified, however, the MFEs used were extracted from

different MFE estimation methods (OMM and MSNSI). The feature selection process

removes highly correlated features, this process identifies several common features which

are extracted using different MFE estimation methods. This is intuitive as the envelopes

are often very similar, examples of such features are CO, ejection percentage and flow time.

However, DWT CC E OMM D5 3 and DWT CC E MSNSI D5 3 are not highly correlated, having a

correlation coefficient of 0.37; highlighting the difference between these features and that

they are not interchangeable. These results illustrate the usefulness of these features for

scan position classification. Furthermore, highlighting the importance of MFE estimation

method with respect to feature value. These observations are consistent with respect to

the selected features for the continuous feedback model.

Section 3.6.1.1 introduced parametric means of spectral estimation, including the AR

method. Previous works have shown AR derived PSDs as being useful for diagnoses

of Doppler signals [395]. As with the DWT features, statistics were derived from these

transformations and included in the given work. These features were ranked particularly

high for the 2-class scenario but were found to be much less pivotal for the remaining three

models. This may indicate that these features are good at discriminating the G class from

all other classes, but are poor at discriminating between off-angle classes. Similar features

derived using ARMA models and from MFEs were also shown to be useful. These spectral

features were extracted both from the systolic portion of the input data and from the whole

cardiac cycle. In some cases, it was found that both portions were valuable, for example,

AR SYS A4 and AR CC A4 are both ranked within the top 20 for the 2-class model.

The majority of AR features for the 2-class scenario were extracted from systolic por-

tions of the audio, however, overall selected features were more likely to be derived using

the whole cardiac cycle. The inclusion of features from both data regions, and the fact that

both regions produce highly ranked features across the SVM models, demonstrate that
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extracting features from multiple regions can be advantageous. As discussed in Section

7.9.1, this could be extended to included features derived solely from diastole. Further-

more, feature extraction from bi-directional flow could effectively double the number of

available features (as the features from reverse flow could also be analysed). Future work

using alternative Doppler devices, and extended feature extraction algorithms would be

required to investigate this.

Envelope features were extracted using different types of waveform, and different MFE

estimation methods. Those selected include features derived using the OMM and MSNSI

method. In cases where different MFE types were used, features derived using OMM MFEs

were selected approximately three times more often than the MSNSI method (18 compared

to seven). This may be due to the high stability of the OMM MFE, which is illustrated

within Chapter 5. In four of the cases where MSNSI were selected, the same features using

the OMM MFE were also included. Interestingly, the only CO features included were

derived using the MF envelope. This may be due to this envelope being less affected by

spectral broadening and spurious signals. The selection of features derived using different

envelopes illustrate that envelope estimation methods affect the usefulness of a given

feature, and that combining features using different methods can strengthen predictive

models. This factor is often overlooked in previous works that include MFE based features,

in which either the MFE estimation process is not explicitly defined [197,199,200,202,396],

extracted using third party software [193,340–342] or manually traced [356].

The potential benefit of using multiple MFE estimation methods is highlighted by

selection of novel envelope features, of which 11 different types were selected across the

models. As described in Section 7.3.3, these were included as a means of exploiting the

differences in MFE estimation methods.

As with the regression model, MFCC and GTCC features were found to be very valu-

able. These spectral features have not previously been reported as a means of investigating

Doppler ultrasound. The feature selection process resulted in 19 MFCC and 27 GTCC

features being selected across the models. Notable examples include MFCC SYS A2, which

occurs in the top five ranked features for four models and was also ranked first for the

regression model (Section 7.8.1). These results are significant and could be impactful for

other classification tasks, such as disease classification.
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8.7.3 AlexNet Images

The input data for the explored DCNNs are images. As these images are passed through

the layers of the network, features are extracted at increasingly high levels. Converse to

the hand-crafted models, additional steps of feature selection are not required. Previous

works detailing DCNN classification of spectral images have been limited to single types of

images, namely STFT spectrograms. Furthermore, the parameters used to display these

images are not explicitly defined [289].

In the given work, different image types were explored and found to be a significant

factor in the resulting performance. This process identified images constructed using AR

spectral density estimates as being a good choice for the given classification tasks. This

finding is consistent with the selection of SVM feature subgroups, which identified AR

features as being valuable.

Different model orders were used to generate AR images. A model order higher than

those used to extract AR features was found to give improved performance. These find-

ings could be considered in future works using handcrafted AR features, by investigating

features derived using higher-order models. In the given investigation, the orders used

when extracting features were guided by previous works.

Having identified AR images as being promising, performance was improved further by

cropping images with respect to maximum OMM MFE value. This observation is intuitive

as more of the image contains signal, and corresponding details are preserved in subsequent

image resizing. In addition to this, the approach used to display spectral estimates was

found to impact performance. This is necessary as spectral estimates contain a large

dynamic range, and necessitate adequate rescaling to be fully visible. The differences in

model performance, with respect to image choice, can be exploited using ensemble models.

This was demonstrated for the 5-class scenario, where predicted probabilities using cropped

and un-cropped AR images were combined to give a small increase in overall accuracy.

It is plausible that given other images or classification tasks, this approach could be very

productive.

The evaluation of different image types can be extremely computationally expensive,

both in terms of constructing the images, and then training and evaluating resulting

models. This is further exacerbated when investigating multiple DCNN models, which may

not be consistent with respect to the best performing image type. However, considering the
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observed differences with respect to image types, investigations into different methods of

displaying and estimating spectral information could be highly beneficial in future works,

with respect to both related and unrelated disciplines.

8.7.4 Comparison of Classification Tasks

The overall accuracies associated with each classification task varies as expected, with

the 2-class models achieving the highest values, and the 5-class models achieving the

lowest. Considering only the best performing models for each task, the reduction in

overall accuracy with respect to the 2-class scenario was 3.6%, 13.6% and 24.1% for the

horizontal 3-class, vertical 3-class, and 5-class tasks, respectively.

With respect to the 3-class scenarios, the vertical scanning plane was clearly more

challenging than the horizontal scanning plane. The results indicate this is partially due to

difficulties in classifying the H class. With respect to the other categories, the associated

precision for H was the lowest for each model type, with the best performing vertical

3-class task and 5-class task scenarios achieving 63% and 46%, respectively.

Precision and accuracy of G classifications were good for each classification task,

achieving percentages greater than 80%. This is most significant in the 5-class scenario,

where an accuracy and precision of 90% and 80% were obtained. This is promising for

real-world applications, in which automatic detection of the IPP would be particularly

useful. Considering the use of such models for detecting the IPP in clinical settings, two

aspects are of particular concern with respect to practicality.

Firstly, the FPR of G category classification. The FPR, which is the complementary

percentage of TNR, describes how often incorrect classes are classified as the category

of interest. In practice, this would be the rate at which an operator incorrectly receives

feedback stating the IPP had been found. Clearly this would be undesirable, as a scan

may be stopped prematurely, and true values not recorded. The FPR for G ranges from

5% in the 2-class scenario to 14% in the vertical 3-class scenario.

Secondly, the TPR of G category classification, which in practice would represent the

rate at which an operator receives feedback correctly stating the IPP had been found.

Lower values of TPR would result in operators requiring more examples of the IPP before

obtaining confirmatory feedback, or in the worst-case scenario not receiving confirma-

tion at all. Inspecting the TPR rates for individual participants, which form the cross-
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validation results presented, there was no instance where G TPR was zero. However, the

value of TPR does vary significantly across the participants, exhibiting a STD of 29% for

the 2-class scenario.

The extent to which TPR and FPR varies for participants is displayed within Fig-

ure 8.16. This provides a more detailed comparison between the SVMsmote and AlexNet

model. There are clear differences between the models. For example, the AlexNet model

performed very poorly in the case of P16 with respect to TPR, whereas SVMsmote achieved

a value greater than 80%. For approximately 80% of participants, the SVMsmote model

achieved a TPR greater than 80%. The associated STD, however, is still relatively high at

24%. This is likely a reflection of the variability in IPP scans, as discussed in Section 4.4,

limiting the generalisability of models in response to measurements from certain partic-

ipants. Implementing the SMOTE technique increased accuracy and reduced variability

for SVM results.

In clinical settings, the generalisability of models would be a greater factor, as un-

healthy patients are more likely to have abnormally weak flow rates or unusual flow pat-

terns. To account for these variations, it is likely a very large labelled data set, for healthy

and unhealthy patients would be required (from which more generalised models could be

formed).

The 3-class and 5-class results both indicate that the horizontal-plane off-angles were

easier to categorise than those in the vertical-plane. This could be due to off-angle mea-

surements being more distinctive for the horizontal case. Considering the ascending aorta,

vertical-plane variations are likely to continue capturing aortic blood flow (albeit from a

different region such as the aortic arch). Intuitively, horizontal-plane variations are more

likely to insonify less of the aorta and capture more significant contributions from other

blood flows. Furthermore, the difference in flow contributions may be more significant in

the horizontal-plane, as different flows associated with the heart are captured. Further

data collection using a duplex ultrasound machine would be needed to investigate and

substantiate these potential differences.

The results illustrate that there are scan characteristics that can be used to differ-

entiate probe positions. Features and images have been generated using a very basic

directional Doppler signal and from a relatively small pool of participants. A combination

of increased data, additional information (e.g., images from bi-directional Doppler signals)

and ensemble methods could enable more powerful Doppler classification models.
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8.7.5 AlexNet vs SVM

AlexNet outperformed the SVM models for each classification task in terms of overall

accuracy. These results clearly demonstrate that state-of-the-art image recognition tech-

niques can be applied to clinical Doppler ultrasound signals. In addition to improved

performance, DCNN methods offer a number of benefits.

With respect to the knowledge and skill needed to build large handcrafted feature sets,

spectral images can be generated quickly and easily. This enables practical model creation

and implementation, and given the ongoing development of DCNN technology, makes this

approach very promising for further classification applications (such as diagnosis of heart

disease). These findings are a significant outcome of this work, and shed light on a new

method of analysing Doppler ultrasound.

The reduced complexity in terms of generating images also means real-time DCNN

feedback is more computationally efficient. However, training DCNN models is substan-

tially more costly. This is of particular significance when performing cross-validation,

contrasting DCNN models or using larger datasets. SVMs are far quicker to train and

evaluate, despite the slow process of feature selection, and hyperparameter optimisation.

Having selected features, SVM cross-validation can be performed in a matter of minutes,

comparatively the same evaluation could take days using DCNNs.

The results demonstrate that both approaches do not consistently differ in performance

across the tasks, for example, the SVM model outperformed AlexNet for the F and H

class in the 5-class scenario, despite performing worse overall. These differences can be

capitalised upon using ensemble methods. This was demonstrated using a straightforward

approach which combined prediction probabilities from various models. The SVM and

AlexNet AR40C models were combined; independently these achieved overall accuracies

of 60% and 63%, respectively. Comparatively, the ensemble method achieved 65%, illus-

trating the benefits of ensemble models. The benefit of these small improvements would

need to be considered in the context of computational costs. Further improvements may

be feasible through combining different model types or employing more advanced methods

of probability combination, for example, by weighting different contributions.
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8.7.6 Clinical AI Tools

The results presented in this and the preceding chapter provide quantitative evaluations

of designed feedback models. The techniques and features highlighted through this work

could ultimately contribute, and lead, to AI tools being designed for clinical implementa-

tion. This section briefly discusses the considerations and steps needed to work towards

this goal.

Continued research in this field and the design of AI tools would necessitate clini-

cal validations, i.e., clinical verification of their usefulness. The ultimate validation, in

this respect, is in terms of added value to patient outcomes [397]. Work towards this

goal would need more substantial and varied data collection to prevent implications of

spectrum bias. This would be further strengthened through using research ultrasound

machines, which would give researchers greater control over software and hardware and

be unrestricted in terms of accessible data (such devices are discussed in Section 2.5.4).

This is because current models have been trained and evaluated using data limited to

healthy adult participants, which does not reflect the spectrum to whom AI tools would

be applied to in clinical scenarios [397]. This is of particular concern considering the high

variability present in measurements, and that the value of AI tools would be greater in

certain conditions (e.g., in patients who are subjectively harder to scan).

Several works have documented clinical AI tool verification, these are largely concerned

with automatic image diagnoses, for example, automatic detection of lesions in endoscope

images [398]. In this case, the value of the AI tool can be measured in terms of the time

taken to manually diagnose images and the number of correctly identified lesions. The

value of the tool is measured by comparing the examination results of trainees using the

tool, with results from trainees not using the tool. The accuracy of associated measure-

ments is then assessed with respect to a gold standard established by expert examinations.

This work also found that the tool’s value must be considered in the context of operator

experience, with its value being greater for more novice users.

The validation of tools to assist Doppler ultrasound measurements would need to

consider these aspects also, and ensure both the number of operators involved and patients

examined were broad enough, and large enough, to capture the software’s usefulness. This

is to overcome the high inter and intrapatient variability, and differences in operator skill

level. Furthermore, the effect of repeat measurements would need to be considered, as
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monitoring is a valuable application of Doppler ultrasound, and as illustrated in Section

4.4, the ease of acquiring measurements can reduce in repeated measurements.

In a similar manner to the above example, the performance of such software could also

be assessed with respect to time (e.g., time taken to locate the IPP). However, subjective

measures are also important for the given application. A factor that inhibits current use

of the technology is a lack of confidence in acquired measurements, as performing scans

can be challenging and current devices cannot give positive confirmation that the IPP

has been located; this is discussed in Section 2.7. Considering this, the confidence such

software could provide to an operator is a valuable metric for its assessment.

However, reduced examination times, and increased confidence levels have limited value

if corresponding measurements are not accurate. The accuracy of measurements, therefore,

would need to be validated using reference values. A gold standard, however, cannot be

established in a straightforward manner (such as in medical image classification [398]).

This is because the haemodynamic characteristics of a patient are non-stationary, and

as discussed in Chapter 4, are affected by multiple factors such as body position and

heart rate. This means establishing the accuracy of a measurement (e.g., in terms of

CO), is limited, even when using sequential measurements with an expert. To reduce

error in this regard, multiple ‘back-to-back’ trainee and expert measurements could be

performed, however, the impact of repeat measurements and the considerable time and cost

requirements could dictate the practicality of such approaches. In addition to this, trainees

would need to be blinded to the ‘target’ values. Ideally, a secondary continuous means

of haemodynamic monitoring would be employed, which would also enable evaluation

of operators considered to be more experienced; available technologies are discussed in

Section 2.3.

Further determinants of AI tool value include psychometric properties, namely the

perceived usefulness and the perceived ease of use [397, 399]. Feedback with respect to

these factors would likely be used to inform adjustments to applications and diagnose

issues in terms of user acceptance [399]. These, for example, are not necessarily technical,

rather could be in terms of how information is presented, interpreted and acted upon;

which can significantly impact the ultimate value of the tool [397]. A likely minimum

requirement, with respect to ease of use, would be to combine feedback software with the

ultrasound hardware (i.e., so they are displayed on a single machine). The constraints of

collecting data and combining software with existing commercial hardware makes the use
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of research-orientated ultrasound machines more desirable (these are discussed in Section

2.5.4). Such machines would give researchers complete control over data collection and

processing, and enable hardware and software to be tailored for the given task.

8.8 Conclusion

A series of models have been trained to predict probe positions for four different clas-

sification scenarios of varying difficulty. This goal of providing localisation feedback for

Doppler ultrasound has not previously been addressed.

Two primary types of model were investigated. These were state-of-the-art image

recognition methods, which have previously not been applied to Doppler ultrasound, and

SVM models using both established and novel hand-crafted features. The results demon-

strate that trained models are able to distinguish between different probe positions. Fur-

thermore, it was found that the image recognition method, AlexNet, outperformed the

SVM models, and that ensemble methods can lead to further improved accuracies. The

AlexNet and the SVM model achieved an overall accuracy of 86% and 80%, respectively,

when differentiating between a patients left, patients right and the IPP.
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Chapter 9

Beat Rejection

9.1 Introduction

The beat segmentation process is automatic, and as illustrated in Section 6, can occasion-

ally produce incorrectly segmented beats (fail beats). These beats are removed prior to

training feedback models and can arise due to, for example, excessive noise in recordings,

Doppler profiles diverging excessively far from their characteristic shape or portions of

recording not containing blood flow. These conditions can occur when the probe is far

from the IPP, undergoes sudden movements (i.e., flash artefacts [12]) or is poorly coupled

to the patient’s skin.

When exposed to fail beats, trained models can generate misleading feedback. Real-

time application of the calibration models, therefore, need to automatically replicate the

process of identifying and removing fail beats. To address this issue, a classification

model has been trained to classify fail beats, which in practice would ensure only correctly

segmented beats are used to generate feedback; these beats are referred to as ‘pass beats’.

As detailed in Section 4.4, fail beats are identified and removed prior to training models.

These identified beats are used to generate a labelled data set, and subsequently, train

an SVM classification model. The features selected for this purpose are less populated by

spectral based features, and include more image and novel envelope features. To account

for class imbalances, which can introduce prediction bias, artificial observations have been

introduced into the dataset. The main contributions presented in this chapter are:

• The identification of promising novel features for identifying fail beats.
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• The design and evaluation of models trained using these features.

• The evaluation of sampling methods to overcome biases introduced from unbalanced

datasets.

9.2 Class Imbalance

In normal instances, the majority of beats are correctly segmented. Due to this, the

categories of pass and fail are not equally represented (i.e., there are many more pass

beats). This is a common occurrence in real-world data sets, which tend to be composed

mostly of ‘normal’ observations, and a small sample of ‘abnormal’ observations. This is

true for many diagnostic classification tasks, where there is an abundance of observations

without a particular disease, and relatively few exhibiting it. Furthermore, misclassifying

the abnormal observations as normal is often more costly than the reverse [400].

This imbalance can lead to poorly trained models and misleading performance statis-

tics. This is highlighted by considering a model that always predicts observations as

normal. In such a case, an imbalanced data set with 90% normal observations would

still give a classification accuracy of 90%. Additional steps of oversampling the minority

class, or undersampling the majority class can be used to overcome such class imbalances

and remove bias from trained models. A highly successful method of oversampling is the

SMOTE technique [400].

9.3 The Synthetic Minority Over-sampling Technique

SMOTE is a popular oversampling method. This technique, as the name suggests, syn-

thetically generates samples using the minority class. It was demonstrated that combin-

ing SMOTE oversampling with majority class undersampling can lead to improved re-

sults [400]. This technique has been used in the presented work, allowing the performance

of the trained model to be tuned with respect to fail and pass classification accuracy.

Over-sampling is performed by introducing synthetic examples at points along lines

joining the k nearest neighbours of the minority class within the feature space. The number

of neighbours used is determined by the chosen oversampling percentage. For example,

if 300% over-sampling is needed, three out of the k nearest neighbours will be randomly
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selected. New samples are then created in the direction of each of these neighbours. The

points used along these lines are randomly found (i.e., the total distance is multiplied by

a random number from 0 to 1).

Undersampling of the majority class is achieved by randomly removing majority class

observations. The amount removed depends on the specified undersampling percentage,

which is expressed as the resulting percentage of minority classes with respect to majority

classes (e.g., following 200% majority class undersampling, the minority class will contain

twice as many observations as the majority class).

9.4 Evaluation Methods

This section describes the implemented methods for model construction, class balancing

and model evaluation.

9.4.1 Fail Beat Classification Model

The methods outlined in Section 7.3 and 7.6 where used to generate a large feature matrix,

perform feature selection and train models to classify fail beats.

9.4.2 Class Balancing

SMOTE is implemented to overcome the inherent limitations of the imbalanced data set.

The degree of oversampling and undersampling used determines the performance and bias

of resulting models. The balance of these two factors corresponds to a trade-off with

respect to true positives (fail beats), and true negatives (pass beats). The percentages

used were chosen to be in-line with previous works [400]. This range allowed the ‘trade-off

relationship’ to be captured and used to guide model choice. This range of percentages is

summarised in Table 9.1.

9.4.3 Model Evaluation

Models have been trained using the expertly collected data described within Section 4.3.

These are then evaluated using TPR and TNR metrics, and with the corresponding Re-

ceiver Operating Characteristic (ROC) curve, which illustrates the trade-off between true

positive and false positive error rates (AUC values are used to facilitate this) [400].
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Table 9.1: Percentages of majority class undersampling and SMOTE oversampling used

to identify final class-balancing training parameters

Percentages (%)

SMOTE 50 100 200 300 400 500

Under-sampling 10 15 25 50 75 100 125 150 175 200 300 400 500 600 700 800 1000 2000

Statistics were calculated using the same cross-validation approach described in Sec-

tion 7.7.2. This was performed for each possible under- and oversampling percentage

combination.

To further evaluate the usefulness of the resulting model, the probe positions asso-

ciated with fail and pass classifications are inspected. This allows the detrimental cost

of these misclassifications to be assessed, for example, if a pass beat from an off-angle is

misclassified as a fail beat, this would be less detrimental than misclassifying a pass beat

from the IPP as being a fail beat.

9.5 Results

The selected features and performances of associated models, with respect to rebalanced

datasets, will now be presented.

9.5.1 Selected Features

The feature selection process again identified an SVM model as being the best choice.

The corresponding low-level details are given in Appendix L. The selected feature subset

contains 51 features, these are listed in Table 9.2. Additional low-level details are provided

in Appendix M.

9.5.2 Beat Classification Model

The percentages displayed in Table 9.1 were used to train multiple models using SMOTE

oversampling, combined with undersampling. It was found that 300% SMOTE oversam-

pling resulted in the best average TPR and TNR, as well as the highest AUC value.
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Table 9.2: Features selected for fail beat model

The corresponding accuracies, for each combination of SMOTE 300% and undersampling

percentage, are presented in Table 9.3.

It can be seen from Table 9.3 that increases in undersampling percentage correspond

to increases in TPR, and a decreases in TNR (i.e., increased fail classification accuracy

also results in more pass beats being incorrectly categorised as fail beats). Applying 175%

under-sampling was found to give the highest combined TPR and TNR values.

Figure 9.1 illustrates the modified performance, with respect to raw (unbalanced)

datasets, using SMOTE minority class oversampling of 300%, and 175% majority class

under-sampling. The total TPR is 81% and 95% for the raw and balanced data respec-

tively, whereas the mean TNR is 98% and 93% for the raw and balanced data, respectively.

The confusion matrices associated with these two data-sets are presented in Figure 9.1.

The results in Figure 9.2 correspond to a TPR of 81.3% and 94.7% for the raw and

balanced datasets respectively. Balancing the classes, therefore, resulted in a 13.4% in-

crease in TPR, and 5.1% reduction in TNR. This trend is also illustrated in Figure 9.1,

which gives the change in individual participant classification accuracies. It can be seen
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Table 9.3: Classification accuracies for fail and pass classes using 300% SMOTE oversam-

pling

Undersampling (%) TPR (%) TNR (%) Average (%)

75 90.0 95.6 92.8
100 91.9 94.7 93.3
125 93.6 93.6 93.6
150 94.0 93.4 93.7
175 94.7 93.0 93.9
200 95.5 92.0 93.8
300 96.4 90.6 93.5
400 97.1 89.5 93.3
500 96.9 87.5 92.2
600 97.7 87.6 92.7
700 98.3 85.7 92.0
800 98.1 85.9 92.0
1000 98.4 83.5 91.0
2000 99.1 78.5 88.8

Figure 9.1: Difference in true positive, and true negative accuracies using SMOTE 300%

minority class over-sampling, and 175% majority class under-sampling.

from this that the TPR and TNR are more proportional for the balanced data set. The

increase in TPR is more notable for certain participants (e.g., P7, whose results exhibited

an increase of approximately 23%).

The decrease in TNR is undesirable, the impact of this with respect to combining the

model with the feedback models was investigated. The probe angles associated with false

positives were recorded. Assessing how regularly the IPP was incorrectly rejected due to
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(a) Raw (b) Balanced

Figure 9.2: Confusions matrices for raw and balanced datasets for fail beat classification

models

the fail classification model provides further evaluation of how detrimental this decrease

in TNR is (i.e., how often pass beats that correspond to the IPP were rejected). The IPP

was incorrectly rejected three times, which corresponds to 0.5% of all false positives. This

demonstrates that in practice small decreases in TNR may not be significantly detrimental,

as examples from the IPP are far less likely to be rejected.

9.6 Discussion

An SVM model has been trained to classify fail beats. In practice this could be used to re-

ject poorly segmented beats, and prevent misleading feedback. This model was evaluated,

the results of which will now be discussed.

9.6.1 Selected Features

The features selected for the fail classification model are notably different from those for

the regression and classification models. The features selected for these previous models

have been predominantly based upon spectral analysis. Conversely, the most common

feature type selected for the fail model are image features (HOG features). Furthermore,

three novel envelope features are ranked first, third and seventh; these are all correlation

statistics. The highest ranked feature, W CC E NE5 10, is a correlation measure using the

OMMideal MFE. The inclusion of these are intuitive, as they provide a direct measure of

the MFE with respect to its expected form.

These results highlight the value of different feature types for different classification
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tasks within Doppler analysis.

9.6.2 Beat Rejection Model

The results demonstrate that a high percentage of fail beats are correctly identified. The

inclusion of this work reflects the challenges involved with combining the methods designed

in this thesis, and implementing them in a real-world setting.

In practice, the process of performing an examination commonly results in periods

of invalid data. For example, when the probe is lifted from the skin to ease discomfort

or add additional ultrasound gel. During these periods, models will continue to provide

feedback, which will consequently be erratic and unrepresentative. With respect to the

continuous feedback, which could be implemented as a historical reference, this could

be very detrimental. Additionally, in certain conditions the likelihood of false beats will

increase, for example, with patients from which only a weak signal is attainable. In these

cases, informative feedback will be most useful, and subsequently false beats will be the

most harmful.

The danger of false beats producing misleading or confusing feedback could be reduced

by implementing the models described in this chapter. Furthermore, the sensitivity of

models for a given patient could be tailored by an operator, through selecting models

trained with different dataset balances.

The demonstrated success of DCNN models in Chapter 8 could guide future design of

beat rejection models. This approach could be advantageous, as the same input would be

used for different models, as opposed to using SVM models which will require different

feature subsets.

9.7 Conclusion

A series of models were trained to classify beats as being incorrectly or correctly segmented.

Such systems would be a vital component of real-world Doppler ultrasound feedback soft-

ware, as poorly segmented data can produce erratic and misleading feedback. Methods

of undersampling and oversampling were implemented to address class imbalances, and

associated model biases. These approaches enabled a model with 93.4% accuracy to be

trained.
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Conclusions and Future Work

The work presented in this thesis will now be summarised, and recommendations regarding

future work will be provided.

10.1 Thesis Conclusions

This thesis proposes and evaluates multiple signal processing and machine learning tech-

niques for Doppler ultrasound. These have been designed for the primary goal of auto-

matically generating feedback that reflects probe position. Research focused on this has

not previously been documented, and the associated objectives reflected this. To realise

this goal, the work in this thesis focused on six primary objectives. An overview of this

work and the associated contributions are presented in the following six sections.

10.1.1 A stable and real-time method of MFE estimation

The first objective addressed in this thesis was the design of a real-time stable method

of MFE estimation. This was fulfilled through the development of an image-processing

method called OMM, which was demonstrated to be highly stable across a wide range

of challenging signal conditions. Furthermore, the evaluation of this method resulted in

contributions that fill current gaps within the research literature.

The evaluation of OMM was facilitated using a large selection of in-vivo data, phantom

data and advanced simulation data. The combination of which enabled a thorough eval-

uation of the method. The simulation data were more realistic than those implemented
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in previous works. Furthermore, the in-vivo dataset was far larger than used in previous

works, and scans were not restricted to high-quality measurements from the IPP; giving

an assessment more reflective of real-world conditions.

The performance of OMM was contrasted with that from two IPS methods and one

image-processing method. Previous works have not documented direct comparisons of IPS

and image-processing techniques, or included quantitative evaluations of image-processing

methods. Comparatively, OMM was shown to be both more stable than these previ-

ous methods, and highly suited for its primary desired application, which was to enable

consistent beat segmentation.

10.1.2 An automatic method of beat segmentation

The attributes of OMM MFEs were exploited and enabled work to fulfil a second primary

objective. This was to design an automatic method of beat segmentation that requires

no additional hardware to function. The research performed through this thesis resulted

in two methods of beat segmentation being designed, each of which satisfy this objective.

The two proposed methods are the slope-gradient method and the correlation method.

The slope-gradient method can be easily implemented using only an MFE. This lends

itself it to replication in future works and can use any MFE estimation method. This

facilitated a direct comparison of several MFE estimation methods, and when combined

with OMM resulted in 97.8% of beats being correctly segmented.

The correlation method functions using the MFE, an ideal MFE and an image gener-

ated during the OMM MFE estimation process. This method was shown to outperform

the slope-gradient method using a large sample of in-vivo data, and enabled valuable

correlation features to be extracted. This method achieved a true positive segmentation

rate of 99.2%, and was adopted for feature extraction. This successfully accomplished

the requirement for an automatic beat segmentation method, and enabled features to be

consistently extracted.

10.1.3 Propose existing and novel features

The OMM and correlation methods were combined to enable a thorough investigation

of features and machine learning techniques. Different feedback models were designed

through this thesis. In each case, development consisted of processing and identifying
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valuable features.

A thorough means of feature and model selection was described, guided by previous

machine learning works. This identified a variety of valuable features previously undocu-

mented for Doppler ultrasound analyses. Notably, MFCC and GTCC features were shown

to be powerful descriptors. Frequency analysis of MFEs were also found to be highly ben-

eficial.

Additionally, promising results were demonstrated using state-of-the-art image recog-

nition techniques, whereby spectral images are used instead of features; an approach previ-

ously unreported for Doppler ultrasound analysis. These findings. and the novel features

identified, add to the arsenal of available techniques for Doppler ultrasound analyses.

These could complement future works in this research area or related applications, such

as disease classification. Considering this, this objective is considered to be satisfied with

several valuable associated contributions.

10.1.4 A model to provide automatic scan quality feedback

The first feedback model proposed in the thesis addressed the objective to develop a model

that provides quantitative feedback reflective of scan quality; a previously unreported

application. In response to this, a regression model that generates continuous feedback

was designed. This dynamic feedback varied in response to probe position; increasing

when movements were beneficial and decreasing when they were detrimental.

Stringent evaluation was performed using an intersubject cross-validation approach.

The designed model exhibited a high Pearson correlation of 0.86, with respect to the ideal

response, and was found not to be detrimentally affected by estimated scan difficulty.

The evaluation of this model, whilst giving promising results, illustrated challenges

with respect to generalisability and highlighted areas of interest for continued research.

Although high correlations were achieved, absolute values of feedback reflective of the

IPP varied across participants. Adoption of this model in clinical settings would have to

consider these aspects carefully, and design practices and software to ensure feedback was

valuable to medical practitioners.
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10.1.5 A model to provide automatic probe position feedback

The second feedback model objective was to design a model that gives automatic feedback

indicating probe position. This goes beyond continuous feedback, which compliments

current methods of locating the IPP through interrogating multiple positions, and gives

explicit predictions with respect to beneficial probe movements.

To address this objective, multiple feature-based and image recognition classification

models were developed and evaluated. Previous Doppler ultrasound classification models

have not considered guiding probe position, and have been limited to few categories. In the

given work, four classification scenarios, with varying difficulty, were considered. These

categorised observations as either belonging to the ideal position or not, as belonging

to one of three locations when considering either a vertical or horizontal scanning plane

separately, or as belonging to one of five positions when considering both the vertical and

horizontal scanning planes combined.

These models succeeded in demonstrating that information extracted from Doppler

ultrasound measurements can be used to differentiate between observations from various

insonation angles, for example, an overall accuracy of 86% was attained when classifying

observations from the horizontal plane. The more challenging five-class scenario illustrated

that further development would be desirable, as overall accuracies were lower at 64%.

With respect to more traditional methods that employ hand-crafted features, improved

classification performance was demonstrated using AlexNet. AlexNet was implemented us-

ing spectral images of cardiac cycles; spectral estimation using an autoregressive approach

was found to be superior. These results demonstrate an exciting new tool that could be

further developed for this application, or extended to additional Doppler ultrasound tasks.

In addition to this, improved performance was further demonstrated using ensemble

methods, including combinations of both feature-based and image recognition models.

10.1.6 A model to automatically reject poor quality beats

The final objective was to develop a means of rejecting poor data. In practice, this would

be valuable for preventing misleading feedback. In response to this objective, a model

designed to identify poor data was designed and evaluated.

SVM classification models were trained and evaluated using additional artificial ob-

servations, which were introduced to overcome class imbalances. This technique could be
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implemented to train models with varying sensitivity. Using this approach a classification

accuracy of 94% was achieved, and true positive rate and false positive rate were closely

balanced at 95% and 93%, respectively.

The research described in this thesis resulted in a number of valuable and significant

contributions. Furthermore, the successes and limitations of these have highlighted aspects

in which continued work would be beneficial, as well as potential avenues for interesting

related research. This future work is discussed in the final section.

10.2 Future Work

This work has highlighted a variety of promising and previously undocumented features

and machine learning techniques for Doppler ultrasound analysis. These findings could

form the basis of continued research, which ultimately could lead to succeeding software

being implemented in clinical settings.

An important step towards this goal would be a body of work focused on large scale

data collection, of both healthy and unhealthy participants. As illustrated through this

thesis, an inherent challenge is the intra- and interpatient variability of measurements.

In practice, this challenge would be further exacerbated in clinical settings. This work

would more extensively capture these variations and lead to more generalised and useful

feedback models.

Future work could include the development of models for the pulmonary window. With

respect to the suprasternal notch, measurements from this location can be particularly

prone to misleading and erroneous blood flows from nearby vessels. To reflect this, the

classification of specific vessels could be another avenue of research, from which resulting

models could aid data acquisition. This approach would necessitate data being collected

using a machine with imaging capabilities. This is achievable with more expensive (with

respect to the USCOM) clinical machines, and can enable more precise and higher quality

raw data being collected.

Feedback models could also be implemented using additional hardware. This could,

for example, be in the form of robotics that automatically transition a probe through

scanning windows (and then locates the IPP with respect to obtained feedback), or by

using multiple transducers which could interrogate many different beam angles without

being physically manoeuvred. This could speed up Doppler ultrasound examinations and
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enable automatic monitoring. However, it could equally negate valuable characteristics of

the technology, namely its portability, cost-effectiveness and ease of application.

Previous works detailing Doppler ultrasound classification have been focused on disease

classification. The findings and methods in this thesis could equally be applied to these

tasks. Similarly, the features and image recognitions techniques could be implemented for

other audio research, such as auscultation classification (e.g., heart sounds). DCNNs and

image-recognition, in particular, are undergoing rapid development and offer promising,

and as of yet little researched, solutions for these tasks.
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244 APPENDIX A. USCOM VALIDATION SURVEYS

Table A.1: References of USCOM validation surveys

Survey Number Year Number of Patients Valve1 Reference

1 2005 22 PV [91]

2 2005 36 PV [107]

3 2006 40 AV [100]

4 2006 45 PV [100]

5 2007 30 AV [401]

6 2007 22 AV [19]

7 2007 22 PV [19]

8 2008 24 AV [85]

9 2008 15 AV [34]

10 2008 10 AV [94]

11 2008 12 PV [99]

12 2009 78 PV [402]

13 2009 89 AV [88]

14 2009 30 AV [101]

15 2009 89 AV [88]

16 2012 70 PV [403]

17 2012 20 PV [404]

18 2016 31 AV [112]

1 - PV denotes pulmonary valve, and AV denotes aortic valve.
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Figure B.1: Annotated block-diagram of correlation beat segmentation method
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Figure B.2: Annotated block-diagram of function for correlation statistic extraction for

correlation beat segmentation method
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Version: 1.0                                                                                                      Date: 27/09/2016 

Information Sheet for Participants 
 
 

 

Study title: Investigation of methods to improve Doppler ultrasound estimated blood 

velocity acquisition 

 
 
You are being invited to take part in a research study.  Before you decide it is important for 
you to understand why the research is being done and what it will involve.  Please take time 
to read the following information carefully and discuss it with others if you wish.  Ask us if 
there is anything that is not clear or if you would like more information.  Take time to decide 
whether or not you wish to take part. 
 
 
 
Thank you for reading this. 
 
 

1. What is the purpose of the study? 

 

 
Cardiac output is routinely monitored as part of intensive care practice, it is a 

principle determinant of oxygen delivery and blood pressure, and as such can guide 

treatment and identify patients at risk.  Measurement of cardiac output has 

historically been performed using invasive methods, the invasive nature of these 

techniques introduces risk (e.g. arrhythmia, infection or possible pulmonary 

disruption) and results in limited use in the emergency department. These issues 

lead to alternative non-invasive methods being highly desirable.  One such method 

uses non-invasive, transcutaneous (administered externally, across the skin) 

ultrasound. By placing an ultrasound device at the base of a patient’s neck or on their 

chest, the reflected signal from moving blood can be analysed to calculate the 

velocity of that blood. This is possible because the velocity of the blood causes a 

proportional shift in frequency of the reflected ultrasound, known as a Doppler shift.  

This study will collect Doppler frequency data using the above method, by placing an 

ultrasound device in the participant’s suprasternal notch (base of the neck) to 

measure blood through the aortic valve and/or parasternally (left side of the chest) to 

measure blood in the pulmonary valve.  

This data will be used to develop novel systems to aid users of medical ultrasound 
devices in performing consistent, accurate measurements. This will include an 
automated signal quality assessment, a sense check of measured values, and 
methods of localising the correct signal from the patient.   
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2. Why have I been chosen? 

 

To design user feedback systems for administering medical Doppler ultrasound, data 

collected from healthy individuals is required, therefore we are seeking healthy volunteers to 

contribute to this research.  

 

 

3. Do I have to take part? 

 

The decision to take part is solely up to you.  If you do decide to take part you will be given 

this information sheet to keep and be asked to sign a consent form. If you decide to take part 

you are still free to withdraw at any time and without giving a reason   

 

4. What will happen to me if I take part? 

 

 You will be provided with this information sheet and if you decide to take part we will 

perform Doppler ultrasound measurements on you using the above described 

method; which will take approximately 30-40 minutes to complete.  

 

 Prior to the start of the experiment, you will be asked to provide information detailing 

your age, gender and height; this information will be anonymous.  

 

5. What about confidentiality? 

 

You do not need to provide your name, address or any other personal data. All the data will 

be kept in a secure location and will be anonymised using non-identifiable codes before 

further analysis. The collected data will be given non-identifiable codes and will therefore be 

anonymised prior to receiving. The researcher for this study will sign confidentiality and non-

disclosure agreements for the newly collected data. 

 

6. What do I have to do? 

 

At the beginning of the experiment you would be ask to be in the surpine position (on your 

back), and to remove any clothing preventing access to your suprasternal notch/parasternal 

window. 

 

We will then attempt to acquire Doppler ultrasound signals from both positions. This is done 

by first applying gel to the ultrasound device, and then positioning this until satisfactory 

signals are measured; this involves slowly moving the device across the skin in both locations 

and changing its angle and pressure.  

 

 

 

 

7. Are there any risks? 

 

There is no any realistic risk of any participants experiencing either physical or psychological 

distress or discomfort. You will be supervised by the researchers involved throughout the 

whole measurement process, ensuring you are safe, comfortable and willing to continue 

having the measurements performed. 
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8. What will happen to the results of the research study? 

 

The results of the study will be used to design automated methods to aid users of medical 

Doppler ultrasound devices.  

  

To receive a summary of findings you need to fill in your contact details. At the end of the 

study the researcher will email or post this summary to you using the personal details you 

provided, after which your personal details will be destroyed. If you do not wish to receive 

such a summary you do not have to give your personal details. 

 

9. Who is organising and funding the research? 

 

This research is organised by Cardiff University, School of Engineering, and School of 

medicine. The study will be managed and run by Dr Yulia Hicks, Dr Timothy Rainer, and Mr 

Jack Latham. The project is funded by the Engineering and Physical Sciences Research 

Council (EPSRC). 

 

 

10. Contact for Further Information 

 

Please contact me if you require further information. 

 

Contact: Jack Latham, PhD student. 

Tel:  

 

School of Engineering, Cardiff University  

Queen's Buildings 

The Parade 

CARDIFF CF24 3AA 

Wales, UK. 
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CONSENT FORM 
 

 

Title of Project: Investigation of methods to improve Doppler ultrasound estimated blood 

velocity acquisition 

 

 

 

 

Name of Researcher: Jack Latham 

 

 

 

 

 

 

 

 

 

 

       Please initial box 

 

1. I confirm that I have read and understand the information sheet dated ............................  
 (version ............) for the above study and have had the opportunity to ask questions. 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time,  
 without giving any reason. 

 

 

3. I agree to take part in the above study.    
 

 

________________________ ________________ ____________________ 

Name of Participant  Date Signature 

 

 

_________________________ ________________ ____________________ 

Name of Person taking consent Date  Signature 

(if different from researcher) 

 

 

_________________________ ________________ ____________________ 

Researcher   Date  Signature 
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Type1 Group Subgroup Data Length Name 

Waveform Haemodynamic N/A Envelope CC W_CC_E_OMM_H1
… … … … … …

Waveform Haemodynamic N/A Envelope SYS W_SYS_E_OMM_H8
Waveform Haemodynamic N/A Envelope CC W_CC_E_MSNSI_H2

… … … … … …
Waveform Haemodynamic N/A Envelope SYS W_SYS_E_MSNSI_H8
Waveform Envelope Statistics N/A Envelope CC W_CC_E_OMM_S1
Waveform Envelope Statistics N/A Envelope CC W_SYS_E_OMM_S1
Waveform Envelope Statistics N/A Envelope SYS W_SYS_E_OMM_S2
Waveform Envelope Statistics N/A Envelope SYS W_SYS_E_OMM_S3
Waveform Envelope Statistics N/A Envelope SYS W_SYS_E_OMM_S4
Waveform Envelope Statistics N/A Envelope CC W_CC_E_MSNSI_S1
Waveform Envelope Statistics N/A Envelope CC W_SYS_E_MSNSI_S1
Waveform Envelope Statistics N/A Envelope SYS W_SYS_E_MSNSI_S2
Waveform Envelope Statistics N/A Envelope SYS W_SYS_E_MSNSI_S3
Waveform Envelope Statistics N/A Envelope CC W_SYS_E_MSNSI_S4

Waveform Classic Waveform N/A Envelope CC W_CC_E_TF1
… … … … … …

Waveform Classic Waveform N/A Envelope CC W_CC_E_TF31

Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE1_1
… … … … … …

Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE1_7
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE2_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE2_7
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE3_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE3_7
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE4_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE4_7
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE5_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE5_10
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE6_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE6_7
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE7_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE7_6
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE8_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE8_6
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE9_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE9_6
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE10_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE10_6
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE11_1

… … … … … …
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE11_6
Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE12_1

Haemodynamic Metrics and Envelope Statistics

Traditional Features

Novel Envelope Features



Type1 Group Subgroup Data Length Name 
… … … … … …

Waveform Novel Envelope Statistics N/A Envelope CC W_CC_E_NE12_6

Image Features Image Statistics Novel Images Image SYS IMS_SYS_I_IP1_S1
… … … … … …

Image Features Image Statistics Novel Images Image CC IMS_SYS_I_IP1_S5
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP1_S1

… … … … … …
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP1_S5
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP2_S1

… … … … … …
Image Features Image Statistics Novel Images Image SYS IMS_CC_I_IP2_S5
Image Features Image Statistics Novel Images Image SYS IMS_CC_I_IP3_S1

… … … … … …
Image Features Image Statistics Novel Images Image SYS IMS_CC_I_IP3_S5
Image Features Image Statistics Novel Images Image SYS IMS_CC_I_IP4_S1

… … … … … …
Image Features Image Statistics Novel Images Image SYS IMS_CC_I_IP4_S4
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP4_S6
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP4_S7
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP5_S1

… … … … … …
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP5_S4
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP5_S6
Image Features Image Statistics Novel Images Image CC IMS_CC_I_IP5_S7
Image Features Computer Vision LBP Image CC LBP_CC_I_F1

… … … … … …
Image Features Computer Vision LBP Image CC LBP_CC_I_F59
Image Features Computer Vision HOG Image CC HOG_CC_I_F1

… … … … … …
Image Features Computer Vision HOG Image CC HOG_CC_I_F324
Image Features Image Statistics Novel Images Image CC IMS_CC_I_SNR_BASE
Image Features Image Statistics Novel Images Image CC IMS_CC_I_SNR_PEAK

Spectral DWT CS Audio CC DWT_CC_A_D1_1
Spectral DWT CS Audio CC DWT_CC_A_D1_2
Spectral DWT CS Audio CC DWT_CC_A_D1_3
Spectral DWT CS Audio CC DWT_CC_A_D1_4
Spectral DWT CS Audio CC DWT_CC_A_D2_1
Spectral DWT CS Audio CC DWT_CC_A_D2_2
Spectral DWT CS Audio CC DWT_CC_A_D2_3
Spectral DWT CS Audio CC DWT_CC_A_D2_4
Spectral DWT CS Audio CC DWT_CC_A_D3_1
Spectral DWT CS Audio CC DWT_CC_A_D3_2
Spectral DWT CS Audio CC DWT_CC_A_D3_3
Spectral DWT CS Audio CC DWT_CC_A_D3_4
Spectral DWT CS Audio CC DWT_CC_A_D4_1
Spectral DWT CS Audio CC DWT_CC_A_D4_2
Spectral DWT CS Audio CC DWT_CC_A_D4_3
Spectral DWT CS Audio CC DWT_CC_A_D4_4
Spectral DWT CS Audio CC DWT_CC_A_D5_1
Spectral DWT CS Audio CC DWT_CC_A_D5_2
Spectral DWT CS Audio CC DWT_CC_A_D5_3
Spectral DWT CS Audio CC DWT_CC_A_D5_4
Spectral DWT CS Audio CC DWT_CC_A_D6_1
Spectral DWT CS Audio CC DWT_CC_A_D6_2
Spectral DWT CS Audio CC DWT_CC_A_D6_3

Image Features

DWT Features



Type1 Group Subgroup Data Length Name 
Spectral DWT CS Audio CC DWT_CC_A_D6_4
Spectral DWT CS Audio CC DWT_CC_A_D7_1
Spectral DWT CS Audio CC DWT_CC_A_D7_2
Spectral DWT CS Audio CC DWT_CC_A_D7_3
Spectral DWT CS Audio CC DWT_CC_A_D7_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D1_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D1_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D1_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D1_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D2_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D2_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D2_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D2_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D3_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D3_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D3_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D3_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D4_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D4_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D4_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D4_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D5_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D5_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D5_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D5_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D6_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D6_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D6_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D6_4
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D7_1
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D7_2
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D7_3
Spectral DWT CS Envelope CC DWT_CC_E_OMM_D7_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D1_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D1_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D1_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D1_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D2_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D2_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D2_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D2_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D3_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D3_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D3_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D3_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D4_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D4_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D4_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D4_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D5_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D5_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D5_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D5_4
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D6_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D6_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D6_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D6_4



Type1 Group Subgroup Data Length Name 
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D7_1
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D7_2
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D7_3
Spectral DWT CS Envelope CC DWT_CC_E_MSNSI_D7_4
Spectral DWT Entropy Audio SYS DWT_SYS_A_SE1

… … … … … …
Spectral DWT Entropy Audio SYS DWT_SYS_A_SE16
Spectral DWT Entropy Audio CC DWT_CC_A_SE1

… … … … … …
Spectral DWT Entropy Audio CC DWT_CC_A_SE16
Spectral DWT Entropy Envelope CC DWT_CC_E_OMM_SE1

… … … … … …
Spectral DWT Entropy Envelope CC DWT_CC_E_OMM_SE16
Spectral DWT Entropy Envelope CC DWT_CC_E_MSNSI_SE1

… … … … … …
Spectral DWT Entropy Envelope CC DWT_CC_E_MSNSI_SE16
Spectral DWT Entropy Envelope CC DWT_CC_E_MF_SE1

… … … … … …
Spectral DWT Entropy Envelope CC DWT_CC_E_MF_SE16
Spectral DWT Variance Audio SYS DWT_SYS_A_V1

… … … … … …
Spectral DWT Variance Audio SYS DWT_SYS_A_V9
Spectral DWT Variance Audio CC DWT_CC_A_V1

… … … … … …
Spectral DWT Variance Audio CC DWT_CC_A_V11
Spectral DWT Variance Envelope CC DWT_CC_E_OMM_V1

… … … … … …
Spectral DWT Variance Envelope CC DWT_CC_E_OMM_V8
Spectral DWT Variance Envelope CC DWT_CC_E_MSNSI_V1

… … … … … …
Spectral DWT Variance Envelope CC DWT_CC_E_MSNSI_V8
Spectral DWT Variance Envelope CC DWT_CC_E_MF_V1

… … … … … …
Spectral DWT Variance Envelope CC DWT_CC_E_MF_V8

Spectral Model Based AR Audio SYS AR_SYS_A_C1
Spectral Model Based AR Audio SYS AR_SYS_A_C2
Spectral Model Based AR Audio SYS AR_SYS_A_C3
Spectral Model Based AR Audio SYS AR_SYS_A_C4
Spectral Model Based AR Audio CC AR_CC_A_C1
Spectral Model Based AR Audio CC AR_CC_A_C2
Spectral Model Based AR Audio CC AR_CC_A_C3
Spectral Model Based AR Audio CC AR_CC_A_C4
Spectral Model Based AR Envelope CC AR_CC_E_OMM_C1
Spectral Model Based AR Envelope CC AR_CC_E_OMM_C2
Spectral Model Based AR Envelope CC AR_CC_E_OMM_C3
Spectral Model Based AR Envelope CC AR_CC_E_OMM_C4
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_C1
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_C2
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_C3
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_C4
Spectral Model Based AR Envelope CC AR_CC_E_MF_C1
Spectral Model Based AR Envelope CC AR_CC_E_MF_C2
Spectral Model Based AR Envelope CC AR_CC_E_MF_C3
Spectral Model Based AR Envelope CC AR_CC_E_MF_C4
Spectral Model Based AR Audio CC AR_CC_A_S1
Spectral Model Based AR Audio CC AR_CC_A_S2

Parametric Model Features



Type1 Group Subgroup Data Length Name 
Spectral Model Based AR Audio CC AR_CC_A_S3
Spectral Model Based AR Audio CC AR_CC_A_S4
Spectral Model Based ARMA Audio CC ARMA_CC_A_S1
Spectral Model Based ARMA Audio CC ARMA_CC_A_S2
Spectral Model Based ARMA Audio CC ARMA_CC_A_S3
Spectral Model Based ARMA Audio CC ARMA_CC_A_S4
Spectral Model Based AR Envelope CC AR_CC_E_OMM_S1
Spectral Model Based AR Envelope CC AR_CC_E_OMM_S2
Spectral Model Based AR Envelope CC AR_CC_E_OMM_S3
Spectral Model Based AR Envelope CC AR_CC_E_OMM_S4
Spectral Model Based ARMA Envelope CC ARMA_CC_E_OMM_S1
Spectral Model Based ARMA Envelope CC ARMA_CC_E_OMM_S2
Spectral Model Based ARMA Envelope CC ARMA_CC_E_OMM_S3
Spectral Model Based ARMA Envelope CC ARMA_CC_E_OMM_S4
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_S1
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_S2
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_S3
Spectral Model Based AR Envelope CC AR_CC_E_MSNSI_S4
Spectral Model Based ARMA Envelope CC ARMA_CC_E_MSNSI_S1
Spectral Model Based ARMA Envelope CC ARMA_CC_E_MSNSI_S2
Spectral Model Based ARMA Envelope CC ARMA_CC_E_MSNSI_S3
Spectral Model Based ARMA Envelope CC ARMA_CC_E_MSNSI_S4

Spectral Biologically Inspired MFCC Audio CC MFCC_CC_A0
… … … … … …

Spectral Biologically Inspired MFCC Audio CC MFCC_CC_A13
Spectral Biologically Inspired MFCC Audio SYS MFCC_SYS_A0

… … … … … …
Spectral Biologically Inspired MFCC Audio SYS MFCC_SYS_A13
Spectral Biologically Inspired GTCC Audio CC GTCC_CC_A_F0

… … … … … …
Spectral Biologically Inspired GTCC Audio CC GTCC_CC_A_F13
Spectral Biologically Inspired GTCC Audio SYS GTCC_SYS_A_F0

… … … … … …
Spectral Biologically Inspired GTCC Audio SYS GTCC_SYS_A_F13
Spectral Biologically Inspired GTCC Audio CC GTCC_CC_A_T0

… … … … … …
Spectral Biologically Inspired GTCC Audio CC GTCC_CC_A_T13
Spectral Biologically Inspired GTCC Audio SYS GTCC_SYS_A_T0

… … … … … …
Spectral Biologically Inspired GTCC Audio SYS GTCC_SYS_A_T13

Audio Features N/A N/A Audio CC AF_CC_A1
… … … … … …

Audio Features N/A N/A Audio CC AF_SYS_A13
Audio Features N/A N/A Audio SYS AF_SYS_A1

… … … … … …
Audio Features N/A N/A Audio SYS AF_CC_A13
Audio Features N/A N/A Audio CC AF_CC_E_OMM_SNR
Audio Features N/A N/A Audio CC AF_CC_E_MSNSI_SNR
Audio Features N/A N/A Audio CC AF_CC_A_SNR

1 - Rows containing "…" indicate a series of features with identical details, whose feature names are increasing incrementaly 

MFCC and GTCC Features

Audio Features
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1 – As described in [12].

2 – As described in [311].

3 – Explored as a part of this work.
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Table F.-1: Variables used to calculate traditional and haemodynamic features
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266APPENDIX G. COMPUTER VISION FEATURE EXTRACTION PARAMETERS

Table G.1: Parameters used to calculate LBP and HOG features

Setting Description Values

LBP Parameters

NumNeighbors No. neighbours used to for

each pixel to calculate

LBP

8

Radius Radius of circular pattern

used to select neighbours

1

Upright Determines rotation

invariance

TRUE

Interpolation interpolation method used

to determine pixel

neighbours

Linear

CellSize . . . Image Input Size

Matlab Function . . . extractLBPFeatures

HOG Parameters

CellSize Size of HOG cell [25 x 25]

BlockSize No. of cells in block [2 x 2]

BlockOverlap No. overlapping cells

between adjacent blocks

[1 x 1]

NumBins No. orientation histogram

bins

9

UseSignedOrientation . . . FALSE

Matlab Function . . . extractHOGFeatures
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Parametric Model Feature

extraction
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Appendix K

Audio Feature extraction

Table K.1: Functions and variables used to extract audio features

Feature Name Function and Inputs1

Loudness integratedLoudness(x,fs)

Spectral Centroid spectralCentroid(x, fs,‘Window’, W)

Spectral Decrease spectralDecrease(x, fs,‘Window’, W)

Spectral Entropy spectralEntropy(x, fs,‘Window’, W)

Spectral Flattness spectralFlatness(x, fs,‘Window’, W)

Spectral Flux spectralFlux(x, fs,‘Window’, W/2)

Spectral Kurtosis spectralKurtosis(x, fs,‘Window’, W)

Spectral Rolloff Point spectralRolloffPoint(x, fs,‘Window’, W)

Spectral Skewness spectralSkewness(x, fs,‘Window’, W)

Spectral Slope spectralSlope(x, fs,‘Window’, W)

Spectral Spread spectralSpread(x, fs,‘Window’, W)

Pitch pitch(x, fs,‘WindowLength’, Window)

Harmonic Ratio harmonicRatio(x, fs,‘Window’, W)

1 - Where x is the input audio data, fs is the corresponding sample frequency and W denotes a

rectangular window with length equal to x.
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Appendix L

Model Training Specifications

Table L.1: Parameters used for SVM regression model

Parameter Value

Model Type Coarse Gaussian SVM

Kernal Function Gaussian

Kernal Scale 27.1

Box Constraint 0.1

Epsilon 0.0026

Optimisation Time (s) 2,972

Training Function1 fitrsvm

1 – MATLAB function used to train model.
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Table L.2: Parameters used for each classification model

Parameter
Classification Task

2-Class 3-class, V 3-class, H 5-Class Fail

Model Type SVM SVM SVM SVM SVM

Kernal Function Polynomial Polynomial Polynomial Polynomial Polynomial

Order 3 3 2 3 3

Box Constraint 0.063 0.018 0.062 1.3 1

Kernel Scale 29.9 1.7 1.5 5 7.2

Coding N/A oneVall oneVone oneVone N.A

Optimisation Time (s) 1,233 12,050 10,660 55,029 2,000

Training Function1 fitcecoc fitcecoc fitcecoc fitcecoc fitcsvm

1 – MATLAB function used to train model.
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Table M.1: Features selected for Regression SVM model
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Table M.2: Features selected for 2-class SVM model
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Table M.2: Features selected for 3-class vertical-plane SVM model
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Table M.2: Features selected for 3-class horizontal-plane SVM model
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Table M.2: Features selected for 5-class SVM model
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Table M.2: Features selected for fail beat SVM model
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